EXTENDING THE HUMAN FOVEAL SPATIAL CONTRAST SENSITIVITY FUNCTION TO HIGH LUMINANCE RANGE

Christos Kaspiris-Rousellis, Maydel Fernandez-Alonso and Jenny C. A. Read

Institute of Neuroscience, Newcastle University, Tyne and Wear, UK

ABSTRACT
The human contrast sensitivity function (CSF) is the most general way of quantifying what human vision can perceive. It predicts which artifacts will be visible on a display and what changes to hardware will result in noticeable improvements. Contrast sensitivity varies with luminance, and as new technology is producing higher luminance range displays, it is becoming essential to understand how the CSF behaves in this regime. Following this direction, we investigated the effect of adaptation luminance on contrast sensitivity for sine-wave gratings over a large number of CSF measurements in the literature. We examined the validity of the linear to DeVries-Rose transition that is usually assumed to predict this relationship. We found a gradual transition among the three regions with steeper/flatter slopes for higher/lower frequencies and lower/higher retinal illuminance. A further decreasing region was located at low to intermediate frequencies, which was consistent across studies. Based on this theoretical construct, we adopted a CSF model consisting of central elements in the human visual signal processing and three limiting internal noise components corresponding to each region. We assessed the model’s performance on the measured contrast sensitivities and proposed an eight-parameter form to describe the contrast sensitivity surface in the spatial frequency-luminance domain.

Index Terms — adaptation luminance, CSF, DeVries-Rose, sine-wave gratings, spatial resolution, visual system, Weber

1. INTRODUCTION
The most basic way of characterizing the ability of a human observer to discriminate visual patterns is the contrast sensitivity function (CSF). The CSF reports the sensitivity to visual stimuli as a function of their spatiotemporal frequency. It is an integral part of visual display standardization (e.g., [1]), and the central component in HVS-based image quality assessment algorithms for extending performance to higher luminance range (e.g., [2, 3]). The latter stems from the fact that one of the primary factors determining the shape of the CSF is adaptation luminance. Generally, an increase in the mean background luminance results in higher peak sensitivity and spatial resolution, while the location of the peak shifts to higher frequencies, additionally changing the CSF shape from low-pass to band-pass [4, 5, 6, 7, 8].

The relationship between contrast sensitivity and adaptation luminance is often described as a trilinear transition [8, 9] with each segment corresponding to the dominant noise source that limits visual detection, i.e., early noise or “dark light” [10], photon shot noise [11, 12], and late neural noise [13]. This theoretical construct is usually referred to as linear to DeVries-Rose to Weber transition, with slopes equal to 1, 0.5, and 0 in log-log space for each segment, respectively. In the case of sine-wave gratings, employed in CSF measurements, sensitivity was found to demonstrate asymptotic behavior (i.e., to approach the Weber region) at higher luminance for increasing spatial frequency [5, 14, 15]. Several studies provide evidence for a further decreasing, albeit neglected, region for low to intermediate spatial frequencies [7, 8, 16, 17, 18, 19, 20, 21, 22, 23]. This interesting phenomenon of a decrease in sensitivity with increasing luminance was briefly discussed in [24, 25].

The suitability of this construct for describing sine-wave contrast sensitivity as a function of luminance intensity has been questioned over the years [24, 26]. Although this approach constitutes a simplified model of a complex system of contributing adaptation mechanisms, e.g., different types of photoreceptors and their interactions, it has been proven successful in approximating sensitivity variations in the luminance domain [8, 13, 27] and forms the basis of the most widely-used class of CSF models [15, 28].

Here, we assess this non-linear relationship on a wide range of studies in the literature [4, 5, 7, 8, 14, 15, 16, 20, 21, 22, 23, 29, 30, 31, 32, 33] using continuous piecewise linear regression analysis. This regression method is structured to answer whether for a given luminance range: (a) sensitivity is independent of luminance (i.e., a single segment with zero slope), (b) a critical point of change in the slope exists, (c) the linear to DeVries-Rose to Weber law holds (i.e., transition from a slope of 1 to 0.5 to 0), and (d) a decreasing region is present (i.e., a segment with negative slope). We then adopt a variant of the models derived from this construct [15] that incorporates basic elements in the human visual signal processing to describe the CSF in the luminance domain. It comprises optical factors, the addition of photon shot noise, lateral inhibition, the addition of late neural noise, and a matched filter [34] with a sampling aperture. The model (Figure 1) was adjusted to include an additional early neural noise component (related to the linear segment preceding the DeVries-Rose region) that was found to dominate low luminance intensities and spatial frequencies [8]. Finally, we examine the model’s performance on the measured CSFs and evaluate the basic CSF characteristics as a function of luminance, namely, the location and amplitude of the peak, the area under the curve, and the spatial resolution limit.

Figure 1. Block diagram of the visual processing model. The stimulus is low-pass filtered by the optical modulation transfer function ($O_{MTF}$) of the eye before photon ($N_e$) and early noise ($N_N$) components are added. A high-pass filter ($H_{MTF}$) is then applied due to lateral inhibition, and late internal noise is added ($N_i$) before the signal is interpreted. External noise is included for completeness but assumed negligible in this study.
2. METHODS

2.1. Pre-processing

Unavailable data were extracted from the published figures using the software [35]. Retinal illuminance values were corrected for the Stiles-Crawford effect [36] following the equation in [37] with a $\beta$ co-efficient of 0.12 [38]. The same formula was used to convert display luminance values to retinal illuminance. Where unavailable, pupil size was approximated for the corresponding adaptation illuminance using the unified formula in [39] for an observer of twenty-five years old or the study population mean.

2.2. Segmented regression

Breakpoints were estimated using the iterative method described in [40]. Given one breakpoint the model is expressed as:

$$ S_i = \alpha + \beta_1 I + U_1 (I - \psi_1)_+ $$  \hspace{1cm} (1)

where $(I - \psi_1)_+ = (I - \psi_1) \times G(I > \psi_1)$ and $G(\cdot)$ is a step function equal to one when $I > \psi_1$ and zero otherwise, $S_i$ denotes the sensitivity for a spatial frequency $u_i$, $I$ the retinal illuminance, $\alpha$ is the intercept, $\beta_1$ is the slope of the segment before the breakpoint $\psi_1$, and $\beta_2 = U_1 + \beta_1$ is the slope of the segment after the breakpoint. Additional breakpoints can be estimated similarly by adding the appropriate terms to equation (1).

The existence of a breakpoint, i.e., the null hypothesis of a zero change in slope, was validated using a two-sided Davies test [41] at 0.05 significance level with the additional constraint of its critical illuminance being independent of grating stimulus area and external noise is negligible, the sensitivity-illuminance curve for which the total number of frequencies might differ, any deviation will be reflected in the variability of the fitted parameters among studies. Fitting performance is expressed as the root mean square (RMS) and normalized root mean square (NRMSE) errors, as defined in [46]. The normalization was used to correct for the number of free parameters.

2.3. Extending the CSF to the luminance domain

Following the model derived in [15, 25], with the assumption that critical illuminance is independent of grating stimulus area and external noise is negligible, the sensitivity-illuminance curve for spatial frequency $u_i$ can be described by:

$$ S(u_i, I) = S'_{\text{max}}(u_i) \left[ 1 + \frac{I_{d0}}{T} + \left( \frac{I_{d1}}{T} \right)^2 \right]^{-0.5} \cdot \sigma $$  \hspace{1cm} (2)

where $S$ is the Michelson contrast sensitivity, $S'_{\text{max}}$ the sensitivity ceiling for a constant grating area, $I$ the retinal illuminance, and $I_{d0}$ and $I_{d1}$ the frequency-dependent critical illuminances that mark the transition from the linear to DeVries-Rose and DeVries-Rose to Weber regions, respectively. It should be noted that this form implies a gradual transition, that is qualitatively in better agreement with experimental findings [25] and satisfies the empirical constraints in [26]. The $S'_{\text{max}}$ is defined as:

$$ S'_{\text{max}}(u_i) = S_{\text{max}}(u_i) \left[ 1 + \left( \frac{A_c(u_i)}{A} \right)^{-0.5} \right] $$  \hspace{1cm} (3)

where $A$ is the stimulus grating area and $A_c(u_i)$ the critical area where spatial integration saturates. Assuming that the latter is independent of retinal illuminance, it can be expressed as:

$$ A_c(u_i) = A_0 \left[ 1 + \left( \frac{u_i}{u_{\text{max}}} \right)^2 \right]^{-1} $$  \hspace{1cm} (4)

where $A_0$ and $u_{\text{max}}$ the upper spatial summation limits for the grating area and the critical spatial frequency, respectively. The $S_{\text{max}}$ is then given as:

$$ S_{\text{max}}(u_i) = K_0 O_{\text{MTF}}(u_i) H_{\text{MTF}}(u_i) \sqrt{A_c(u_i)} $$  \hspace{1cm} (5)

where $K_0$ is a constant, $O_{\text{MTF}}$ is the low-pass optical modulation transfer function, and $H_{\text{MTF}}$ is the high-pass filter due to lateral inhibition. The constant $K_0$ is expressed as:

$$ K_0 = \sqrt{\frac{\eta_{\text{max}}}{2\pi^2 N_i}} $$  \hspace{1cm} (6)

where $\eta_{\text{max}}$ is the maximum efficiency of the local matched filter, $d'$ is a detectability constant [43] that depends on the task and the threshold level, and $N_i$ is the natural noise. The choice of the human optical MTF formula varies in the literature [44]. Here, for comparison purposes, we adopt a Gaussian form [28] that accounts for both the optical attenuation and retinal sampling factors:

$$ O_{\text{MTF}}(u_i) = e^{-2\pi^2 \sigma(d)^2 u_i^2} $$  \hspace{1cm} (7)

where $\sigma(d)$ is the square root of the line-spread function as a function of pupil diameter $d$ [mm]:

$$ \sigma(d) = \sqrt{\sigma_0^2 + (C_{ab} d)^2} $$  \hspace{1cm} (8)

where $\sigma_0$ can be considered constant for foveal vision and $C_{ab}$ an increment weight for increasing pupil size estimated at 0.08 arcmin/mm [28]. In the original model, low-frequency attenuation was found to decrease linearly with increasing spatial frequency. However, this appears to be valid only at a limited frequency range [45]. Here, we adopt the following approximation formula for lateral inhibition [28] but allowing for the square exponent to vary:

$$ H_{\text{MTF}}(u_i) = \sqrt{1 - e^{-(u_i u_0)^2}} $$  \hspace{1cm} (9)

where $u_0$ is the upper frequency limit for lateral inhibition and $\nu$ is a free parameter.

The best fit for the parameters $K_0$, $u_0$, $\sigma_0$, $\kappa$, and the vectors $I_d$ and $I_{d1}$ was found by simultaneously minimizing the sum of errors in log-space for all spatial frequencies with more than two samples in luminance. Where the total number of frequencies was below four, the sensitivity-illuminance curves were estimated using equation (2) with $S'_{\text{max}}$ as a free parameter. The summation parameters $A_0$ and $u_{\text{max}}$ were fixed at 320 arcdeg$^2$ and 0.465 c/deg, respectively, as estimated in [15]. Although the actual values might differ, any deviation will be reflected in the variability of the fitted parameters among studies. Fitting performance is expressed as the root mean square (RMS) and normalized root mean square (NRMSE) errors, as defined in [46]. The normalization was used to correct for the number of free parameters.

3. RESULTS

Figure 2 illustrates the model fit to the measured contrast sensitivities as a function of retinal illuminance for a constant area across studies. Where applicable, the model was fitted to the average observer (eleven studies). Despite the vast differences in the experimental conditions, the data exhibit a qualitatively similar relationship to the background luminance. Generally, as the spatial frequency increases, the curve becomes steeper, and the asymptotic region translates to higher luminance. The RMS error for each study is shown at the top left of each panel in Figure 2. The total RMS error for all studies combined was 1.19dB.
Figure 2. The model fit (black lines) to the measured sensitivity data (markers = 0.25 log₁₀ units width) for each spatial frequency [c/deg] as a function of retinal illuminance [Td] across studies. Different markers indicate different observers. Sensitivities were vertically shifted from higher to lower spatial frequency for visualization purposes. The RMS error [dB] is shown at the top left of each panel. The observers’ initials are shown at the bottom left, where ‘AVG’ and ‘ALL’ indicate the average and all the observers, respectively. The asterisk indicates a model fit with $S_{\text{max}}$ as a free parameter.

Figure 3 summarizes the results of the segmented regression analysis on the measured contrast sensitivity data. For visualization purposes, the slopes of each segment are presented as a function of relative retinal illuminance, i.e., the retinal illuminance divided by the spatial frequency squared [27]. Qualitatively, a region where the DeVries-Rose to Weber law holds in a strict sense (an arbitrary threshold value of -0.1 = -0.19, $SD = 0.09$), was found in four of the studies [15, 18, 20, 23] at spatial frequencies between 0.25 cpd and 8 cpd and starting log relative illuminance between 0.79 and 3.20 Td deg². A negative slope was also present in [5, 7, 8, 14, 16, 21, 33] at roughly the same frequency range that can, however, be considered negligible ($M = -0.05$, $SD = 0.02$). It should be noted that in two of the studies [31, 32] the stimuli were temporally modulated at a low temporal frequency (6 Hz) that could diverge the slope values from the ideal DeVries-Rose to Weber transition depending on luminance [18]. However, in both cases, the slopes were in relatively better agreement with this law compared to the rest of the data.

The fitted global parameter values are given in Table 1. The mean estimates were $K_0 = 345$ ($SD = 236$), $\psi_0 = 5.5$ ($SD = 3.6$) c/deg, $\sigma_0 = 0.5$ ($SD = 0.1$) arcmmin, and $\nu = 2.4$ ($SD = 0.6$). Estimates near the parameter boundaries were excluded. A possible explanation for this discrepancy is discussed below. In another variant of the same class of models, the one from Barten [28],...
considerably reduces the total estimated parameters, but it also all the studies combined. This is an essential step as it not only the luminance-frequency sampling across studies did not allow for i.e., a slope of 2. We estimated a mean slope of 1.7 (SD = 0.6), in frequency range. Previous studies indicated that \( I_c \) found to be log-linearly related to spatial frequency, over a wide illuminance vectors are presented in Figure 4. The critical relative retinal illuminance \([Td \ deg^2]\)] was grouped for visualization purposes. The markers depict the estimated breakpoints and the vertical red lines the mean value of their density estimate. The studies in panels A1 and A3 were grouped for visualization purposes.

\( u_0 \), and \( \sigma_u \) were estimated at 7 c/deg and 0.5 arcmin, respectively, while the parameter \( \nu \) was assumed fixed at 2. The estimated critical illuminance vectors are presented in Figure 4. The critical illuminance \( I_c \) that marks the transition to a Weber region was found to be log-linearly related to spatial frequency, over a wide frequency range. Previous studies indicated that \( I_c \) is approximately proportional to the spatial frequency squared \([5, 15, 27]\), i.e., a slope of 2. We estimated a mean slope of 1.7 (SD = 0.6), in good agreement with the above. The relation between the spatial frequency and the critical quantity \( I_d \) was less clear, mainly since the luminance-frequency sampling across studies did not allow for reliable estimates. However, at this point, we will assume a first-degree polynomial approximation. Therefore the parameters \( I_c \) and \( I_d \) as a function of frequency can be expressed as:

\[
\log_{10} I_c(u) \approx \text{constant}_c + \text{slope}_c \log_{10} u \tag{10}
\]

\[
\log_{10} I_d(u) \approx \text{constant}_d + \text{slope}_d \log_{10} u \tag{11}
\]

Based on the above results, we explored the effect of reducing the critical illuminance parameters on the total RMS error for all the studies combined. This is an essential step as it not only considerably reduces the total estimated parameters, but it also allows us to extract the CSF surface in the frequency-luminance do-

---

<table>
<thead>
<tr>
<th>Study</th>
<th>( K_0 )</th>
<th>( u_0 ) [c/deg]</th>
<th>( \sigma_u ) [arcmin]</th>
<th>( \nu )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks et. al 1987 (AVG)</td>
<td>107.45</td>
<td>2.98</td>
<td>0.37</td>
<td>2.01</td>
</tr>
<tr>
<td>De Valois et. al 1974 (AVG)</td>
<td>145.10</td>
<td>3.67</td>
<td>&lt;0.1</td>
<td>2.91</td>
</tr>
<tr>
<td>Hess &amp; Howell 1988 (EB)</td>
<td>843.90</td>
<td>13.64</td>
<td>0.50</td>
<td>2.33</td>
</tr>
<tr>
<td>Kaspiris-Rousellis et. al 2019 (AVG)</td>
<td>409.18</td>
<td>3.45</td>
<td>0.68</td>
<td>2.75</td>
</tr>
<tr>
<td>Kelly 1972 (EB)</td>
<td>137.79</td>
<td>1.66</td>
<td>&lt;0.1</td>
<td>3.92</td>
</tr>
<tr>
<td>Kim et. al 2013 (AVG)</td>
<td>237.14</td>
<td>3.45</td>
<td>&lt;0.1</td>
<td>2.03</td>
</tr>
<tr>
<td>Patel 1966 (EB)</td>
<td>634.84</td>
<td>UB</td>
<td>0.53</td>
<td>2.24</td>
</tr>
<tr>
<td>Peli et. al 1996 (AVG)</td>
<td>76.03</td>
<td>2.38</td>
<td>0.41</td>
<td>2.54</td>
</tr>
<tr>
<td>Rovamo et. al 1994 (JM)</td>
<td>375.23</td>
<td>7.54</td>
<td>&lt;0.1</td>
<td>1.95</td>
</tr>
<tr>
<td>Shannon et. al 1996 (AVG)</td>
<td>253.80</td>
<td>UB</td>
<td>&lt;0.1</td>
<td>1.30</td>
</tr>
<tr>
<td>Silvestre et. al 2018 (AVG)</td>
<td>177.36</td>
<td>3.54</td>
<td>&lt;0.1</td>
<td>2.58</td>
</tr>
<tr>
<td>van Mier et. &amp; Vos 1972 (AVG)</td>
<td>389.49</td>
<td>7.39</td>
<td>0.74</td>
<td>2.30</td>
</tr>
<tr>
<td>van Nes &amp; Bouman 1967 (FLN)</td>
<td>699.34</td>
<td>10.45</td>
<td>0.36</td>
<td>2.42</td>
</tr>
</tbody>
</table>
In the literature that systematically investigated the effect of different background luminance levels on the CSF. We focused on a theoretical construct that describes this relationship, the linear to DeVries-Rose transition. We modified the model to include an additional early noise component that relates to the linear to DeVries-Rose transition ($I_D$) and was found to have a significant effect at low luminance and spatial frequencies [8]. The preliminary segment regression analysis revealed slopes between 1 and 0.5 that further supports the existence of a third region, in the context of this model, where contrast sensitivity becomes proportional to the background luminance. The critical luminance that marks the transition to a Weber region was found to be log-linearly related to the spatial frequency, consistent with the above results. It was roughly proportional to spatial frequency squared, a phenomenon that is usually explained neurophysiologically by the constant-flux hypothesis [9, 27]. Our proposed model with eight parameters, i.e., equations (2) - (11) resulted in a total RMS error of 2.46dB for all the studies combined, but further improvements can be made. The estimated constants in equations (10) and (11) for approximating the critical quantities $I_c$ and $I_d$ are given in Table 2.

Scrutiny of the global parameters among studies revealed an inconsistency in the estimation of $\sigma_0$, which controls the optical attenuation at high spatial frequencies. This discrepancy could be an artifact due to limited frequency range sampling [18, 31], or an overestimation of the pupil diameter. Except for one of these studies, pupil size was estimated from the display luminance [7, 21], or was artificially dilated to a high value [15]. In two of the studies, the parameter $u_0$, the spatial frequency where the low-frequency attenuation ceases, was at the upper boundary. A possible explanation would be the presence of a local notch on the CSF [4], and limited frequency range sampling as above [31]. The variability in the estimation of the constant $K_D$ was expected due to the vast differences in the experimental conditions. Nevertheless, fixing these parameters still provided us with reasonable fits.

### Table 2. The fitted constants in the approximation of $I_c$ and $I_d$.

<table>
<thead>
<tr>
<th>Study</th>
<th>constant</th>
<th>slope</th>
<th>constant</th>
<th>slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banks et. al 1987</td>
<td>1.48</td>
<td>1.20</td>
<td>-0.10</td>
<td>0</td>
</tr>
<tr>
<td>Bierings et. al 2019</td>
<td>1.24</td>
<td>1.72</td>
<td>0.55</td>
<td>1.75</td>
</tr>
<tr>
<td>De Valois et. al 1974</td>
<td>0.80</td>
<td>1.50</td>
<td>-2.18</td>
<td>3.97</td>
</tr>
<tr>
<td>Hess &amp; Howell 1988</td>
<td>0.31</td>
<td>3.08</td>
<td>-3.32</td>
<td>2.71</td>
</tr>
<tr>
<td>Kaspris-Roussellis et. al 2019</td>
<td>-1.17</td>
<td>3.21</td>
<td>0.91</td>
<td>0.97</td>
</tr>
<tr>
<td>Kelly 1972</td>
<td>0.82</td>
<td>1.58</td>
<td>-1.23</td>
<td>1.68</td>
</tr>
<tr>
<td>Kim et. al 2013</td>
<td>1.47</td>
<td>1.55</td>
<td>0.41</td>
<td>1.60</td>
</tr>
<tr>
<td>Patel 1966</td>
<td>1.64</td>
<td>0.88</td>
<td>-1.99</td>
<td>2.84</td>
</tr>
<tr>
<td>Poli et. al 1996</td>
<td>0.57</td>
<td>2.24</td>
<td>0.73</td>
<td>0.76</td>
</tr>
<tr>
<td>Rovamo et. al 1994</td>
<td>0.68</td>
<td>1.93</td>
<td>-3.75</td>
<td>2.27</td>
</tr>
<tr>
<td>Shannon et. al 1996</td>
<td>2.08</td>
<td>1.11</td>
<td>1.04</td>
<td>0.75</td>
</tr>
<tr>
<td>Silvestre et. al 2018</td>
<td>1.17</td>
<td>1.48</td>
<td>0.64</td>
<td>0.94</td>
</tr>
<tr>
<td>Valero et. al 2004</td>
<td>1.34</td>
<td>1.20</td>
<td>-1.03</td>
<td>0</td>
</tr>
<tr>
<td>van Meeteren &amp; Vos 1972</td>
<td>0.50</td>
<td>1.51</td>
<td>-2.79</td>
<td>3.83</td>
</tr>
<tr>
<td>van Nes &amp; Bouman 1967</td>
<td>-0.02</td>
<td>1.64</td>
<td>-3.24</td>
<td>3.07</td>
</tr>
</tbody>
</table>

In this study, we analyzed foveal contrast sensitivity measurements in the literature that systematically investigated the effect of different background luminance levels on the CSF. We focused on a theoretical construct that describes this relationship, the linear to DeVries-Rose transition, which manifests as an increase in sensitivity with increasing luminance with slopes of 1 and 0.5 in double log space to a Weber region where sensitivity becomes independent of luminance (i.e., a slope of zero). By using continuous segmented regression analysis, we found that the DeVries-Rose to Weber transition in a strict sense holds only for a limited range across spatial frequencies and luminance conditions. Instead, a curvilinear form with a gradual transition among the three regions appears as a valid approximation for sine-wave gratings. Specifically, when relative retinal illuminance decreased, either by increasing the spatial frequency or decreasing the retinal illuminance, the transition towards the sensitivity ceiling became steeper, in agreement with the empirical constraints derived in [26]. Except for one study [5], there was insufficient evidence for a Weber region beyond approximately 16 cpd, i.e., increasing luminance continues to increase log sensitivity, and no saturation occurs at the luminance range tested (up to $\approx 10^4$ Td). A decrease in sensitivity with increasing luminance was present at frequencies between 0.25 cpd and 8 cpd for a large number of studies (Figure 3, panels A2-5, and C1-5). However, the slope of decrease was relatively small, and the results do not suffice to draw any further conclusions. It should be noted, though, that in most cases, we used the average observer that could cancel out any related individual differences [24].

Following this construct, we adopted a model [15] consisting of a low-pass optical MTF, a high-pass MTF due to lateral inhibition, a local matched filter, and two noise sources (photon shot noise and late proximal noise) that limit visual detection across the luminance domain and generate this observed DeVries-Rose to Weber transition. We modified the model to include an additional early noise component that relates to the linear to DeVries-Rose transition ($I_D$) and was found to have a significant effect at low luminance and spatial frequencies [8]. The preliminary segment regression analysis revealed slopes between 1 and 0.5 that further supports the existence of a third region, in the context of this model, where contrast sensitivity becomes proportional to the background luminance. The critical luminance that marks the transition to a Weber region was found to be log-linearly related to the spatial frequency, consistent with the above results. It was roughly proportional to spatial frequency squared, a phenomenon that is usually explained neurophysiologically by the constant-flux hypothesis [9, 27]. Our proposed model with eight parameters, i.e., equations (2) - (11) resulted in a total RMS error of 2.46dB for all the studies combined, but further improvements can be made. The estimated constants in equations (10) and (11) for approximating the critical quantities $I_c$ and $I_d$ are given in Table 2.

Figure 5. The main CSF characteristics as a function of retinal illuminance. Top left: The peak sensitivity. Top right: The spatial frequency of the peak. Bottom left: The high-frequency cut-off where sensitivity asymptotes to zero. Bottom right: The area under the log-CSF. The thin lines depict different studies. The thick black line is the mean.

For the three regions appears as a valid approximation for sine-wave gratings. Specifically, when relative retinal illuminance decreased, either by increasing the spatial frequency or decreasing the retinal illuminance, the transition towards the sensitivity ceiling became steeper, in agreement with the empirical constraints derived in [26]. Except for one study [5], there was insufficient evidence for a Weber region beyond approximately 16 cpd, i.e., increasing luminance continues to increase log sensitivity, and no saturation occurs at the luminance range tested (up to $\approx 10^4$ Td). A decrease in sensitivity with increasing luminance was present at frequencies between 0.25 cpd and 8 cpd for a large number of studies (Figure 3, panels A2-5, and C1-5). However, the slope of decrease was relatively small, and the results do not suffice to draw any further conclusions. It should be noted, though, that in most cases, we used the average observer that could cancel out any related individual differences [24].

Following this construct, we adopted a model [15] consisting of a low-pass optical MTF, a high-pass MTF due to lateral inhibition, a local matched filter, and two noise sources (photon shot noise and late proximal noise) that limit visual detection across the luminance domain and generate this observed DeVries-Rose to Weber transition. We modified the model to include an additional early noise component that relates to the linear to DeVries-Rose transition ($I_D$) and was found to have a significant effect at low luminance and spatial frequencies [8]. The preliminary segment regression analysis revealed slopes between 1 and 0.5 that further supports the existence of a third region, in the context of this model, where contrast sensitivity becomes proportional to the background luminance. The critical luminance that marks the transition to a Weber region was found to be log-linearly related to the spatial frequency, consistent with the above results. It was roughly proportional to spatial frequency squared, a phenomenon that is usually explained neurophysiologically by the constant-flux hypothesis [9, 27]. Our proposed model with eight parameters, i.e., equations (2) - (11) resulted in a total RMS error of 2.46dB for all the studies combined, but further improvements can be made. The estimated constants in equations (10) and (11) for approximating the critical quantities $I_c$ and $I_d$ are given in Table 2.

Scrutiny of the global parameters among studies revealed an inconsistency in the estimation of $\sigma_0$, which controls the optical attenuation at high spatial frequencies. This discrepancy could be an artifact due to limited frequency range sampling [18, 31], or an overestimation of the pupil diameter. Except for one of these studies, pupil size was estimated from the display luminance [7, 21], or it was artificially dilated to a high value [15]. In two of the studies, the parameter $u_0$, the spatial frequency where the low-frequency attenuation ceases, was at the upper boundary. A possible explanation would be the presence of a local notch on the CSF [4], and limited frequency range sampling as above [31]. The variability in the estimation of the constant $K_D$ was expected due to the vast differences in the experimental conditions. Nevertheless, fixing these parameters still provided us with reasonable fits.
However, other factors might be present. In the derivation of the model, we assumed that the critical area where spatial summation saturates is independent of retinal illumination. A violation of this assumption would also cause this discrepancy. In fact, in an extension of a similar model variant, the one by Barten [28], to scotopic conditions [49], the spatial integration along with other parameters were adjusted to eccentric viewing that is more appropriate for rod-dominated vision. This approach essentially assumes a discontinuous piecewise function in luminance for the otherwise fixed model parameters, that was found successful in describing contrast sensitivity measurements under scotopic (i.e., rod-dominated) conditions. Inspecting the prediction of our model variant on the main CSF characteristics revealed a limitation at low light levels, i.e., no discontinuity in acuity during the transition from the scotopic to the photopic range, that constrains its application to moderate or higher light levels and foveal vision. A similar two-segment relationship could be investigated here.

Another drawback of this modeling approach is that it does not account for any decrease in sensitivity with increasing luminance, and therefore it is also upper-bounded for low to intermediate frequencies. Incorporating a decreasing term in equation (2) is trivial (e.g., by adding the term $(1/I_0)^b$ in the parenthesis, where $I_0$ the transition point and $b$ the slope of decrease). However, this does not appear to be theoretically justified, and high-luminance data where this could be more accurately examined are scarce.

Alternatively, given sufficiently dense sampling in luminance and frequencies, it is feasible to extend the CSF only by interpolating the parameters of a mathematical form (e.g., an asymmetric log-parabola [50]) in the luminance domain. An advantage of this approach is that by definition it can describe the decreasing sensitivity at lower frequencies while there is still sensitivity increase at the high-end with increasing luminance, and thus can be extended to high light levels and different conditions where this decrease is prominent (e.g., peripheral stimuli [17]). This technique also allows for capturing other CSF features (e.g., low-frequency truncation [46]). However, this approach is highly sensitive to measurement noise. We found that combining our model variant for interpolating across luminance with an asymmetric log-parabola form for interpolating across spatial frequencies performed similarly with the same number of free parameters, but could lead to an overestimation of the spatial resolution limit.

Whereas a modeling approach incorporating elements from the neurophysiology of vision (e.g., photoreceptor responses, retinal gain controls) would provide a more accurate description, this much more straightforward approach is a reasonable approximation to psychophysically and electrophysiologically [31] measured contrast sensitivity variations in the luminance domain and allows for the extraction of the CSF surface as a function of light level over a wide range of normal viewing conditions.

5. REFERENCES


