Gaze Error Estimation and Linear Transformation to Improve Accuracy of Video-Based Eye Trackers

Gaze Error Estimation and Linear Transformation to Improve Accuracy of Video-Based Eye Trackers by Padikal V, Plonkowski A, Lawton P, Young LK, Read JCA, 29.html (396 B) - Eye tracking technology plays a crucial role in various fields such as psychology, medical training, marketing, and human–computer interaction. However, achieving high accuracy over a larger field of view in eye tracking systems remains a significant challenge, both in free viewing and in a head-stabilized condition. In this paper, we propose a simple approach to improve the accuracy of video-based eye trackers through the implementation of linear coordinate transformations. This method involves applying stretching, shearing, translation, or their combinations to correct gaze accuracy errors. Our investigation shows that re-calibrating the eye tracker via linear transformations significantly improves the accuracy of video-based tracker over a large field of view.

Eye posture and screen alignment with simulated see-through head-mounted displays

Eye posture and screen alignment with simulated see-through head-mounted displays by Gibaldi A, Liu Y, Kaspiris-Rousellis C, Mahadevan SM, Read JCA. Vlaskamp BNS, Maus GW, GibaldiLiuKaspirisRousellisMahedevanReadVlaskampMaus2025.pdf (1.6 MiB) - When rendering the visual scene for near-eye head-mounted displays, accurate knowledge of the geometry of the displays, scene objects, and eyes is required for the correct generation of the binocular images. Despite possible design and calibration efforts, these quantities are subject to positional and measurement errors, resulting in some misalignment of the images projected to each eye. Previous research investigated the effects in virtual reality (VR) setups that triggered such symptoms as eye strain and nausea. This work aimed at investigating the effects of binocular vertical misalignment (BVM) in see-through augmented reality (AR). In such devices, two conflicting environments coexist. One environment corresponds to the real world, which lies in the background and forms geometrically aligned images on the retinas. The other environment corresponds to the augmented content, which stands out as foreground and might be subject to misalignment. We simulated a see-through AR environment using a standard three-dimensional (3D) stereoscopic display to have full control and high accuracy of the real and augmented contents. Participants were involved in a visual search task that forced them to alternatively interact with the real and the augmented contents while being exposed to different amounts of BVM. The measured eye posture indicated that the compensation for vertical misalignment is equally shared by the sensory (binocular fusion) and the motor (vertical vergence) components of binocular vision. The sensitivity of each participant varied, both in terms of perceived discomfort and misalignment tolerance, suggesting that a per-user calibration might be useful for a comfortable visual experience.

Physically stressed bees expect less reward in an active choice judgement bias test

Physically stressed bees expect less reward in an active choice judgement bias test by Procenko O, Read JCA, Nityananda V, rspb.2024.0512.html (9 KiB) - Emotion-like states in animals are commonly assessed using judgment bias tests that measure judgements of ambiguous cues. Some studies have used these tests to argue for emotion-like states in insects. However, most of these results could have other explanations, including changes in motivation and attention. To control for these explanations, we developed a novel judgment bias test, requiring bumblebees to make an active choice indicating their interpretation of ambiguous stimuli. Bumblebees were trained to associate high or low rewards, in two different reward chambers, with distinct colours. We subsequently presented bees with ambiguous colours between the two learnt colours. In response, physically stressed bees were less likely than control bees to enter the reward chamber associated with high reward. Signal detection and drift diffusion models showed that stressed bees were more likely to choose low reward locations in response to ambiguous cues. The signal detection model further showed that the behaviour of stressed bees was explained by a reduction in the estimated probability of high rewards. We thus provide strong evidence for judgement biases in bees and suggest that their stress-induced behaviour is explained by reduced expectation of higher rewards, as expected for a pessimistic judgement bias.

Focusing on mixed narrow band stimuli: Implications for mechanisms of accommodation and displays

Focusing on mixed narrow band stimuli: Implications for mechanisms of accommodation and displays by Finch A, Fernandez-Alonso M, Kirby A, Read JCA, Love G, article.aspx_.html (0.4 MiB) - The eye has considerable chromatic aberration, meaning that the accommodative demand varies with wavelength. Given this, how does the eye accommodate to light of differing spectral content? Previous work is not conclusive but, in general, the eye focuses in the center of the visible spectrum for broadband light, and it focuses at a distance appropriate for individual wavelengths for narrowband light. For stimuli containing two colors, there are also mixed reports. This is the second of a series of two papers where we investigate accommodation in relation to chromatic aberration Fernandez-Alonso, Finch, Love, and Read (2024). In this paper, for the first time, we measure how the eye accommodates to images containing two narrowband wavelengths, with varying relative luminance under monocular conditions. We find that the eye tends to accommodate between the two extremes, weighted by the relative luminance. At first sight, this seems reasonable, but we show that image quality would be maximized if the eye instead accommodated on the more luminous wavelength. Next we explore several hypotheses as to what signal the eye might be using to drive accommodation and compare these with the experimental data. We show that the data is best explained if the eye seeks to maximize contrast at low spatial frequencies. We consider the implication of these results for both the mechanism behind accommodation, and for modern displays containing narrowband illuminants.

Ocular accommodation and wavelength: The effect of longitudinal chromatic aberration on the stimulus–response curve

Ocular accommodation and wavelength: The effect of longitudinal chromatic aberration on the stimulus–response curve by Fernandez-Alonso M, Finch AP, Love GD, Read JCA, FernandezAlonsoEA2024.pdf (4.8 MiB) - The longitudinal chromatic aberration (LCA) of the eye creates a chromatic blur on the retina that is an important cue for accommodation. Although this mechanism can work optimally in broadband illuminants such as daylight, it is not clear how the system responds to the narrowband illuminants used by many modern displays. Here, we measured pupil and accommodative responses as well as visual acuity under narrowband light-emitting diode (LED) illuminants of different peak wavelengths. Observers were able to accommodate under narrowband light and compensate for the LCA of the eye, with no difference in the variability of the steady-state accommodation response between narrowband and broadband illuminants. Intriguingly, our subjects compensated more fully for LCA at nearer distances. That is, the difference in accommodation to different wavelengths became larger when the object was placed nearer the observer, causing the slope of the accommodation response curve to become shallower for shorter wavelengths and steeper for longer ones. Within the accommodative range of observers, accommodative errors were small and visual acuity normal. When comparing between illuminants, when accommodation was accurate, visual acuity was worst for blue narrowband light. This cannot be due to the sparser spacing for S-cones, as our stimuli had equal luminance and thus activated LM-cones roughly equally. It is likely because ocular LCA changes more rapidly at shorter wavelength and so the finite spectral bandwidth of LEDs corresponds to a greater dioptric range at shorter wavelengths. This effect disappears for larger accommodative errors, due to the increased depth of focus of the eye.

Understanding accommodative control in the clinic: Modeling latency and amplitude for uncorrected refractive error, presbyopia and cycloplegia

Understanding accommodative control in the clinic: Modeling latency and amplitude for uncorrected refractive error, presbyopia and cycloplegia by Read JCA, Maus G, Schor CM, ReadMausSchor2024.pdf (3.9 MiB) - Accommodation is the process of adjusting the eye's optical power so as to focus at different distances. Uncorrected refractive error and/or functional presbyopia mean that sharp focus may not be achievable for some distances, so observers experience sustained defocus. Here, we identify a problem with current models of accommodative control: They predict excessive internal responses to stimuli outside accommodative range, leading to unrealistic adaptation effects. Specifically, after prolonged exposure to stimuli outside range, current models predict long latencies in the accommodative response to stimuli within range, as well as unrealistic dynamics and amplitudes of accommodative vergence innervation driven by the accommodative neural controller. These behaviors are not observed empirically. To solve this issue, we propose that the input to blur-driven accommodation is not retinal defocus, but correctable defocus. Predictive models of accommodative control already estimate demand from sensed defocus, using a realistic “virtual plant” to estimate accommodation. Correctable defocus can be obtained by restricting this demand to values physically attainable by the eye. If we further postulate that correctable defocus is computed using an idealized virtual plant that retains a young accommodative range, we can explain why accommodative–convergence responses are observed for stimuli that are too near—but not too far—to focus on. We model cycloplegia as a change in gain, and postulate a form of neural myopia to explain the additional relaxation of accommodation often seen with cycloplegia. This model produces plausible predictions for the accommodative response and accommodative convergence signal in a wide range of clinically relevant situations

Different memory systems in food-hoarding birds: A response to Pravosudov

Different memory systems in food-hoarding birds: A response to Pravosudov by Smulders TV, Read JCA, SmuldersRead2024.pdf (0.5 MiB) - We recently showed that food-hoarding birds use familiarity processes more than recollection processes when remembering the spatial location of their caches (Smulders et al., Animal Cognition 26:1929-1943, 2023). Pravosudov (Learning & Behavior, https://doi.org/ https://doi.org/10.3758/s13420-023-00616-x , 2023) called our findings into question, claiming that our method is unable to distinguish between recollection and familiarity, and that associative learning tasks are a better way to study the memory for cache sites. In this response, we argue that our methods would have been more likely to detect recollection than familiarity, if Pravosudov's assertions were correct. We also point out that associative learning mechanisms may be good for building semantic knowledge, but are incompatible with the needs of cache site memory, which requires the unique encoding of caching events.

Hoarding titmice predominantly use Familiarity, and not Recollection, when remembering cache locations

Hoarding titmice predominantly use Familiarity, and not Recollection, when remembering cache locations by Smulders TV, Douglas LJ, Reza D, Male LH, Prysce A, Alix A, de GuzmanDodd A, Read JCA, SmuldersDouglasRezaMalePrysceAlixDoddRead2023.pdf (1.8 MiB) - Scatter-hoarding birds find their caches using spatial memory and have an enlarged hippocampus. Finding a cache site could be achieved using either Recollection (a discrete recalling of previously experienced information) or Familiarity (a feeling of "having encountered something before"). In humans, these two processes can be distinguished using receiver operating characteristic (ROC) curves. ROC curves for olfactory memory in rats have shown the hippocampus is involved in Recollection, but not Familiarity. We test the hypothesis that food-hoarding birds, having a larger hippocampus, primarily use Recollection to find their caches. We validate a novel method of constructing ROC curves in humans and apply this method to cache retrieval by coal tits (Periparus ater). Both humans and birds mainly use Familiarity in finding their caches, with lower contribution of Recollection. This contribution is not significantly different from chance in birds, but a small contribution cannot be ruled out. Memory performance decreases with increasing retention interval in birds. The ecology of food-hoarding Parids makes it plausible that they mainly use Familiarity in the memory for caches. The larger hippocampus could be related to associating cache contents and temporal context with cache locations, rather than Recollection of the spatial information itself.

Seeing the future: Predictive control in neural models of ocular accommodation

Seeing the future: Predictive control in neural models of ocular accommodation by Read JCA, Kaspiris-Rousellis C, Wood TS, Wu B, Vlaskamp BNS, Schor CM, ReadKaspirisRousellisWoodWuVlaskampSchor2022.pdf (5.4 MiB) - Ocular accommodation is the process of adjusting the eye's crystalline lens so as to bring the retinal image into sharp focus. The major stimulus to accommodation is therefore retinal defocus, and in essence, the job of accommodative control is to send a signal to the ciliary muscle which will minimize the magnitude of defocus. In this article, we first provide a tutorial introduction to control theory to aid vision scientists without this background. We then present a unified model of accommodative control that explains properties of the accommodative response for a wide range of accommodative stimuli. Following previous work, we conclude that most aspects of accommodation are well explained by dual integral control, with a “fast” or “phasic” integrator enabling response to rapid changes in demand, which hands over control to a “slow” or “tonic” integrator which maintains the response to steady demand. Control is complicated by the sensorimotor latencies within the system, which delay both information about defocus and the accommodation changes made in response, and by the sluggish response of the motor plant. These can be overcome by incorporating a Smith predictor, whereby the system predicts the delayed sensory consequences of its own motor actions. For the first time, we show that critically-damped dual integral control with a Smith predictor accounts for adaptation effects as well as for the gain and phase for sinusoidal oscillations in demand. In addition, we propose a novel proportional-control signal to account for the power spectrum of accommodative microfluctuations during steady fixation, which may be important in hunting for optimal focus, and for the nonlinear resonance observed for low-amplitude, high-frequency input.

Peripheral Flicker Fusion at High Luminance: Beyond the Ferry–Porter Law

Peripheral Flicker Fusion at High Luminance: Beyond the Ferry–Porter Law by Fernandez-Alonso M, Innes W, Read JCA, FernandezAlonsoInnesRead2023.pdf (0.9 MiB) - The relationship between luminous intensity and the maximum frequency of flicker that can be detected defines the limits of the temporal-resolving ability of the human visual system, and characterizing it has important theoretical and practical applications; particularly for determining the optimal refresh rate for visual displays that would avoid the visibility of flicker and other temporal artifacts. Previous research has shown that this relationship is best described by the Ferry–Porter law, which states that critical flicker fusion (CFF) increases as a linear function of log retinal illuminance. The existing experimental data showed that this law holds for a wide range of stimuli and up to 10,000 Trolands; however, beyond this, it was not clear if the CFF continued to increase linearly or if the function saturated. Our aim was to extend the experimental data available to higher light intensities than previously reported in the literature. For this, we measured the peripheral CFF at a range of illuminances over six orders of magnitude. Our results showed that for up to 104 Trolands, the data conformed to the Ferry–Porter law with a similar slope, as previously established for this eccentricity; however, at higher intensities, the CFF function flattens and saturates at ~90 Hz for a target size of 5.7 degrees, and at ~100 Hz for a target of 10 degrees of angular size. These experimental results could prove valuable for the design of brighter visual displays and illumination sources that are temporally modulated.