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Abstract

A linear� normal�mode stability analysis is carried out for a particular class of galaxy models� the power�

law disks� These are in�nitesimally thin� axisymmetric stellar disks of in�nite extent� The rotation

curve can be rising� falling or �at 	this last case was investigated by Toomre and Zang in ���
�� The

self�consistent power�law disks are scale�free� all quantities scale as a power of radius� This symmetry

leads to interesting but unusual stability properties� which are described in some detail� Additionally�

the thesis studies cut�out power�law disks� in which stars close to the origin 	and sometimes also stars at

great distance� are prevented from participating in any disturbance� A homogeneous Fredholm integral

equation is derived relating the response of such disks to a perturbation imposed upon them� When

the response density is equal to the imposed density� the solution of the integral equation is a normal

mode� Numerical algorithms to isolate the growth rates and the pattern speeds of the normal modes are

developed�

The stability to axisymmetric perturbations is found to agree well with the local criterion derived by

Toomre in ��
� The cut�out disks are remarkably stable to bisymmetric perturbations� but they are very

susceptible to one�armed 	m � �� modes� Physical reasons for the prevalence of one�armed instabilities

are put forward� together with a description of the modes in terms of swing�ampli�ed� re�ected travelling

waves� Growing three�armed and four�armed modes occur only at very low temperatures� However�

neutral m � � and m �  modes are possible at higher temperatures for some disks� They are suppressed

by the existence of closed m�lobed orbits� The rotation curve has a marked e�ect on the stability� For

every azimuthal wavenumber� disks with rising rotation curves are less stable than those with falling� This

is because disks with rising rotation curves exhibit less shear 	or� equivalently� are closer to solid�body

rotation�� The maintenance of any spiral pattern is helped as the shear is minimised� The abruptness

with which the central stars are carved out also in�uences the stability� In every case� disks where the

cut�out is gentler are more stable�
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Chapter �

Introduction

��� The observations

Spiral structure in nebulae was �rst observed by William Parsons� Third Earl of Rosse 	������ Many

people had already speculated that the nebulae were island universes� galaxies like our own� but it was

not until ���� that Hubble settled the matter� He was able to resolve stars in M�� and M��� assuming

that they were comparable to stars in our Galaxy� he concluded that these systems must be vast distances

away�

Hubble developed the most widely used system for the classi�cation of galaxies� He divided spiral galaxies

into two groups� the barred spirals SB� and S 	or SA�� in which there is no bar� He subdivided each

group into a� b� and c� Galaxies of type a have smoother and more tightly wound arms� less gas� a bigger

nuclear bulge and more total mass 	e�g� Rubin et al� ����� than those of type c� Hubble referred to type

a as early� and type c as late� since he thought that spirals evolved from a to c� These terms are still used�

although the temporal interpretation has been abandoned� Various re�nements to Hubble�s scheme have

been introduced� such as that of Bruce and Debbie Elmegreen 	������ which classi�es spirals according

to the degree of grand design visible in their spiral patterns�

The surface brightness of many disk galaxies is an exponential function of radius� I � I� exp	�R�Rd��

The scale length Rd is typically in the range ���� kpc� our own Galaxy�s is about kpc� Most stars have

velocities from ������ km�s� very little of this motion is out of the plane of the disk� so spiral disks are

very thin� The thickness varies for di�erent populations� in our Galaxy it is ��pc for young stars and

���pc for older ones 	Mihalas � Binney ����� p� ����� Within the plane� the stars� motion is mainly

circular� the deviation from mean circular motion is only about �����km�s or about ���� High�velocity

objects such as globular clusters and old stars are also observed� These belong to the old� metal�poor

spheroidal halo�

The stellar disk is formed out of stars which condensed from the cold gas component at di�erent times�

�



The brightest stars 	O� B� are those which formed most recently 	����� Myr ago�� their distribution and

kinematics are thus similar to those of the current cold interstellar medium� Gas and young stars are

together known as Population I� This appears bluer and exists in a very thin layer in the disk� Older stars

	Population II� appear redder and are distributed more thickly throughout the disk� The spiral patterns

of the two populations di�ers� When a galaxy is viewed in blue light 	Population I�� its arms appear thin

and ragged� with many clumps and knots� In red light 	Population II�� the image is much smoother� and

the arms appear broader�

The total mass in a spiral galaxy is typically ���� � ���� solar masses� of which less than �� is in the form

of gas� Observations of the Doppler shift of emission lines in the gas can be used to derive the galaxy�s

rotation curve� Optical transitions in warm gas� or the ��cm radio line in cold hydrogen can both be used�

The latter is probably more accurate� and can trace the rotation curve outside the optical disk� Rotation

curves deduced in this way are proportional to radius in the central region of the galaxy� indicating solid�

body rotation in the core� At a certain radius the curves turn over� and become remarkably �at� They

continue to be so well outside the optical disk� indicating the presence of a great deal more mass than is

visible in the disk stars� Many disk galaxies � such as NGC���� 	Sandage ��
�� p� �� � are barred� i�e�

the spiral arms extend from the ends of a long bar which passes through the nucleus�

��� Theories of spiral structure

Disk galaxies are not rigid bodies� but show di�erential rotation� Stars further out tend to circle more

slowly than stars close to the centre of the galaxy� Thus at �rst sight spirality seems natural� Any

inhomogeneity which arises in the disk is sheared out into a spiral� like cream stirred into a cup of co�ee�

In both co�ee and galaxies� this spirality rapidly disappears as the di�erential rotation continues to wind

up the inhomogeneity� The possibility was brie�y considered that the di�erent Hubble types represent

galaxies at di�erent stages of this winding process� with loosely�wound galaxies of Hubble type c being

wound up into tightly�wound galaxies of Hubble type a� However� it became clear that other determinants

of Hubble type� such as gas content and bulge size� do not change on the rapid timescale implied by the

winding�

Flocculent or chaotic spiral structure may well be formed by the local instability introduced by Goldreich

� Lynden�Bell 	��
�a�� Julian � Toomre 	��

�� and termed �swing ampli�cation� by Toomre 	������

These authors noticed that a disk responds vigorously to the non�axisymmetric gravity �eld of orbiting

mass concentrations and gas clumps� Such lumps gather a wake� both fore and aft� which is sheared into

a spiral arm� The clumping is periodically regenerated � perhaps by gravitational instability� perhaps

by infall of gas� So� the inhomogeneities continually arise and contribute brie�y to the ragged spiral

structure before growing dim and being smeared out by di�erential rotation�

However� some galaxies exhibit grand design spirals� with arms extending across the entire galaxy� In

these� some sort of global mechanism seems to be at work� To avoid the winding problem� a natural step

is to suppose that the spiral pattern is caused by a density wave� This rotates as a solid body� while



stars move into and out of the pattern� This explains why bright young stars� molecular clouds and HII

regions are found in the spiral arms� The gas is compressed as it passes through the arms� triggering star

formation� The lifetimes of the bright objects is short compared to the rotation period of the arms� so

they fade away as the density wave moves on�

It is still unclear how such a wave might be caused� or whether it could persist as a self�consistent mode

of oscillation in the disk for tens of rotations� without regeneration 	Toomre ��
��� The approach of Lin

and Shu 	��
� was simply to hypothesise that a density wave existed and was quasi�stationary� and to

examine the consequences of this hypothesis� This has been valuable in stimulating research� and has

had a number of successes� For instance� Visser compared the observed kinematics of atomic hydrogen

in M�� with those predicted by a model based on the Lin�Shu hypothesis� Using only the pattern speed

of the spiral as a �tting parameter� he was able to obtain impressive agreement 	Visser ������ It seems

beyond dispute that the spiral structure in many galaxies represents a density wave of some kind�

However� the hypothesis that the density wave is quasi�stationary cannot be regarded as proved� Models in

which the density wave is a transient phenomenon can be equally successful in matching the observations�

One possibility that goes back at least as far as Chamberlin 	����� is that the spiral arms are caused

by tidal forces from a companion� The density wave is then just a transient wave generated by the

rattling and shaking of the galactic disk caused by the close approach� The classic example is M��� which

has dramatic grand�design spiral arms and a small companion NGC ���� 	Toomre � Toomre �����

Toomre ������ Toomre 	����� ����� has also modelled the spirality of M�� by a tidal encounter with the

nearby M��� Numerical integrations show that the swing�ampli�ed growth of the transient wave can lead

to a very �ne� if temporary� grand�design spiral� Toomre�s match to the observations is as impressive as

that of Visser 	����� with his quasi�stationary density wave� It remains to be shown whether suitable

encounters with other galaxies are common enough for tidal models to explain all the grand�design spirals�

However� their success indicates that the quasi�stationary hypothesis is assuredly not the only possibility�

��� Global stability analyses

The best hope for generating quasi�steady spiral patterns of �nite amplitude seems to be mildly unstable

discrete spiral modes 	if they exist�� This motivates the study of the overall or global stability of galactic

disks� Research workers have used two approaches � �rst� direct N �body work� and second� normal mode

analyses�

The �rst approach led to a big surprise in the early ��s� Let us recall that cold disks of stars � i�e� disks

in which all the stars are on circular orbits � are violently unstable to the Jeans instability� they break up

into rings� Toomre 	��
�� approximating a disk as an in�nitesimally thin rotating sheet of in�nite extent�

showed that a minimum amount of random motion is needed for the disk to be at least locally stable to

these modes� This is conveniently expressed in terms of his stability parameter Q� which is the ratio of the

actual velocity dispersion at a point in the disk to that needed for local axisymmetric stability� Thus disk

galaxies must have Q � � to avoid breaking up into hoops� Studies 	Julian � Toomre ��

� seemed to



indicate that a rotating sheet is always locally stable to self�consistent non�axisymmetric perturbations�

In the late 
�s it was presumed that local theory is a reliable indicator of global stability� i�e� disks with

Q � � should be totally stable�

However� the surprise came when numerical studies indicated that disks with Q � � retain violent

bisymmetric instabilities� A classic study is that of Hohl 	������ who studied a disk of stars with Q � ��

The disk evolved rapidly into a striking two�armed spiral structure� and subsequently settled into an

axisymmetric state with Q �� �� High values of Q were required to stabilise the disk to bisymmetric

perturbations� However� real galaxies appear to be stable with much lower values of Q� at least judging

from the observed velocity dispersions� This tendency towards global bar�making has been con�rmed by

extensive N �body work throughout the subsequent decades 	Athanassoula � Sellwood ���
� Sellwood �

Wilkinson ������ N �body simulations have driven much of our understanding of the stability of galactic

disks� Even so� the noise in N �body simulations is some orders of magnitude greater than in real stellar

systems� so care is needed in interpreting the results of these studies�

An alternative approach is to study the instabilities of model disks via a linear normal mode analysis� as

has been advocated particularly by Kalnajs 	������ An analogy may help here� The normal modes of

a system such as a set of coupled pendula are de�ned to be those oscillations in which all the pendula

have the same frequency� In a linear analysis� one obtains a set of coupled linear di�erential equations

describing the motion of the system in the small�amplitude regime where sin � � �� One then substitutes in

a solution of the form �i � Ai exp	i�t�� The allowed values of � represent the normal modes of the system�

Associated with each mode are the relative values of the amplitudes Ai� A general solution is given by a

superposition of many normal modes� Similarly� in a galactic stability analysis� one �rst obtains a linear

di�erential equation describing the evolution of the system� This is the linearised collisionless Boltzmann

equation� which� like sin � � � for the pendula� is valid for small perturbations from equilibrium� The

normal modes are then found by substituting in a solution with time�dependence given by exp	i�t�� As

for the pendula� only certain values of � are allowed� and they are each associated with a particular shape

of density perturbation�

For the set of coupled pendula� there are as many normal modes as there are degrees of freedom in the

system� We can be con�dent that the normal modes represent a complete set of solutions� and that any

possible motion of the pendula can be represented by a suitable combination of the normal modes� For

a galaxy� we do not have this con�dence� Toomre 	����� cautioned that the spectrum of normal modes

of stellar systems must include delta�functions or van Kampen modes 	van Kampen ����� Clemmow

� Dougherty ��
�� p� ���� near any resonance radii� For the closely�related problem of the stability

of di�erentially�rotating stars� the completeness of the normal modes� together with the van Kampen

modes� has been proved 	Dyson � Schutz ������ In stellar dynamics� the normal modes have not been

shown to be complete�

Few normal�mode studies have been carried out� The �rst was the stability analysis of the Maclaurin

spheroids� carried out over a century ago by Bryan 	������ These are rigidly�rotating homogeneous �uid

bodies� They are remarkably stable� becoming unstable only when spinning very rapidly and thus highly



�attened� The �rst dynamical instability to which they fall prey is a bar�likem � � mode� Similar results

were found for the �at Maclaurin �uid disks 	Hunter ��
��� Kalnajs 	����� analysed the stellar analogues

of the Maclaurin disks� These are rigidly rotating axisymmetric disks with sharp edges� Like the �uid

disks� they become unstable to m � � modes if they rotate too rapidly� The instability sets in at much

lower angular velocities� the stellar disks are considerably more unstable than the �uid disks� All these

systems are comparatively simple to analyse because they are rigidly rotating� Di�erentially�rotating

disks are much harder 	Vauterin � Dejonghe ���
��

The present thesis is based on the pioneering work of Toomre and Zang 	���
�� They carried out a

detailed linear stability analysis of a class of di�erentially�rotating� in�nite disks in which the circular

velocity is independent of radius� The equilibrium disk was self�similar� but stars in its central regions

were prevented from taking part in the disturbance� E�ectively the centre of the disk was cut out� In

accordance with numerical studies� they found that Toomre�s local stability criterion was remarkably

accurate in predicting the global stability to axisymmetric modes� However� somewhat surprisingly� they

found that the disk was very stable to bisymmetric modes� Random motion corresponding to Q � � was

already su�cient to stabilise the disk to all m � � disturbances� This greatly surprised Toomre and Zang�

since almost all other studies had suggested the bisymmetric modes would be the hardest to stabilise� In

fact� the Toomre�Zang disks turned out to be highly susceptible to one�armed instabilities� These modes

showed few signs of disappearing as the temperature was increased� although their growth rate slowed to

vanishing�

��� Purpose of the thesis

The aim of this thesis is to investigate the large�scale� global� linear modes of a family of horizontally

hot� vertically cold� idealised disk galaxies� with rising� falling or �at rotation curves� These include as a

special case the model studied by Toomre and Zang�

In any study of this kind� the degree of realism enjoyed by a galaxy model must be balanced with the

requirement of analytical tractability� Thus analytical approaches often use less physically plausible mod�

els than numerical studies� The two approaches complement each other in their common aim of gaining

insight into the types of instabilities to which galaxies may be prone� Where they agree� the analytical

work enables one to be con�dent that the numerical results are not an artefact of the various procedures

used to simulate the stars� behaviour� conversely� the numerical work con�rms that the analytical result

does not change signi�cantly when a more realistic representation is used�

The �rst simpli�cation imposed by our analysis is to describe the billions of stars in a galaxy by a single

distribution function� We thus deal in probabilities rather than actualities � a reasonable approximation

where such huge numbers are concerned� Chapter � of this thesis introduces the details of the family

under consideration� the so�called power�law disks� We make the assumption of zero thickness usually

employed in modelling galactic disks 	Toomre ��

�� This seems a good working hypothesis� given the

extreme �atness of real disk galaxies � our own Galaxy�s radius is at least a hundred times its thickness�



The equilibrium power�law disks are self�similar� so all dynamical quantities vary as a power of radius�

The rotation curve is described by vcirc � R����� We shall principally consider disks with ���� � � � ����

The rotation curves of real galaxies are approximately �at across a wide extent of the galaxy� but both

rising and falling rotation curves are also observed� An aim of this thesis is to understand how the slope

of the rotation curve in�uences the stability�

The self�similarity of the equilibrium disks is analytically extremely important� It enables much of the

calculation to be carried out exactly� However� the perfectly self�similar disk is something of a special

case� Following Toomre and Zang� we have therefore concentrated on a modi�ed version of the pure

power�law disks� in which the central regions of the disk are immobilised or cut out� This was achieved

by reducing the fraction of active stars � those able to respond to a disturbance � from unity at moderate

radii to zero at the centre� In order to aid comparison of our results with the numerical simulations

of Earn 	������ we have also tapered the fraction of active stars to zero at large radii� Our originally

in�nite disk has thus become an annulus� Provided that the cut�out is not too abrupt� this is perhaps

more realistic than an in�nite disk with a surface density that diverges at the origin� The immobile

core may be regarded as representing the hot bulge of real disk galaxies� The immobile components still

contribute to the potential experienced by the active stars� Thus the cut�out disks are not self�consistent�

the potential they experience is greater than that due to their own density�

Having investigated the equilibrium properties of the power�law disks� we proceed in Chapter � to

examine their response to disturbance� We arrive at an integral equation which must be satis�ed by

self�consistent modes� This is the fundamental equation in the thesis� It enables us to deduce whether a

given disk is stable or unstable to growing disturbances� We then pause� in Chapter � to consider the

special case of the self�consistent� scale�free disks� We derive a response function describing the response

of the self�consistent disk to neutral perturbations 	that is� perturbations which neither grow nor rotate��

Chapter � describes the various numerical methods adopted for the evaluation of the response function

and the solution of the integral equation� a homogeneous Fredholm integral equation of the second kind�

Checks on the numerics are described� We discuss the results of the analysis� investigating modes with

each azimuthal symmetry in turn� Chapter 
 describes the stability of both the self�similar and the

cut�out disks to axisymmetric 	m � �� modes� Chapter � describes the stability to bisymmetric 	m � ��

modes� Chapters � and � discuss the disks stability to one�armed 	m � �� modes� and to higher angular

harmonics 	m � �� ��

Questions to be answered include�

� How much random motion is required to stabilise a disk to modes of each angular harmonic�

� How does stability vary with rotation curve� Speci�cally� are galaxies with rising rotation curves

more or less stable than galaxies with falling curves�

� Do the scale�free self�consistent disks admit modes� There are contradictory speculations in the

literature 	Zang ���
� Lynden�Bell � Lemos ���
��



� What kinds of density laws can be carved out to render models stable 	or unstable��

� How does stability vary with outer truncation�

� How do rules of thumb such as Toomre�s local criterion and the Ostriker�Peebles global Trot�jW j
criterion fare in comparison with an analytical stability analysis�

� What kind of modes occur when the random motion is too small for stability�



Chapter �

Equilibrium Properties

of the Power�Law Disks

��� Introduction

In this chapter� we derive the basic properties of our galaxy model� These are in�nitesimally thin disks

in which the circular velocity varies as a power of R� The special case in which the rotation curve is

�at and the stars move on circular orbits is the Mestel 	��
�� disk� The hot stellar dynamical disks

with the potential and density of the Mestel disk are referred to as the Toomre�Zang disks in honour

of the pioneering work in Zang�s 	���
� Ph�D� thesis� The self�similarity of these disks simpli�es the

analysis considerably� Extending the work of Zang� we introduce new variables 	functions of the energy

and angular momentum�� which can be used to characterise orbits according to their shape and size� We

can then exploit the self�similarity to deal with all orbits of the same shape together� It is also useful

to �cut out� the centre of the disk� and to taper the disk at large radii� Both these require changes to

the distribution function� We discuss the modi�cations necessary to the distribution function and their

e�ect on the surface density�

Many quantities will be introduced in this chapter and used throughout this thesis� A summary of all

the dynamical quantities and their dimensionless analogues� as well as the distribution functions used� is

provided in Appendix A�

��� The self�similar power�law disks

The general power�law disks are in�nitesimally thin disks� of in�nite extent� For a disk which has surface

density  � at a reference radius R�� we have

 eq �  �

�
R�

R

����

� 	����

Schmitz � Ebert 	����� and Lemos et al� 	����� have studied the global stability to axisymmetric per�

�



turbations of gaseous disks with this density pro�le� This work has been extended to non�axisymmetric

distortions by Syer � Tremaine 	���
� and Lynden�Bell � Lemos 	���
��

Fig� ��� shows the surface density for seven values of ��

Figure ���� Surface density against radius for � �
��������������� ������������������

Figure ���� Potential against radius for � �
��������������� ������������������

The case � � � is the Mestel 	��
�� disk� which was investigated by Toomre 	����� and Zang 	���
��

In the following chapters� we frequently wish to compare our results to those of Zang� The notation Z

followed by an equation number is used as a convenient shorthand for reference to Zang�s 	���
� thesis�

We use the sign convention in which the potential � has opposite sign to the potential energy 	� In

this convention� Poisson�s equation is r�� � �
G�� where � is the density� To �nd the self�consistent
potential corresponding to this density� we �rst look for solutions satisfying Laplace�s equation r�� � �

outside the disk� We obtain a set of solutions �k	R� z �� �� � e�kjzjJ�	kR�� where k can take any value

from � to � 	see e�g� Binney � Tremaine ������ The self�consistent potential is constructed from these

solutions� and must generate the required surface density in the disk� Applying Gauss� theorem to a

small box enclosing part of the disk� we require

d�z��
dz

����
z��

� d�z��
dz

����
z��

� �
G eq	R� z � ��� 	����

In this way� the potential in the plane of the disk is found to be 	Schmitz � Ebert ����� Lemos et

al� ����� Evans ����
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R
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where the reference velocity v� is de�ned by 	cf� Z����
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Clearly 	���� fails for � � �� in this case we obtain 	Mestel ��
�� Z����

�	R� � �v�� ln
�
R

R�

�
� 	����

This can also be derived from 	���� by adjusting the zero of potential and using the result

lim
���

�

�

�
x�� � �� � � lnx�

Henceforth it is to be understood that when an expression fails at � � �� the corresponding result for

the Mestel or Toomre�Zang disk must be used� It can often be derived by taking the limit � � � with

l�H#opital�s theorem� Fig� ��� shows the potential for seven values of ��

With the de�nition of potential given in 	����� the zero of potential is di�erent for rising 	� � �� and

falling 	� � �� rotation curves� This has consequences for the energy E of a star� We have E � T "		R��

where T is the kinetic energy� and 		R� � ��	R� is the potential energy� The range of R open to the

star is limited by the requirement

		R� � E� 	��
�

For the falling rotation curve 	� � ��� 		R� is negative for all R� If E is positive� then the inequality 	��
�

is satis�ed for all R� The star can roam freely from the origin to in�nity� and is not bound to the disk�

Conversely� if E is negative� then 	��
� cannot be satis�ed for all R� The star is restricted to a �nite area

of the disk� it is said to be in a bound orbit� Since we require our stars to be bound to the galaxy� we

shall use only negative energies when � is positive� For the rising rotation curve 	� � ��� 		R� is positive

for all R� so the inequality 	��
� can be satis�ed only for positive energy� The rule is� then� that a bound

star orbiting in a disk with parameter � has energy of opposite sign to �� For the Mestel disk� in which

� � �� the orbit is bound whatever the sign of the energy�

The circular velocity is 	cf� Z����

v�circ �

�
R�

R

��
v�� � 	����

Thus the reference velocity v� is the circular velocity at the reference radius R�� The circular velocity

depends on the radius as R��� Disks with positive beta have falling rotation curves� whereas disks with

negative beta have rising rotation curves�

Galaxies typically have fairly �at rotation curves 	e�g� Rubin et al� ����� Mihalas � Binney ������ and

so the potential in the plane can be described at least roughly by the Mestel disk� Though �attish� the

rotation curves are often slowly rising or falling at large radii 	Casertano � van Gorkom ������ and this

motivates our study of the general power�law disk�



We may choose R� � � without loss of generality� When comparing results between disks with di�erent

�� we may choose to keep v� constant� The reference density  � is then determined according to 	����

Alternatively� we may choose to keep  � constant� in which case 	��� de�nes the reference velocity v� �

Figs� ��� and �� show these alternative choices� They show the circular velocity vcirc plotted against

radius for di�erent values of �� In �g� ���� v� � R� � �� in �g� ���  � � R� � �� How quantities

change as � is varied depends on the choice of units� Circular velocity is relatively easy to measure

observationally� whereas surface density is almost impossible to determine� It thus seems more useful to

compare disks with the same circular velocity at a particular radius� rather than with the same surface

density there� Throughout this thesis� then� we shall employ units in which v� � R� � ��

Figure ���� Circular velocity against radius� in units
where v� � R� � �� for � � 	�
�� 	�
�� 	�
�� �� ��
�� ��
��
��
�

Figure ��� Circular velocity against radius� in units
where �� � R� � �� for � � 	�
�� 	�
�� 	�
�� �� ��
�� ��
��
��
�

The mass enclosed within a radius R is

M	R� �
�
 �R

�
�

�� �

�
R

R�

����
	����

For a �at rotation curve� the enclosed mass depends linearly on radius� For rising rotation curves� the

enclosed mass rises more steeply with R� for falling rotation curves� it rises steeply at low radii but then

increases only slowly� The total mass of the disk is in�nite for all � in the range �� � � � ��

The orbits of stars in the disk

The Lagrangian for the general power�law disk is

L � �

�
$R� "

�

�
R� $�� "

v��
�

�
R�

R

��
� 	����



A star moving in this potential obeys the equations of motion

�R � R $�� � v��
R

�
R�

R

��
�

d

dt

�
R� $�

	
� �� 	�����

In terms of the radial velocity u � $R and the tangential velocity v � R $�� the angular momentum is

Lz � Rv� 	�����

and the energy is

E �
�

�

�
u� " v�

�� v��
�

�
R�

R

��
� 	�����

Following Zang 	���
�� we de�ne the home radius RH to be the radius at which the tangential velocity is

equal to the circular velocity� By conservation of angular momentum we have�

Lz � Rv � RHvcirc 	RH� � 	�����

Substituting for the circular velocity� we have 	cf� Z���
�

RH � R�

�
Lz
v�R�

� �
���

� 	����

Again employing Zang�s 	���
� terminology� we de�ne the eccentric velocity U to be the maximum radial

speed reached during an orbit� U is thus positive by de�nition�

We rearrange the above expression for the energy 	����� to obtain the radial velocity

u� � �E � L�
z

R�
" �

v��
�

�
R�

R

��
� 	�����

Di�erentiating this with respect to R� we �nd that the maximum radial velocity occurs at the home

radius 	����� and that its value is given by

U� � �E "

�
�

�
� �

�

v��R

�
�

L�z

� �
���

� 	���
�

A similar derivation using the potential of the Mestel disk gives 	Z�����

U� � �E � v��

�
� " � ln

Lz
v�R�

�
� 	�����

As an illustration� let us consider the following orbits� where in each case a star is followed through ten

radial oscillations� The star on the left has low U � and so a more nearly circular orbit� whereas the one

on the right has high U � and so a more eccentric orbit�



Figure ���� The orbit of a star with low eccentric velocity�
E � ����� and L � �� U � ��� and RH � �� in the
� � ���� disk� with R� � v� � �

Figure ��
� The orbit of a star with high eccentric veloc	
ity� E � ����� and L � �� U � ��� and RH � �� in the
� � ���� disk� with R� � v� � �

It will frequently be convenient to work in dimensionless co�ordinates� We de�ne the following dimen�

sionless integrals of motion�

%U� �
U�

v��

�
RH

R�

��
� %RH �

RH

R�
� 	�����

%E �
E

v��

�
RH

R�

��
� %Lz �

Lz
v�R�

� 	�����

We de�ne the dimensionless radial and tangential velocities similarly�

%u� �
u�

v��

�
RH

R�

��
� %v� �

v�

v��

�
RH

R�

��
� 	�����

We shall also use dimensionless radial and time coordinates�

%R �
R

RH
� %t �

v�
RH

�
R�

RH

����
t� 	�����

These de�nitions throw some light on the signi�cance of the home radius� As suggested by the de�nition

%R � R�RH� it is a scale radius for the orbit� The self�similarity of the disk means that orbits of any size

are simply scaled copies of each other� All dependence on radius can thus be factored out� the equations

of motion become

d� %R

d%t�
�

�
%R�
� �
%R���

�
d�

d%t
�

�
%R�
� 	�����

The scaled energy is

%E �
�

�

�
%u� " %v�

�� �

� %R�
� 	�����



Equations 	���� and 	���
� become

%RH � %L
�

���
z � %U� � � %E � � " �

�
� 	����

We shall also need expressions for the radial and tangential velocities�

%u� � %U� " �� %R�� "
�

�

�
%R�� � �

	
� %v �

�
%R
� 	�����

As a star orbits in the equilibrium disk� the accessible phase space is limited by its energy and angular

momentum 	or equivalently its eccentric velocity and home radius�� Because of the azimuthal symmetry

of the disk� the star circulates through all values of 	� It does not explore all values of R� but moves

within an annulus of the disk bounded by Rmin and Rmax� For certain values of the eccentric velocity�

the orbit closes� and the star then traverses a one�dimensional manifold within the annulus� in general

the orbit does not close� and the star eventually passes arbitrarily close to every region of the annulus

	see e�g� Landau � Lifshitz ��
���

The turning�points of the orbit occur when the radial velocity u � �� In terms of the dimensionless

co�ordinates� this condition corresponds to

%U� " �� %R�� "
�

�

�
%R�� � �

	
� �� 	���
�

For given %U and �� there are two solutions� %Rmin corresponding to pericentre� and %Rmax corresponding

to apocentre� We solved this equation numerically using the Newton�Raphson method� The choice of

initial guess depends on the size of %U �

To �nd the maximum� we use the Newton�Raphson method directly on 	���
�� For large %U � the star�s orbit

is highly eccentric� and %Rmax is large� We can thus neglect %R
��� and use %Rmax �

�
���	 %U�"�����

�����
as an initial approximation� For small %U � %Rmax will not greatly exceed unity� We write %R � � " � and

obtain %Rmax � � " %U�
p
�� ��

To �nd the minimum� we rewrite 	���
� in terms of q � �� %R and look for the larger root of q� Again

the choice of initial value depends on the size of %U � For large %U � %Rmin is small� so qmax is large� we

neglect q� � and use qmax �
p
%U� " � as a starting�point� For small %U � we write q � � " � and obtain

qmax � � " %U�
p
�� �� We chose to take %U � � as the dividing line between �large� and �small� %U �

The following table presents some values of the extrema for various � and %U �



� %U %Rmin
%Rmax

���� �����
� ���

�

����� ��� �������� �������

��� ������� �������
���� ����
��� �������

����� ��� �������� �����
��� ��
�� ����
��
���� �������� �������

���� ��� ���
���� �������
��� ������� ���
�
���� �������� �������

���� ��� �������� �������
��� ������ �������
���� ������� �������

���� ��� �������� ����
��
��� ������� �������

Integrals of motion

A star orbiting in the disk has four constants of motion 	for example� its initial position and velocity��

Integrals of motion are functions of the phase�space coordinates 	x�v� which are unchanged as the star

moves in its orbit 	Landau � Lifshitz ��
��� In our equilibrium disk� there are two symmetries� and hence

two integrals of motion� E stems from the time�independence� and Lz from the azimuthal symmetry� E

and Lz are called isolating integrals� a term introduced by Lynden�Bell 	��
��� together they con�ne the

orbit of a star to a two�dimensional manifold within the four�dimensional phase space� Throughout this

thesis� we shall generally use the alternative isolating integrals U and RH� which are functions of E and

Lz�

Periods and frequencies

To begin with� we shall de�ne a useful auxiliary integral

Jn	 %U� � �
Z �Rmax� �U	

�Rmin� �U	

d %R

%Rn
�
%U� " �� %R�� " �

�

�
%R�� � �

		 �
�

� 	�����

where %Rmin and %Rmax are the solutions of 	���
��

For the � � � case� this becomes 	Z�����

Jn	 %U� � �
Z �Rmax� �U	

�Rmin� �U	

d %R

%Rn
�
%U� " �� %R�� � � ln %R

	 �
�

� 	�����

To evaluate Jn numerically� we remove the singularities at either end of the integrand by transforming to a
variable �� We de�ne %R � m"a sin �� where m is the midpoint of the radial motion� m � �

� 	
%Rmin" %Rmax�

and a is its amplitude� a � �
� 	
%Rmin� %Rmax�� The integration can then be carried out using the midpoint

method 	Press et al� ����� ch� ��



The following table gives values for some auxiliary integrals�

� %U J� J� J�
���� ������ ������ �������

����� ��� ������
 �����
 ������
��� 
�
�

� ���

� �������
���� ����� ������ ������

����� ��� ������ ����
� �����
��� ��
��
� ������ ���
��
���� �
��� �
�� ����

���� ��� ������� ����� ��
�
��� ������ ������
 �����
���� ������ ���
�� �����

���� ��� ������� ����
� �����
��� ���
��� 
������ ������
���� ������ ������ ������

���� ��� ������� 
�
���� ������
��� ������� ����

� ���
��

We shall need J� and J� in order to �nd the frequencies of the orbit�

The radial frequency

The radial period T is the time taken for the star to travel between two successive pericentres� i�e� to

move out and in again� Using the symmetry of the orbit� we have

T � �

Z R�Rmax

R�Rmin

dt � �

Z Rmax

Rmin

dR
$R
� 	�����

In terms of dimensionless variables� this is

T �
�RH

v�

�
RH

R�

� �
�
Z �Rmax

�Rmin

d %R

%u
� 	�����

Using the expression for the radial velocity given in 	������ along with the de�nition 	������ we �nd

T �
RH

v�

�
RH

R�

� �
�

J�� 	�����

The radial frequency � is

� �
�


T
�

v�
RH

�
R�

RH

� �
� �


J� � 	�����

We shall �nd it useful to de�ne the dimensionless radial frequency %��

%� �
RH

v�

�
RH

R�

� �
�

� �
�


J� � 	�����



The angular frequency

The angular period & is de�ned to be the angle through which a star moves during the time taken to

complete one radial oscillation�

& �

Z t�T

t��

d� � �

Z Rmax

Rmin

$�
$R
dR � �

Z Rmax

Rmin

vdR

uR
� 	����

In terms of dimensionless variables� this is

& � �

Z �Rmax

�Rmin

%vd %R

%u %R
� J�� 	�����

where J� is de�ned in 	������

The angular frequency ' is de�ned to be the mean angular speed of the star�

' �
&

T
�

v�
RH

�
R�

RH

� �
� J�
J� � 	���
�

Once again� we shall henceforth use the dimensionless angular frequency %'� de�ned by

%' �
RH

v�

�
RH

R�

� �
�

' �
J�
J� � 	�����

The dependence of %� and %' on %U and � is shown in the following two graphs�

Figure ���� �� plotted against �U � for � � 	�
�� 	�
�� 	�
��
�� ��
�� ��
�� ��
�
 The dotted lines on the vertical axis
mark

p
�� �� the calculated value of �� as �U � �


Figure ���� �� plotted against �U � for � � 	�
�� 	�
�� 	�
��
�� ��
�� ��
�� ��
�
 Note that ��� � as �U � �

Some numerical values are�



� %U %� %'
���� ����
��
 ��������

����� ���� ����
��� ��������
���� ���
�� ��������
���� ������ ����
���

����� ���� ���
��
� ��
�
���
���� �������� ��
�

���� ������
 �������


���� ���� �������� ��
����
���� ������ ������

���� ������� �������


���� ���� ��
����� ������
���� ���
�� ���


�
���� ������
 �����
��

���� ���� ����
�� ������
�
���� ����
� �������

In general the integral 	����� has to be evaluated numerically for given � and U � However� we can

calculate its behaviour in the limit U � �� The eccentric velocity U is� by de�nition� the maximum radial

velocity� If this is zero� the star has no radial motion� it is on a circular orbit� Then the tangential velocity

must be equal to the circular velocity� i�e� the star is at the home radius� So %Rmin � %Rmax � �� As U

increases from zero� %Rmin will drop below � and %Rmax will rise above �� We therefore write %R � � " �

and substitute this into 	���
� to obtain

%U� " 	� � �� � � �� 	�����

and thus

 � 	(� ( �
%Up

	�� ��
� 	�����

The two values of  correspond to %Rmin and %Rmax� Then 	retaining terms to second order in � the general

integral 	����� becomes

lim
�U��

Jn	 %U� � �
Z �


�


d�
%U� � 	�� �� �

	 �
�

�
�
p
�� �

� 	����

Therefore the dimensionless epicyclic and circular frequencies are

%�� 
 lim
�U��

%� �
p
�� �� %'� 
 lim

�U��

%' � �� 	����

The dimensional frequencies are

�� 
 lim
�U��

� �
p
�� � � v�

R

�
R�

R

����
� '� 
 lim

�U��
' �

v�
R

�
R�

R

����
� 	����

As expected� then� the angular frequency is that of a star in a circular orbit at RH� '� � vcirc�RH� At

low but non�zero %U � there is superimposed on this circular motion a small radial oscillation� which can be



viewed as due to the epicyclic motion of the stars� Note that the epicyclic frequency can also be obtained

via the formula 	Binney � Tremaine �����

��� �

�
R
d'�

�

dR
" '�

�

�
�

It should be emphasised that throughout this thesis we shall use the general frequencies � and '� we do

not rely on the epicyclic approximations �� and '��

��� The structure of phase space

We have chosen a surface density for our disk� we have calculated the gravitational potential due to this

density� and we have investigated some properties of the orbits of stars in this disk� We now need to

consider how the stars make up such a disk� We must position the stars so as to build up the correct

density distribution� Further� the stars are not stationary� but are orbiting in the potential of the disk�

Some of the orbits are circular� some may be highly elongated� some are closed� some open rosettes� but

they must all combine to give an unchanging density distribution with exactly the radial dependence

required� On the face of it� this seems impossibly complicated to arrange� and yet it can be done)

The mathematical object that positions the stars correctly is the distribution function f	R� �� u� v� t��

This is normalised so that the integral of the distribution function over all velocities gives the surface

density at that point�

 	R� �� t� �

ZZ
all velocities

f	R� �� u� v� t� du dv� 	����

The distribution function thus has units of surface density over velocity�squared� f describes how the

stars are located in phase space� which for a disk is four�dimensional� f can be regarded as a phase space

density� or the density of a �uid in phase space� If the distribution of the stars changes with time� the �uid

will move to re�ect this� Stars cannot jump through phase space� nor can they change their velocity dis�

continuously� In real galaxies� the relaxation time � the time taken for a star�s velocity to be signi�cantly

changed by collisions with other stars � is much greater than the age of the galaxy 	Jeans ����� Binney

� Tremaine ����� ch� �� This means that collisions can be neglected� The �ow is then incompressible�

Under these conditions� f satis�es a continuity equation in phase space

�f

�t
"

�

�vi
	f $vi� "

�

�xi
	f $xi� � �� 	���

where v is the star�s velocity and x its position� and the Einstein summation convention applies� From

this 	Binney � Tremaine ����� ch� �� we obtain the collisionless Boltzmann equation�

df

dt

 �f

�t
" vi

�f

�xi
"

��

�xi

�f

�vi
� �� 	����



df�dt is the convective or Lagrangian derivative� which describes how the local phase�space density changes

for an observer travelling with a star as it moves through phase�space� When df�dt vanishes� the observer

notices no change in the density� i�e� the �uid is incompressible�

The collisionless Boltzmann equation leads to an important constraint on the possible form of the equi�

librium distribution function f � �rst derived by Poincar*e 	������ and popularised by Jeans 	������ In

general� f is a function of R� �� u� v and t� But the equilibrium distribution function does not depend

explicitly on t� Thus f is a function of the four phase�space coordinates alone� Also� the collisionless

Boltzmann equation tells us that f does not change over the orbit of a star� df�dt � �� These two

conditions together mean that f is an integral of motion� Conversely� any function of integrals of motion

will yield a time�independent distribution function that satis�es the collisionless Boltzmann equation

d

dt
f 	I�	x�v� � � � In	x�v�� �

�f

�In

dIn
dt

� �� 	��
�

This result is known as the Jeans theorem� Lynden�Bell 	��
�� pointed out that only isolating integrals

should be used in the Jeans theorem� In this thesis� we build our equilibrium distribution function out

of the energy E and angular momentum Lz� A simple set of distribution functions has already been

provided by Evans 	����� They form the basis for the equilibrium models studied in this thesis� But

they are assuredly not the only possible choices� An example of an alternative set of distribution functions

is provided in Appendix B� These are perhaps curiosities� as the disks are built from orbits of one shape

only�

Evans 	���� followed the method of Fricke 	����� and Miyamoto 	����� ���� to �nd distribution

functions for power�law disks� The surface density is expanded in powers of � and R�  eq � Rk�j � and

distribution functions of the form f � CLlzE
e are sought� The surface density must be the integral of

the distribution function over velocity space�  eq	R� �� �
RR

f	E�Lz� du dv� Substituting in the assumed

distribution function CLlzE
e� the integration is carried out to give  eq as a product of powers of R and

�� Thus the powers k and j are related to e and l�

The distribution function obtained in this way is self�consistent� When integrated over velocity space�

it yields the surface density which sets up the potential contained in the distribution function through

E � �
�

�
u� " v�

�� �	R�� This is illustrated by the closed loop in the following diagram�

 eq	R� �� �
RR

fsdu dv

�

r�� � �
G �	z�
�	R� ��

R

E � T 	u� v�� �	R� ��

�
fs	E�L�

I

Figure ���� Relation between surface density and potential for a self	consistent distribution function




Later we introduce distribution functions that are not self�consistent� This self�consistent distribution

function is therefore denoted by fs�

For the positive � models� Evans 	���� obtained

 eq � R�k�l� fs	E�Lz� � L�k
z 	�E�l�k��

! +l " �,

�k��
p

!

�
k " �

�

�
! +l� k,

� 	����

where l � k and k � � �
� � For negative � he obtained�

 eq �
R�k

	���l
� fs	E�Lz� �

L�k
z

El�k��

! +l " k " �,

�k��
p

!

�
k " �

�

�
! +l,

� 	����

where l � � and k � � �
� �

To relate these results to our model� we need to use the equations for the surface density 	���� and poten�

tial 	���� of our general power�law disk to carry out a surface density partition 	Evans � Collett ������

We write

 eq	R� �  �

�
R

R�

�� �
�

��

��� �
�
� �
�

� 	����

where �� � v���� is the potential at the reference radius� and � is arbitrary�

Falling rotation curve� positive �

For the positive � models� we �nd

fs	E�Lz� �
C�� ��

�� �
�
� �
�

����
p

R�

�v
�	�� �

�
� �
� �

�

L�z 	�E������������� 	�����

provided � � ��� The normalisation constant C�� is

C�� �
!
h
� " �

� "
�
�

i
!
�
�
� 	� " ��

�
!
h
� " �

� "
�
� � �

�

i � 	�����

Rising rotation curve� negative �

For the negative � models� the analogous result is�

fs	E�Lz� �
C�� �v

�	��� �
�
� �
� �

�

����
p

R�

� 	������
�
�
� �
�

L�z

E
�
�
� �
�
� �
�

� 	�����

provided � � �� � �� The normalisation constant C�� is now

C�� �
!
h
�
� � �

� � �
�

i
!
�
�
� 	� " ��

�
!
h
��� �

� � �
�

i � 	�����



	Recall that for bound orbits the energy must have the opposite sign to that of �� so we shall never

encounter problems with taking the root of a negative number��

In summary� then�

� �j � j� � � fs	E�Lz� � %CL�z jEj������������ 	����

where %C �
C�� �j�j��
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and � � �� � �� 	�����

Note that these formulae di�er by a factor of � from those given by Evans 	����� This is because Evans�

results are for a bi�directional disk� where the stars rotate in both senses� In this thesis� we shall consider

only uni�directional disks�

Flat rotation curve� zero �

Similar results can be obtained for the Toomre�Zang disk 	Toomre ����� Zang ���
� Toomre �����

Binney � Tremaine ����� ch� �

fs	E�Lz� � %CL�z exp

�
�	� " ��E

v��
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C�� �

����
p

R�

�v
���
�

� C�� �
	� " �������

!
�
�
� 	� " ��

� � 	��
��

Just as the potential for the Toomre�Zang disk involves a logarithm instead of powers of R� so the

distribution function involves an exponential instead of powers of E�

The mean streaming velocity

The mean streaming velocity is de�ned as

hvi �
R
vf du dvR
f du dv

� 	��
��



For � � �� we work in terms of the binding energy E � �E � � and the potential �	R� � �� The

minimum value of E is zero� the maximum possible is E � ��	R� � v��R
�
� ��R

�� Then the streaming

velocity is

hvi � �

R

Z ��R	

E��
dE E�����������

Z R
p
����E	

L��

L���z dLp
�R�	� � E�� L�

� 	��
��

For � � �� we work in terms of the energy E � � and 		R� � ��	R� � �� The minimum possible value

of E is E � 	� the maximum is E ��� The streaming velocity is given by

hvi � �

R

Z �

E���R	

dE E�����������
Z R

p
��E��	

L��

L���z dLp
�R�	E � 	�� L�
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�

These integrations can be carried out analytically to yield
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The radial velocity dispersion

The radial velocity dispersion is the root�mean�squared radial velocity� de�ned by

��u � hu�i �
R
u�f	R� u� v� du dvR
f	R� u� v� du dv

� 	��
��

Evans 	���� �nds that� for the self�consistent distribution function 	����� this is

��u �
v��

� " � " ��

�
R�

R

��
� 	��
��

Conveniently� this result holds for both positive and negative �� even though di�erent distribution func�

tions must be used in each case) We de�ne the dimensionless radial velocity dispersion

%��u �

�
R

R�

��
��u
v��

�
�

� " � " ��
� 	�����

If all the stars are on circular orbits� we see from 	��
�� that the radial velocity dispersion is identically

zero� Such a disk is traditionally said to be �cold�� by analogy with the motion of molecules in gases� As



the eccentricity of the orbits increases� the stars acquire random motion� and thus the �temperature� of

the disk increases� High values of the anisotropy parameter � correspond to low velocity dispersions� i�e�

cold disks� We can see why this is so from the distribution function� fs � L�z � When � is large� more of

the stars have high angular momentum� i�e� approach circular orbits� so the disk is cool� The isotropic

model is given by � � �� In this thesis� a disk is described as �hot� or �cold� according to whether its

velocity dispersion �u is large or small� Similarly� a disk�s �temperature� refers to its value of �u 	or

equivalently ���

The tangential velocity dispersion

We de�ne the tangential velocity dispersion as

��v �

R
	v � hvi��f	R� u� v� du dvR

f	R� u� v� du dv
� hv�i � hvi�� 	�����

Evans 	���� �nds that both positive and negative � give the same answer for hv�i�

hv�i � v��	� " ��

� " � " ��

�
R�

R

��
� 	� " ����u� 	�����

As � � �� ��u � � and
p
hv�i � vcirc� so the disk is rotationally supported� The power�law disks have

the property that� at any spot� the ratio of radial velocity dispersion to mean squared tangential velocity

is constant� Such models were �rst considered by H*enon 	������

The kinetic and potential energies

We can also work out the total energy stored within a radius R in di�erent forms� We de�ne

K �
�

�

Z R

�

 	R��	hu�i" hv�i� dA� W �

Z R

�

 	R��R�
��

�R�
dA� 	�����

T �
�

�

Z R

�

 	R��hvi� dA� - �

Z R

�

 	R��	��u " ��v� dA� 	����

where dA is an element of area� K is the total kinetic energy� and W is the total gravitational potential

energy� K can be divided into contributions from ordered 	rotational� and random motion� T and -

respectively� K � T " �
�- 	Binney � Tremaine ����� p� ����� These integrals can be evaluated to yield
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For the power�law disks� the virial theorem takes the form

�K	R� "
� " �

� " � " ��
W 	R� � �� 	�����

Note that the disk does not� in general� satisfy the standard virial theorem �K"W � �� This is because

it is not possible to �enclose� the system by drawing a su�ciently large container around it� No matter

how large the diameter of the container� if the disk is warm� some stars will always cross its surface�

When the disk is perfectly cold� the stars have no radial motion and thus do not cross the surface� In

this case� as we see from eq� 	������ the standard virial theorem holds�

The rotational kinetic energy is
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��� The cut�out distribution functions

So far we have considered the self�consistent case� where the surface density generates a potential in

which stars orbit with a distribution fs so as to recover the original surface density� It is also convenient

to examine disks where parts of the central density are carved out� This is very much in the spirit of

Zang�s 	���
� pioneering investigations� The cut�out mass is still present� in the sense that it contributes

to the potential experienced by the remaining stars� but it is not now free to participate in the perturba�

tion� The disk is thus divided into �active� and �inactive� components� The following diagram illustrates

this state of a�airs�

 eq	R� ��
�

r�� � �
G �	z�
�	R� ��

R

E � T 	u� v�� �	R� ��

�
fcutout	E�L�

I

 active	R� �� �
RR

fcutoutdu dv

�

 inactive	R� ��

�

Figure ����� Relation between surface density and potential for a cut	out distribution function


Although motivated partly by mathematical convenience� this is also a physically reasonable step to take�



Stars in galactic disks are subject not merely to their own potential� but also to forces from the halo

and bulge� A self�consistent distribution function� such as fs� is realistic only when the disk�s self�gravity

overwhelms the gravitational potential of the other components� The immobile central mass can be

interpreted physically as the hot bulge at the centre of disk galaxies� which contributes 	along with the

halo� to the potential in the disk� Another possibility� suggested to us by Scott Tremaine 	����� private

communication�� is to interpret the rigid density as being caused by stars on highly elongated radial

orbits� They pass through the centre of the disk� but they spend most of their time su�ciently far away

from the disk that they do not respond to the changing potential�

There is another advantage in thus modifying the mass distribution� We wish to compare our results

with those from N �body studies such as Earn 	������ Numerical simulations cannot cope with in�nite

forces� so in these studies the singularity at the origin is removed� Also� they cannot track the behaviour

of the disk to in�nite distances� so the disk must be truncated at some �nite radius� For comparison with

these studies� we also introduce an outer cut�out�

We multiply our self�consistent distribution function fs 	���� by a cut�out function H	Lz��

fcutout	E�Lz� � H	Lz�fs	E�Lz�� 	�����

We shall carry out our analysis for three H	Lz��

the self�consistent 	scale�free� disk�

H	Lz� � �� 	�����

the inner cut�out disk�

H	Lz� �
L
N�
z

L
N�
z " 	v�R��

N�
� 	�����

and the doubly cut�out disk

H	Lz� �
L
N�
z L

M�
ch

L
N�
z " 	v�R��

N�
i h
L
M�
z " L

M�
c

i � 	����

In these formulae�

N� �
� " �

�� �
N� M� �

� " �

�� �
M� 	�����

where N and M are the inner and outer cut�out indices� respectively� they must be positive integers�

We frequently use an equivalent form of the cut�out function expressed in dimensionless variables� This

is de�ned by %H	%Lz� 
 H	L�� The choice of the inner cut�out reduces to Zang�s 	���
� 	Z������ when

� � �� This generalisation seems to come out of thin air� but we shall see in Appendix C that it provides

a considerable simpli�cation in our calculation of a contour integral� Earn 	����� uses a doubly cut�out

function of the same form as 	���� to carry out his numerical simulations 	although� not having to

perform any contour integrals� Earn is free to choose non�integral N and M�� The inner cut�out function



means that matter in the central parts of the disk is prevented from participating in the disturbance�

This frozen matter could be regarded as representing the bulge of a physical galaxy� The outer cut�out

function reduces the active surface density to zero at large radii� The potential here could be regarded

as due to an extended dark halo�

The inner cut�out

The form of the inner cut�out function %H	%Lz� is shown in �g� �����

Figure ����� The inner cut	out function �H��Lz� for � � ���� �left� and � � ���� �right�
 Five values of N are shown�
from N � � to N � �
 The horizontal line is the N � � curve� the arrows show the direction of increasing N 


For N �� �� %H	%Lz� rises from zero at small %Lz 	� �� to unity at large %Lz 	� ��� We see that N controls

the steepness of the rise� It is steeper for large N �

What e�ect does this modi�cation of the distribution function have on the surface density� The cut�out

functions depend on the dimensionless angular momentum %Lz� By removing orbits with low %Lz� we are

discarding some of the stars with a small home radius� %RH � %L
������	
z � and thus removing matter from

the centre of the disk� In a cold disk� all the stars are on circular orbits� for which the angular momentum

is %Lz � 	R�R��
����� � The cut�out function thus depends on R only� The active surface density of a

cold disk is then 	c�f� Z��

�

 active �  �

�
R�

R
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R
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R
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N "R
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�
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� 	���
�

For a cold disk� the active density tends to zero at the origin whenever 	� " ��	N � �� � �� This is

true except when N � � and � is positive� then the active density tends to in�nity at the origin� This is

demonstrated in the above plot� When � � �� the surface density at the origin is zero for N � �� and

unity for N � ��

The active surface density of a hot disk must be calculated by numerical integration� Fig� ���� compares



the active surface density for a hot disk 	right�hand plot� with that of a cold disk 	left�hand plot�� Heating

the disk makes little di�erence to the active density� For instance� for a cold disk� eq� 	���
� shows that

the density falls to half the equilibrium value at R � R�� �g� ���� shows that this holds true� to good

accuracy� for a hotter disk�

Figure ����� The active surface density of a � � ���� disk with an inner cut	out function
 The left	hand plot is for a cold
disk� where the density is given by eq
 ��
���
 The right	hand plot is for ��u � ������ which is the temperature at which the
self	consistent disk is locally stable to axisymmetric disturbances
 In each case� the solid lines are the density for N � �� ��
�� �� the arrows indicate the direction of increasing N 
 The dashed line is the equilibrium surface density


In �g� ����� the active surface density of a hot disk is considered as a fraction of the equilibrium surface

density at each radius� The form of these curves is close to those of %H	%Lz� shown in �g� ����� Thus the

value of %H	%Lz� is a good approximation to the proportion of density which is active at R � R�
%Lz� At

R � R�� approximately half the density is active� at higher radii� less matter is removed and the active

density approaches that of the equilibrium disk�

Figure ����� The active surface density of a hot disk with an inner cut	out function� shown as a fraction of the equilibrium
density
 The solid lines are the density for N � �� �� �� �� the arrows indicate the direction of increasing N 
 For � � �����
��u � ������ for � � ����� ��u � ����
 These are the temperatures at which the self	consistent disk is locally stable to
axisymmetric disturbances




The outer cut�out

In the doubly cut�out disk� the self�consistent distribution function is multiplied not only by the inner

cut�out function 	����� but also by the outer cut�out function

��
%Lz�%Lc

	M�

" �

��
�

Fig� ��� shows the dependence of the doubly cut�out function %H	%Lz� on %Lz for di�erent M and %Lc�

Figure ���� The outer cut	out function �H��Lz� plotted against �Lz�for � � �����
 The left	hand plot shows �H��Lz� for
�Lc � �� and eight values of M � from M � � to M � 
 The horizontal line is the M � � curve� the arrow shows the
direction of increasing M 
 The right	hand plot shows �H��Lz� for M � �
 Ten values of �Lc are shown� �Lc � ��� ��� � � � ���

The arrow shows the direction of increasing �Lc


Again� for a cold disk� we can write the outer cut�out function as a function of radius only� so that the

active surface density is simply the equilibrium density multiplied by the cut�out function� The active

surface density for a doubly cut�out cold disk is

 active �  �
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where the truncation radius %Rc is given by %Rc � %L
������	
c �

Fig� ���� compares the surface density in cold and hot disks� The dotted lines mark the position of %Rc�

At %Rc� roughly half the density is active�



Figure ����� The active surface density of a � � ���� disk with a doubly cut	out function
 The left	hand plot is for a cold
disk� where the density is given by eq
 ��
���
 The right	hand plot is for ��u � ������ which is the temperature at which
the self	consistent disk is locally stable to axisymmetric disturbances
 The solid lines are the density for M � �� �� �� ��
the arrows indicate the direction of increasing M 
 In each case N � �� �Rc � ��
 The dashed line is the equilibrium surface
density
 The dotted line marks the position of �Rc


Fig� ���
 shows the surface density as a fraction of the equilibrium density� Once again� this is similar to

the cut�out function H	Lz��

Figure ���
� The active surface density of hot disks with a doubly cut	out function� shown as a fraction of the equilibrium
density
 The solid lines are the density for M � �� �� �� �� the arrows indicate the direction of increasing M 
 In each case
N � �� �Rc � ��
 The dashed line just visible at the top of the plots is the corresponding inner cut	out disk
 The dotted
line marks the position of �Rc
 For � � ������ ��u � ������ for � � ������ ��u � �����
 These are the temperatures at which
the self	consistent disk is locally stable to axisymmetric disturbances


Our motivation for introducing the outer cut�o� is to enable our results to be directly compared against

N �body work� In practice� however� the outer cut�out does not have a signi�cant e�ect on the stability

properties of the disk 	unless %Lc and %Rc are very small��



Chapter �

The Integral Equation

��� Introduction

In this chapter we investigate the consequences of imposing a small density perturbation  imp on the

equilibrium disk� If the density of the disk changes� the potential and hence the forces on the stars alter�

and the stars� orbits shift� This in turn leads to a change in the density  res� which itself causes a change

in the potential and so on� For such a disturbance to be a normal mode� it must be self�consistent � � that

is� the imposed density disturbance must generate a response exactly equal to the imposed density� If

there are no growing self�consistent disturbances� the disk is stable� If there is a self�consistent disturbance

with vanishingly small growth rate� the disk is said to be marginally stable� One of the goals of stability

analyses is to �nd the condition of marginal stability� which separates the stable and unstable modes� In

this thesis� we make the step of linearising the Boltzmann equation� which e�ectively assumes that the

perturbation amplitude is small� This is a fair assumption� since many galaxies are axisymmetric to a

�rst approximation� with their spiral pattern superimposed as a small 	� ���� perturbation 	Bertin �

Lin ���
��

We begin by deriving a general relationship between a change in density  imp and the consequent change

in potential �imp� We then use the linearised collisionless Boltzmann equation to �nd how this change in

potential �imp a�ects the distribution function� The change in the distribution function fimp depends on

the equilibrium distribution functionf � Integrating fimp over velocity is then our route back to �nding the

change in density  res caused by �imp� We look for self�consistent solutions by requiring that  res be equal

to  imp� In practice� we implement this general scheme by expanding  imp in terms of a particular set of

functions called logarithmic spirals� e�ectively taking the Fourier transform of the density distribution�

We follow the scheme outlined above for a single log�spiral component  �mimp of the density� and derive

the change in potential ��mimp and in distribution function f
�m
imp caused by each density component  

�m
imp�

�We do not require our distribution functions to be self	consistent� since we are happy to ascribe the missing potential
to an inactive halo component
 However� in our stability analysis� we are interested in self	sustaining modes of the disk

We therefore search for self	consistent disturbances
 Note that it is perfectly possible to have a self	consistent mode in a
disk with a cut	out distribution function


��



We can integrate this over velocity space to �nd the change in density  �mres caused by each log�spiral

component� We then add up all the log�spiral components in order to �nd the total response density

 res� and compare this to  imp� However� in practice it is more useful to consider the transforms of these

two densities� These must be equal for a self�consistent mode� The goal of this chapter is therefore to

derive the integral equation relating the transform of the response density to the transform of the imposed

density� In the course of this work� several new variables and functions will be introduced� These are

summarised in the tables in Appendix A�

��� Dynamics of perturbed disks

We have a disk with surface density  eq	R� and potential �	R� satisfying Poisson�s equation

r�� � 
G eq	R� � �	z�� 	����

where � is the Dirac delta�function� Now imagine that a small perturbation  imp is imposed on the

surface density� so that the total density at any point is now  eq "  imp� This in turn brings about a

small change �imp in the potential� The new surface density  eq " imp and the new potential �"�imp

must still obey Poisson�s equation� The linearity of Poisson�s equation implies

r��imp � 
G imp	R� � �	z�� 	����

This has the solution

�imp 	R� �� � G

Z 	���


	���

Z R���

R���

 imp 	R
�� ���R� dR� d��q

R� "R�� � �RR� cos 	� � ���
� 	����

We transform to X � lnR and introduce the reduced potential Y and the reduced surface density S

	Binney � Tremaine ����� ch� �� sec� 
��

Y 	X� �� � R
�
��imp 	R� �� � 	���

S 	X� �� � R
�
� imp 	R� �� � 	����

Then 	���� becomes

Y 	X� �� � G

Z 	���


	���

Z X����

X����
K � 	X �X �� � � ���S 	X �� ��� dX � d��� 	��
�

where

K � 	X �X �� � � ��� � 	� +cosh 	X �X ��� cos 	� � ���,��
�
� � 	����



The stars move in response to the change in potential� and so the distribution function has changed from

its equilibrium value f to a new value f"fimp� This new distribution function is not an integral of motion�

because it changes with time� However� it must still satisfy the collisionless Boltzmann equation 	�����

so we must have

�

�t
	f " fimp� " v � r 	f " fimp� "r 	� " �imp�

�

�v
	f " fimp� � �� 	����

Unlike Poisson�s equation� the Boltzmann equation is not linear in the perturbation� So after cancelling

the equilibrium terms� we are left with

�fimp

�t
" v � rfimp "r�imp

�f

�v
"r��fimp

�v
"r�imp

�fimp

�v
� �� 	����

We then make the step of linearising the Boltzmann equation� that is� neglecting the term of second order

in the perturbation� to obtain

�fimp

�t
" v � rfimp "r��fimp

�v
� �r�imp

�f

�v
� 	�����

The left�hand side of this equation is� by de�nition� the convective derivative dfimp�dt� the change in

fimp witnessed by an observer moving with a star along the unperturbed trajectory� Using this fact� and

expanding the right�hand side� we have

dfimp

dt
�

�fimp

�t
" v � rfimp "r��fimp

�v
� ���imp

�R

�f

�u
� �

R

��imp

��

�f

�v
� 	�����

Now the equilibrium distribution function f depends only on E and Lz� so we rewrite the derivatives as

�f

�u
�

�f

�E

�E

�u
"

�f

�Lz

�Lz
�u

� u
�f

�E
� 	�����

�f

�v
�

�f

�E

�E

�v
"

�f

�Lz

�Lz
�v

� v
�f

�E
" R

�f

�Lz
� 	�����

Recasting 	������ we obtain

dfimp

dt
� �

�
u
��imp

�R
"

v

R

��imp

��

�
�f

�E
� ��imp

��

�f

�Lz
� 	����

This relates the change in the distribution function to the forces experienced by the star as a result of

the density perturbation� The radial and tangential forces on the star are respectively

FR �
��imp

�R
� F	 �

�

R

��imp

��
� 	�����



Then the term in brackets in 	���� is 	uFR " vF	� which is just the rate of change of energy of the star

dE�dt� Similarly� the term ��imp��� is just the torque acting on the star� i�e� the rate of change of

angular momentum dLz�dt� So we have the result that

dfimp

dt
� � �f

�E

dE

dt
� �f

�Lz

dLz
dt

� 	���
�

To understand this equation� we recall that the number of stars must stay the same� even though their

energy and angular momentum are no longer conserved� Stars are pulled out of their equilibrium orbits

by the density perturbation� causing a change fimp in the distribution function� The rate at which stars

move to perturbed orbits� dfimp�dt� must be equal to the rate at which stars leave equilibrium orbits�

Now the equilibrium distribution function f does not depend on time� but it does depend on the energy

E and angular momentum Lz� Previously these were constants for each star� but now they change as

the star moves� We can therefore view f as depending on time through E and Lz� Then the rate at

which stars leave equilibrium orbits is � df
dE � dEdt � df

dLz
� dLzdt � Thus we arrive at a physical understanding

of eq� 	���
�� it states that the rate at which stars move to perturbed orbits is equal to the rate at which

stars leave equilibrium orbits�

However� we are interested not so much in the rate of change of fimp� but in its value at a particular time

t� For this� we must integrate 	���
� over the entire time of the perturbation� to obtain

fimp	t� � � �f

�E
(E � �f

�Lz
(Lz� 	�����

where (E is the change in the star�s energy due to the perturbation�

(E �

Z t

��

dE

dt�
dt��

�

Z t

��
	u 	t��FR " v 	t��F	� dt� �

Z t

��

�
u�
��imp

�R�
"

v�

R�
��imp

���

�
dt�� 	�����

and (Lz is the change in its angular momentum

(Lz �

Z t

��

dLz
dt�

dt� �
Z t

��
R 	t��F	dt� �

Z t

��

��imp

���
dt�� 	�����

These de�nitions assume that the perturbation vanished in the distant past�

��� The logarithmic spirals

A general imposed density perturbation  imp can be expanded in a Fourier series of azimuthal harmonics�

each with a di�erent order m of rotational symmetry�

 imp �
�X
m��

eim	gm	R� t�� 	�����



In the linear regime� the response of the disk to the change in potential has the same orderm of rotational

symmetry as the initial density perturbation imposed on the disk� This means that we can con�ne our

investigations to a single value of m at a time� We therefore impose a density perturbation of the form

 imp � eim	g	R� t�� This causes a change in potential which moves the stars so as to give a response

density  res � eim	h	R� t�� We look for self�consistent density perturbations � that is� disturbances of the

density which cause changes in the potential such as to move the stars into precisely the density pattern

assumed by the initial disturbance� so that g	R� t� � h	R� t��

We next expand the function g	R� t� in terms of some basic density components� It makes sense for

our density components to be as realistic as possible� Also� of course� they must be analytically conve�

nient� Fortunately both requirements are met by the logarithmic spirals� These were made famous by

Kalnajs 	��
��� and have surface density

 ls �  pe
im	

�
R�

R

�����i�
� 	�����

where  p is a constant amplitude� We work with a complex perturbation density� as usual� it is to be

understood that the real part of this quantity corresponds to the physical density� The power of R����

usefully cancels with the R��� which appears in 	����� Further� real galaxies are frequently observed

to have nearly constant pitch angle 	the angle between the spiral arm and a reference circle� 	Bertin

� Lin ���
�� This property is exhibited by the log�spirals� which have constant pitch angle cot	��m��

A general self�similar quantity in a disk must be of the form q � Rbf	� � a lnR� 	Lynden�Bell �

Lemos ���
�� The log�spirals are of this form� and are thus suited to exploit the self�similarity of the

power�law disks� To understand what a log�spiral density looks like� let us consider the real part of 	������

Re 	 ls� �  p

�
R�

R

����

cos

�
m� " � ln

R

R�

�
� 	�����

As we have seen� m is the order of rotational symmetry of the density disturbance� i�e� the density is

unchanged under � � �"�
�m� The pattern thus has m lobes� The logarithmic wavenumber � controls

how tightly the spiral is wrapped� The pattern is more tightly wound for high values of �� We can see

this by noting that� as we move out along a radius� successive maxima of  imp will be separated by (R�

where

ln

�
R"(R

R�

�
� ln

�
R

R�

�
"
�


�
� 	�����

We see that

(R

R
� �


�
� 	����



For larger �� (R will be smaller� i�e� the maxima will be closer together�

Figs� ��� and ��� show log�spirals with di�erent values of m and �� they are in units R� � �� The �rst

three plots show log�spirals with m � ��

Figure ���� A log	spiral density perturbation with m � �� and �left to right� � � �� �� ��
 Eleven contours are drawn at
�
� intervals from � to �� with �p � �
 For clarity� the under	density contours are not shown


Fig� ��� shows log�spirals with m � ��

Figure ���� A log	spiral density perturbation with m � �� and �left to right� � � �� �� ��
 Eleven contours are drawn at
�
� intervals from � to �� with �p � �
 For clarity� the under	density contours are not shown


We allow our imposed density distribution to grow or decay by including a factor est� where s is the

growth rate� We shall also allow it to rotate at a constant speed� the pattern speed 'p� We achieve this

by replacing � with � �'pt� The density of a rotating logarithmic spiral is

 �mimp �  pe
steim�	��pt	

�
R�

R

�����i�
�  pe

i�m	��t	
�
R�

R

�����i�
� 	�����

where the growth rate and pattern speed have been collected into the complex frequency � � m'p " is�

This decomposition rules out rotation of m � � modes� Purely on physical grounds� this can involve no

loss of generality � nothing can be changed by rotating an axisymmetric pattern� From a mathematical

point of view� Goldreich � Lynden�Bell 	��
�b� have proved for gas� and Kalnajs 	����� for stellar



disks� that any exponentially growing or decaying axisymmetric mode with time�dependence exp	i�t�

must have Re	�� � ��

By adding log�spirals with di�erent �� we can build up a density distribution with rotational symmetry

m�

 imp 	R� �� �

Z ��

��
d�Aimp 	��  

�m
imp� 	���
�

The expansion in log�spirals is equivalent to taking the Fourier transform in the variable %x � ln	R�R���

De�ning

 m �  pe
i�m	��t	e���x�� 	�����

we have the conventional transform pair�

 imp

 m
�

Z ��

��
d�Aimp 	�� e

i��x� Aimp 	�� �
�

�


Z ��

��
d%x
 imp

 m
e�i��x� 	�����

Aimp is the density transform of the imposed perturbation� � is the logarithmic wavenumber correspond�

ing to the logarithmic radial coordinate %x� In future � will be referred to simply as the wavenumber�

In terms of R� the density transform is

Aimp 	�� �
e�i�m	��t	

�
 pR
����i�
�

Z ��

�

dR

R
 imp 	R� ��R

����i�� 	�����

For the transform to exist�  imp 	R� ��R
��� must tend to zero as R � � and R � ��  imp 	R� �� can

diverge at the centre no faster than R����� and must fall o� at large radii more quickly than R�����

What e�ect does such an imposed density have on the potential experienced by the stars� All our

equations are now linear� so we can consider the e�ect of each imposed density component separately�

For a single log�spiral component� the reduced density 	���� is�

S�m	X� �� �  pR
����i�
� ei�m	��t	ei�X � 	�����

where X � lnR� Substituting S � S�m into 	��
�� we obtain the reduced potential

Y �m 	X� �� � G pR
����i�
� e�i�t

�
Z 	���


	���

Z X����

X����
K � 	X �X �� � � ��� ei	�X

��m	��dX � d���
	�����

Substituting X �� � X �X � and ��� � � � ��� this becomes

Y �m 	X� �� � G pR
����i�
� ei��X�m	��t	

�
Z 	���


	���

Z X����

X����
K � 	X ��� ���� e�i	�X

���m	���dX �� d����
	�����



It can be shown 	Kalnajs ����� Binney � Tremaine ����� ch� �� sec� 
� that

Z 	���


	���

Z X����

X����
K � 	X ��� ���� e�i	�X

���m	���dX �� d��� � �
K	��m�� 	�����

where K	��m� is the Kalnajs gravity function

K	��m� �
�

�

!
�
�
�

�
�
� "m" i�

��
!
�
�
�

�
�
� "m� i�

��
!
�
�
�

�
�
� "m" i�

��
!
�
�
�

�
�
� "m� i�

�� � 	����

This function is real and positive for real � 	Kalnajs ������ We note the symmetry K	��m� � K	���m��

Then we have

Y �m 	X� �� � �
G pK	��m�R
����i�
� ei��X�m	��t	� 	�����

We have now recovered the results of Kalnajs 	��
�� ������ giving the potential ��mimp of each log�spiral

component of the density perturbation  �mimp�

��mimp � �
G pK	��m�R�e
i�m	��t	

�
R

R�

�i�� �
�

� 	���
�

 �mimp �  pe
i�m	��t	

�
R

R�

�i�����
� 	�����

Using the potential due to a single log�spiral component 	���
� in 	������ we �nd that the radial force

contributed by each component is

FR 	R� �� � �
G pK	��m�e
i�m	��t	

�
i�� �

�

��
R

R�

�i�� �
�

� 	�����

while the tangential force is

F	 	R� �� � �
G pK	��m�e
i�m	��t	imR�

�
R

R�

�i�� �
�

� 	�����

For an axisymmetric perturbation 	m � ��� the stars experience no tangential component of force�

��� The integral equation

To �nd the change in surface density  �mres caused by a single log�spiral component  
�m
imp� we must integrate

f�mimp over all velocities u and v

 �mres �

ZZ
f�mimp du dv� 	����



To �nd the total change in density caused by the whole disturbance  imp �
R
d�Aimp 	��  

�m
imp� we

integrate over all the log�spiral components

 res �

Z ��

��
d�Aimp 	��  

�m
res � 	����

We could now equate  res and  imp� and seek to solve the resulting equation for self�consistent solutions�

However� a more pro�table approach is to relate the density transforms� We de�ne the response transform

Ares 	�� analogously to Aimp 	�� in 	������ so that

 res

 m
�

Z ��

��
d�Ares 	�� e

i��x� 	����

Then� taking the Fourier transform� we obtain an analogue of 	�����

Ares 	�� �
�

�


Z ��

��
d%x
 res

 m
e�i��x� 	����

Substituting for  res from 	����� this becomes

Ares 	�� �
�

�


Z ��

��
d%x

e�i��x

 m

Z ��

��
d��Aimp 	�

��  �
�m

res � 	���

If we exchange the order of integration� we obtain 	cf� Z�����

Ares 	�� �

Z ��

��
d��Aimp 	�

��Sm 	�� ��� � 	����

where Sm 	�� ��� � �

�


Z ��

��
d%x
 �

�m
res

 m
e�i��x� 	��
�

Self�consistency requires Aimp 	�� � Ares 	��� Sm is the transfer function� Suppose we disturb the disk by

applying a pure logarithmic spiral disturbance with a particular wavenumber �� 	i�e� Aimp	�
��� � �	����

����� The disk will respond with a pattern made up of components with many di�erent wavenumbers� just

as a �ute� with an almost sinusoidal waveform� might excite a church bell to resonate at many di�erent

frequencies� Sm	�� ��� tells us how much of the disk�s response to the disturbance with wavenumber ��

occurs at the particular wavenumber ��

Kalnajs 	����� derived a completely general integral equation in action�angle coordinates� Palmer �

Papaloizou 	����� restricted their attention to disks built from epicyclic orbits� Our integral equation

has the same physical content as those of the earlier workers� but is adapted to exploit fully the self�

similarity of the equilibrium disk�



��� The transfer function

The next step is to �nd a way of evaluating the transfer function Sm 	��
�� In this section we introduce

several more variables� These are all collected for reference in Appendix A� First of all� we rewrite the

expression for (E 	����� as

(E �

Z t

��

�
d�imp

dt�
� ��imp

�t�

�
dt� � �imp	t��

Z t

��

��imp

�t�
dt�� 	����

(E is the di�erence between the potential here and now� and an averaged potential sampled by the orbit

over its history� From eq� 	���
�� we obtain

���mimp

�t
� �i���mimp	t��

���mimp

��
� im��mimp	t�� 	����

Then the changes in energy and angular momentum due to a single log�spiral component are

(E � ��mimp	t� " i�

Z t

��
��mimp 	t

�� dt�� (Lz � im

Z t

��
��mimp 	t

�� dt�� 	����

The problem with evaluating fimp for a non�axisymmetric perturbation arises from the integrands in

these equations� In the axisymmetric case� �imp has no dependence on �� and therefore is periodic with

frequency �� But for m �� � the integrand involves both radial and azimuthal frequencies � and '� In

general the orbit is not closed� i�e� � and ' are not commensurable� and the integrands are not periodic�

Improper integrals are slow to converge numerically� especially in a case like this when the integrand does

not fall o� rapidly as t� � ��� We can avoid such unpleasantness by shifting to the frame which rotates
at the star�s average velocity '� in which its orbit closes�

Figure ���� The left	hand plot shows the orbit of a star with U � ��� and RH � �� in the � � ���� disk
 The right	hand
plot shows the same orbit as viewed by an observer rotating with the star�s average angular velocity � � ���� �units are
R� � v� � ��


We de�ne two dimensionless coordinates describing the periodic excursions of the stellar orbits�

%X � ln
R

RH
� ln %R� %Y � � �'t � � � %'%t� 	�����



The following plot shows how %X and %Y vary over four radial periods for the orbit shown in �g� ����

Figure ��� Excursions of a stellar orbit
 The left	hand plot shows the scaled logarithmic radius �X� and the right	hand
the deviation from mean angular motion �Y � against time
 �U � ���� RH � �� � � ����� R� � v� � �
�

The potential perturbation �imp 	���
� can be rewritten in terms of %X and %Y

��mimp	t� � �
G pK	��m�R�
%R
i�� �

�

H exp
n
i	m'� ��t" im %Y " 	i�� �

� �
%X
o
� 	�����

This is the potential at time t when the star is at 	R� ��� In order to �nd the value of fimp at our present

time t� we shall need to evaluate the potential at previous times t�� when the star�s position was 	R�� ����

and %X � � ln %R�� %Y � � �� �'t�� This is

��mimp	t
�� � �
G pK	��m�R�

%R
i�� �

�

H exp
n
i	m'� ��t� " im %Y � " 	i�� �

� �
%X �
o
� 	�����

Now %X and %Y both have period T � so the term exp
n
im %Y � " 	i�� �

� �
%X �
o
is similarly periodic as t� varies�

It can therefore be expanded in a Fourier series 	a method used by Kalnajs 	����� and Zang 	���
���

exp
n
im %Y � " 	i�� �

� �
%X �
o
�

��X
l���

Qlm	�� exp

�
�i
l

T
t�
�
� 	�����

where the Fourier coe�cient Qlm	�� is given by

Qlm	�� �
�

T

Z T

�

exp

�
im %Y � " 	i�� �

� �
%X � � �i
l

T
t�
�
dt�� 	����

If we change variables to the orbital phase � � �t� the Fourier coe�cient becomes 	Z�����

Qlm	�� �
�

�


Z �


�

exp
n
im %Y � " 	i�� �

� �
%X � � il��

o
d��� 	�����

Substituting this into our expression for ��mimp� we obtain

��mimp	t
�� � �
G pK	��m�R�

%R
i�� �

�

H ei�m���	t�
��X
l���

Qlm	��e
il�t� � 	���
�



We can easily integrate this to giveZ t

��
��mimp	t

��dt� � �i�
G pK	��m�R�
%R
i�� �

�

H ei�m���	
��X
l���

Qlm	��e
il

l�"m'� �
� 	�����

We now substitute for ��mimp in 	���� to obtain�

(E � �
G pK	��m�R�
%R
i�� �

�

H ei�m���	t
��X
l���

Qlm	��e
il l�"m'

l�"m'� �
� 	�����

(Lz � �
mG pK	��m�R�
%R
i�� �

�

H ei�m���	t
��X
l���

Qlm	��e
il

l�"m'� �
� 	�����

These correspond to 	Z����� and 	Z������ although Zang there uses a slightly di�erent form of the Fourier

coe�cient�

Substituting these expressions into 	����� gives�

f�mimp	t� � ��
G pK	��m�R�
%R
i�� �

�

H ei�m���	t

�
��X
l���

Qlm	��e
il

l�"m'� �

�
	l�"m'�

�f

�E
"m

�f

�Lz

�
�

	��
��

So far� our results have been quite general� We now specialise to the power�law disks by substituting for

the derivatives of the distribution function 	������ Bearing in mind that the energy E has the opposite

sign to �� we can combine the derivatives obtained for positive and negative ��

�f

�E
� � %C

���� �� " �

�
� �

�

����H	Lz�L�z jEj�������������� 	��
��

�f

�Lz
� %CL�z jEj�����������

�
�
H	Lz�

Lz
"

dH

dLz

�
� 	��
��

We now obtain

f�mimp	t� � �
G pK	��m� %CR�
%R
i�� �

�

H ei�m���	tL�z jEj�����������

�
��X
l���

Qlm	��e
il

l�"m'� �

��
	l�"m'�

���� �� " �

�
� �

�

���� �jEj � �m

Lz

�
H	Lz��m

dH

dLz


�

	��
��

Replacing the dimensional quantities with their dimensionless analogues 	eqs� 	������ 	������ 	������ �

Lz � v�R�
%Lz�

dH

dLz
�

�

v�R�

d %H

d%Lz
� E � %Ev��

%L
��
���
z � 	��
�

� � %�
v�
R�

%L
���
���
z � ' � %'

v�
R�

%L
���
���
z � � � %�

v�
R�

� 	��
��

�At �rst sight it seems odd to de�ne the dimensionless analogue of � as �� � �R��v� when the other frequencies in the

problem� �� and ��� are de�ned as �� � �R�
�R
�����
H �v� 
 This choice of �� results in the presence of �L

�����������
z � �R

�����
H

in the expression for f�mimp� which would otherwise be absorbed into ��
 It is helpful to keep this factor visible
 The point is

that the dimensionless quantity �R�
�R
�����
H �v� really does depend on �Lz� whereas the factors of �RH in �� and �� cancel� so

that �� and �� in fact depend only on �U � and so can be calculated outside the integral over �Lz
 De�ning �� similarly might
lead to the erroneous assumption that it too was independent of �Lz




we obtain

f�mimp	t� � �
G pK	��m� %CR
���
� v

�
�
����	��

� ei�m���	tei�
�

���
ln �Lz

� %L
����
���
z j %Ej�����������

�X
l���

Qlm	��e
il

l%�"m%'� %�%L
���
���
z

�
��
	l%�"m%'�

���� �� " �

�
� �

�

���� �j %Ej � �m

�
%H	%Lz��m%Lz

d %H

d%Lz

�
�

	��

�

This is the change in the distribution function brought about by a single log�spiral component�

We can now proceed to �nd the transfer function Sm� Substituting for  ��mres in 	��
�� we have�

Sm	�� ��� � �

�


Z ��

��
d%x

e�i��x

 m

ZZ
f�

�m
imp du dv�

We follow Zang in transforming this integral to one over the eccentric velocity %U � the orbital phase � and

the dimensionless angular momentum %Lz� We write

ZZZ
d%x du dv �

ZZZ
d %U d%Lz d�

�	%x� u� v�

�	�� %U� %Lz�
� 	��
��

We work out the Jacobian in two stages� First we transform to variables %U � %Lz� %R� We can express %x� u

and v as functions of %U � %Lz and %R�

%x � ln %R"
�

�� �
ln %Lz� u� � v��

%L
���
���
z

�
%U� " �� %R�� "

�

�

�
%R�� � �

	
� v � v� %L

��
���
z

%R��� 	��
��

Then

du dv d%x � v��
%U

%u %R�
%L
� ���
���

z d %U d%Lz d %R� 	��
��

The integrals of motion %U and %Lz de�ne the orbit of the star� The dimensionless variable %R then measures

whereabouts the star is in that orbit� i�e� the orbital phase� Using the dimensionless equations of motion�

we have

d %R

d%t
� %u�

d %R

d�
�
%u

%�
�
%uJ�	 %U�
�


� 	�����

Thus we obtain the desired Jacobian� which we shall write as

�	%x� u� v�

�	�� %U� %Lz�
�

v��
�


J�	 %U� %U
%R

e��x %L
�

���
z � 	�����



We then have

Sm	�� ��� �
v��
�


ZZZ
d %U d�d%Lz

e��i���	�x

 m

J�	 %U�
�


%U
%R
%L

�
���
z f�

�m
imp 	

%Lz� %U� ��� 	�����

The angular momentum is integrated from zero to in�nity� and the orbital phase from � to �
� The

eccentric velocity is integrated from zero to in�nity for negative �� for positive � the upper limit is

	��� � ������ For brevity� these limits of the integration are not shown explicitly�

We shall work in terms of %X � ln %R � ln	R�RH� � %x� �
��� ln %Lz� Then %R � e

�X � and when we substitute

for  m from 	����� we obtain

Sm	�� ��� �
v��
�
 p

�

�


ZZZ
d %U d�d%Lze

�i�m	��t	e��i��
�
�
	 �X

� e
�����i�

���
ln �LzJ�	 %U� %Uf�

�m
imp 	%Lz� %U� ���

	�����

Note that t� %X and � describe where the star is in its orbit� and therefore depend on the orbital phase ��

as well as on %U which describes the shape of the orbit� Substituting for f�
�m

imp from 	��

��

Sm	�� ��� � �

�

R���
� v

�
�
����	

� GK	���m� %C
ZZZ

d %U d�
d%Lz
%Lz
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	 �X

� e
��i
���
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��X
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��eil

l%�"m%'� %� %L
���
���
z

�
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���� �� " �

�
� �

�

���� �j %Ej � �m

�
%H	%Lz��m%Lz

d %H

d%Lz

�
�

	����

Substituting %E � 	� %U� " � � ���	��� and � � 't � %Y 	���

Sm	�� ��� � R���
� v

�
�
����	

� �
GK	���m� %C
Z
d %UJ�	 %U� %U

������
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�����
�
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� �
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��X
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Z
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e
��i
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�����	 ln �Lz
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���
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	l%�"m%'�

���� � " �� � ��
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����� �m
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d %H
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	�����

From the de�nition of the Fourier coe�cient 	������ the integral over � is just the complex conjugate of

Qlm	��� Then

Sm	�� ��� � R���
� v

�
�
����	

� �
GK	���m� %C
Z
d %UJ�	 %U� %U

������
%U� " � � �
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��X
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e
��i
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���
���
z

�
��
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����� �m

�
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d %H
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To make this expression a little more manageable� let us de�ne the integral over angular momentum to

be the angular momentum function Flm	��� where � � �� ���



Flm	�� �
�

�


Z �

�

e�i�
�

���
ln �Lz

l%�"m%'� %�%L
���
���
z

�
��
	l%�"m%'�
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����� �m

�
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	�����

Note that Flm depends on %U through the frequencies %� and %'�

For � � � Flm becomes 	Zang ���
� p� ���

Flm �
�

�


Z �

�

e�i� ln �Lz

l%�"m%'� %�%Lz

�n
	l%�"m%'�	� " ��� �m

o
%H	%Lz��m%Lz

d %H

d%Lz

�
d%Lz
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Then the transfer function is

Sm	�� ��� � �
GK	���m� %CR���
� v

�
�
����	

�

Z
d %U J�	 %U� %U

�
������
%U� " � � �
��

�����
�
�
� �
�
� �

� ��X
l���

Qlm	�
��Q�

lm	��Flm	�� ���� 	�����

where %C is given in eq� 	������ For convenience Qlm and Flm are shown as depending only upon the

wavenumber �� although in reality they also depend upon the eccentric velocity %U as well as on the disk

parameter �� The corresponding result for the Toomre�Zang disk is 	Z�����

Sm	�� ��� � 	� " �������

����e����	��
p

!

�
���
�

� � �

� " �

����
K	���m�

�
Z
d %U J�	 %U� %Ue�

�U�

����u

��X
l���

Qlm	�
��Q�

lm	��Flm	�� ����

	�����

where the velocity dispersion %�u is given by %�
��
u � � " �

Can we gain some rather more physical understanding of this expression for Sm� The transfer function
Sm	�� ��� describes the contribution of the imposed log�spiral component with wavenumber �� to the
response component with wavenumber �� To see how this is calculated� we consider a star orbiting in

the disk� The shape of its orbit is characterised by its eccentric velocity %U � The Fourier coe�cient

Qlm describes the �match� between a particular log�spiral component and this orbit� Speci�cally� the

changes in the star�s energy and angular momentum caused by the log�spiral perturbation are expanded

in harmonics of the orbit�s radial period� The Fourier coe�cient Qlm gives the contribution to the lth

component of the perturbation experienced by the star� Thus� in the expression for the transfer func�

tion 	������ the �rst Fourier coe�cient Qlm	�
�� describes how far the star is forced out of its unperturbed

orbit by the imposed perturbation� and hence the star�s tendency to stop contributing to the imposed

log�spiral� The second Fourier coe�cient Q�
lm	�� describes how well matched the perturbed star is to the

response log�spiral component with wavenumber ��

Both these depend only on the shape of the star�s orbit� not on its size� nor has any consideration yet

been made of the �interaction� between the log�spirals� This is accounted for by the angular momentum



function Flm� How easy it is for a star to move from the imposed to the response log�spiral depends on

the di�erence between the response and imposed wavenumbers� � � ����� as well as the charactistics of

the perturbation 	its azimuthal symmetry� growth rate and pattern speed� given by m and %��� and also

on the size of the orbit� %Lz� The integral in the angular momentum adds up similar�shaped orbits of all

di�erent sizes� Flm then describes how feasible it is for density to move from wavenumber �� to � in a

perturbation with this m and %��

Due to the scale�free nature of the disk� we have been able to deal simultaneously with all orbits of a given

shape� irrespective of their size� The %U �dependent parts of the integrand in Sm measure how many stars

there are with each shape of orbit� These are then added up to determine how much density ultimately

moves from the log�spiral component with wavenumber �� to that with wavenumber ��

��� The angular momentum function

Remarkably� all the dependence on angular momentum� growth rate and pattern speed is contained within

a single integral� the angular momentum function Flm 	������ Orbits with the same %U but di�erent %Lz

are scale models of each other� so this integral adds up orbits of the same shape at all possible scales� To

gain an initial understanding of Flm� we consider the integrand IL	%Lz�� de�ned as

IL � �

�
 %Lz

e�i�
�

���
ln �Lz�

l%�"m%'� %� %L
���
���
z

�
��
	l%�"m%'�

���� � " �� � ��

� %U� " � � �

����� �m

�
%H �m%Lz

d %H

d%Lz

�
	�����

If the growth rate s is zero and l%� " m%' has the same sign as %'p� the integrand has a singularity at

%Lz � %Lsing 
 +	l%� " m%'��	m%'p�,
���
��� � Even if the growth rate is non�zero� when 	l%� "m%'��	m%'p� is

positive the maximum value of jILj is usually close to %Lsing� as illustrated in these plots�

Figure ���� Graph of the integrand IL plotted against �Lz for two di�erent growth rates� In the left	hand plot� s � �����
on the right� s � ���
 The solid line is the real part of IL� and the dotted line the imaginary� for 	 � ��
 The dashed line
shows the envelope �jILj
 The solid vertical line indicates the position of �Lz � �Lsing
 �� � ����� N � �� M � �� �Lc � �����


 � ���� �p � ���� m � �� l � �� �U � ���
�

The magnitude of the integrand� jILj� is independent of �� Within this envelope� marked with a solid
line in �g� ���� the real and imaginary parts of IL oscillate as a function of %Lz� The frequency of this
oscillation increases with �� For non�zero growth rate� the integrand is everywhere �nite� It can then



easily be seen from the right�hand plot above that� as � � 	�� the integration will add equal positive
and negative contributions� We therefore expect the angular momentum function to tend to zero as

� � 	�� This is what we would expect physically� Flm describes how easy it is to shift density between

log�spirals of di�erent wavenumber� Intuitively we would expect this task to become harder � and Flm to

decrease � when the two wavenumbers are far apart� Note however that when the growth rate vanishes�

the integrand has a singularity� Nearly adjacent values of � will then give vastly di�erent values of IL�
so we cannot be sure that cancellation will occur�

Somewhat surprisingly� the integration over %Lz can be performed analytically for the cut�out functions

%H	%Lz� given in section ��� The calculation and results are given in detail in Appendix C� In the next

few pages� we consider the behaviour of this analytic expression for Flm�

Figs� ��
 and ��� compare Flm for two di�erent growth rates s� In each case� the left�hand plot shows

Flm	�� for vanishing growth rate� while the right�hand one has s � ���� Fig� ��
 is for � � "����� and

�g� ��� for � � ������

Figure ��
� Graph of F�� plotted against 	 for two di�erent growth rates in a � � ���� disk
 In the left	hand plot�
s � ����� on the right� s � ���
 In each case� the solid line is the real part� and the dotted line the imaginary
 �� � �����
N � �� M � �� �Lc � ����� 
 � ���� �p � ���� m � �� l � �� �U � ���
�

Figure ���� Graph of F�� plotted against 	 for two di�erent growth rates in a � � ����� disk
 In the left	hand plot�
s � ����� on the right� s � ���
 In each case� the solid line is the real part� and the dotted line the imaginary
 �� � ������
N � �� M � �� �Lc � ����� 
 � ���� �p � ���� m � �� l � �� �U � ���
�

As expected� for �nite growth rate Flm � � as � � 	�� However� Flm also exhibits a striking asymmetry

about �� For positive �� Flm oscillates and its amplitude decays only slowly� for negative �� Flm quickly



decays to zero� The asymmetry is most pronounced at zero growth rate� then for positive � Flm is almost

purely oscillatory� whereas its amplitude decays rapidly for � � �� This turns out to be a characteristic

of Flm� The symmetry of Flm varies� but where asymmetry exists� the decay is faster for negative �� The

asymmetry of Flm about � means that our disks have a trailing bias� this is discussed in more detail in

section ���� The asymmetry occurs only where l%� " m%' � �� as we see from �g� ���� which compares

Flm for positive and negative radial harmonics l� The plot on the left shows F���� while that on the right

shows F�����

Figure ���� Graph of Flm plotted against 	 for two di�erent radial harmonics l
 In the left	hand plot� l � �� and
l���m�� � ����� on the right� l � �� and l���m�� � ����
 In each case� the solid line is the real part� and the dotted line
the imaginary
 �� � ����� N � �� M � �� �Lc � ����� 
 � ���� �p � ���� s � ����� m � �� �U � ���
�

The symmetry of Flm also depends on the eccentric velocity %U � as demonstrated in the set of plots in

�g� ����

Figure ���� Graph of F�� plotted against 	 for four di�erent eccentric velocities �U � when the growth rate s � ���
 From
left to right� �U � ���� ���� ���� ���
 In each case� the solid line is the real part� and the dotted line the imaginary
 �� � �����
N � �� M � �� �Lc � ����� 
 � ���� �p � ���� s � ���� m � �� l � �
�

We see that� as %U increases� the maximum value of Flm increases and moves to � � �� Flm becomes more

symmetric about � � �� As �g� ���� shows� this e�ect persists even at s � �� when for low values of %U

the asymmetry is most pronounced�



Figure ����� Graph of F�� plotted against 	 for four di�erent eccentric velocities �U � when the growth rate s � ����

From left to right� �U � ���� ���� ���� ���
 In each case� the solid line is the real part� and the dotted line the imaginary

�� � ����� N � �� M � �� �Lc � ����� 
 � ���� �p � ���� s � ����� m � �� l � �
�

��	 The trailing bias

For negative values of l%� " m%' or for high eccentric velocities� Flm decays rapidly as j�j moves away
from zero� the decay is similar in either direction� However� where l%�"m%' is positive and the eccentric

velocity is low� the decay for � � � is greatly attenuated�

The mathematical origin of this asymmetry is seen most simply in the expression for Flm in the case of

a scale�free disk 	C��
�� This depends on � as

Flm	�� �
e�i� ln

l���m��
��

�� e�
�
� 	�����

where #� is de�ned as ���	� " �� 	see Appendix C� 	C������

If the growth rate is zero� then when we take the principal value of the logarithm as in 	C��� we obtain

Flm	�� � e
�i� ln

�� l���m��
m�p

�� e�
�

�� e�
�
� l%�"m%' � �� 	�����

Flm	�� � e
�i� ln

�� l���m��
m�p

�� e
�

�� e�
�
� l%�"m%' � �� 	����

Considering extreme values of � on either side of zero� we see immediately that for l%� " m%' � � the

angular momentum function will be highly asymmetric in �� The magnitude of Flm will tend to a constant

value for large positive �� whereas it will decay rapidly as exp	��
j#�j� for negative �� Conversely� for
l%�"m%' � � no such asymmetry is apparent� Flm decays as exp	�
j#�j� in either direction�

To gain an insight into how the asymmetry arises when l%� "m%' � �� we consider the complex part of

the integrand of Flm 	see Appendix C� eq� 	C����

Ic	h� � e�i�h

l%�"m%'� %�eh
� 	�����

This function is shown in the following �gure�



Figure ����� The complex part of the integrand of the angular momentum function� Ic� is plotted for three di�erent
values of �	� �
� �solid line�� ��
� �dotted line�� 	�
� �dashed line�
 See text for explanation
 � � ����� �p � ���� s � ����

l � �� m � �� �U � ���
�

We can understand the shape of these curves as follows� For � � � 	the solid line in the above �gure��

the complex nature of the integrand comes purely from %�� the imaginary part of which is the growth

rate s� We track the behaviour of Ic	h� from h � �� to "�� At the start� Ic lies on the real axis at
	l%�"m%'���� We take this to be positive� since the trailing bias does not exist when l%�"m%' � �� As

h increases� Ic acquires a positive imaginary component� s exp	h�� and moves round the upper complex
plane� ending up at the origin as h � �� It is clear that when Ic is integrated to obtain Flm� all the

contributions to the imaginary part are positive� so we expect Im	Flm� to be positive at � � �� As

the previous plots of the behaviour of Flm show� this is indeed the case� The real part of Ic contains
both positive and negative contributions� so some cancellation occurs� However� the asymmetry in the

position of the curve about the imaginary axis means that we expect the positive contributions to exceed

the negative� Re	Flm� is thus typically positive at � � ��

The dotted and dashed curves show the behaviour for #� � 	���� Now for extreme negative values of h�
Ic � exp	�i�h�� The curve thus begins with a loop about the origin� traversed in the clockwise direction
for positive �� and anticlockwise when � is negative� As h increases� the curve again moves anticlockwise

around the upper half�plane� ending up at the origin� However� the presence of the term exp	�i�h� now
tilts the curve clockwise� for positive �� and anticlockwise� for negative �� relative to the curve for � � ��

For positive �� therefore� the dominance of positive over negative contributions to Flm is enhanced� and

Flm is increased� Conversely� for negative �� more cancellation occurs� and Flm is reduced� This is the

basis of the trailing bias�

We can also use this approach to understand why Flm	� � �� tends to increase with %U � as seen in �g� ����

As %U increases� %� and %' approach zero� so the � � � curve touches the real axis at progressively larger

values 	l%� " m%'���� This means that the asymmetry of the � � � curve about the imaginary axis is

increased� and so Flm	� � �� is larger�

So for positive values of l%�"m%' and for low eccentric velocities� Flm decays more rapidly for negative



�� otherwise it is reasonably symmetric about � � �� Thus on average� the magnitude of Flm is likely to

be greater for positive � 	� � ��� than for negative� This in turn means that� on average� the magnitude

of Sm	�� ��� is greater for � � ��� as exempli�ed in �g� �����

Figure ����� Plot of Re�Sm� plotted against � and ��
 The superposed contour plot shows ten equally	spaced contours

�� � ����� N � �� M � �� �Lc � ����� 
 � ���� �p � ���� s � ����� m � �
 �Numerical accuracy parameters� n � ����
�� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�

Sm	�� ��� tells us how much the imposed component with wavenumber �� contributes to the response

component with wavenumber �� Consider a particular component of the response� which has wavenumber

�� This is made up of contributions from the full range of wavenumbers �� in the imposed pattern� But

since Sm	�� ��� is systematically larger for � � �� than for � � ��� most of the response at � is due

to imposed components with wavenumber less than �� An alternative way of viewing the situation is

that imposed components mostly go to make up response components with larger wavenumber than their

own� Thus the asymmetry in the transfer function means that our disk tries to make whatever pattern

is imposed on it more like a trailing spiral� Tightly�wound leading spirals are unwrapped and made

more loosely�wound� loosely�wound leading spirals are transformed into loosely�wound trailing spirals�

loosely�wound trailing spirals are wrapped up into tightly�wound trailing spirals�

��
 Summary

In this Chapter� we have derived the integral equation which will form the basis for our stability analysis�

We have expressed the perturbation as an integral over logarithmic spiral components� and have then

further expanded each component in a Fourier series� In the course of this work� we have introduced many

new quantities which will be used throughout the thesis� These are collected for reference in Appendix A�



Chapter �

The self�consistent disk

��� Introduction

In this chapter� we examine the self�consistent disk� where there are no cut�out functions removing part

of the density� and the potential experienced by stars in the disk is entirely due to their own gravity� The

self�consistent disk is perfectly scale�free� This leads to some rather strange e�ects� As originally pointed

out by Kalnajs in ��� 	see Zang ���
�� all dependence on growth rate and pattern speed can now be

factored out of the integral equation� This means that the stability cannot depend on the growth rate

and pattern speed� The same detail was noted independently by Lynden�Bell � Lemos 	���
��

The behaviour of the scale�free disk must be very di�erent from that of a cut�out disk� In general�

we expect disks to be stable when they are su�ciently hot� and to become unstable at some critical

temperature as the disk is gradually cooled� In a disk possessing a length�scale� modes have a characteristic

growth rate and pattern speed� At the critical temperature� the mode is marginally stable� i�e� its growth

rate is zero� As the disk is cooled below the critical temperature� modes with positive growth rates

become possible� In contrast� the symmetry of the scale�free disk forbids a preference for one growth rate

over another� At a given temperature� the disk must admit modes with all frequencies or none� Thus

there are three options� either there is a continuum of modes with all possible pattern speeds and growth

rates� or there are neutral modes� with growth rate and pattern speed both zero� or there are no modes

at all�

We derive the response function describing whether neutral modes are possible� Solutions of this for the

various azimuthal harmonics m will be presented in subsequent chapters� In this chapter� we investigate

the possibility that the integral equation admits a continuum of solutions� and present some plausibility

arguments as to why this may not be possible for m �� �� Our �nal conclusions on this problem are

postponed to later in the thesis 	Chapter ����

��



��� The symmetry of the scale�free disk

The distinction between the isolated neutral modes 	� � �� and the continuum of growing modes 	all

� �� �� is built into our integral equation� For the scale�free disk� the angular momentum function is

	�����
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	l%�"m%'�
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z
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For �nite values of �� the angular momentum function consists of a regular function for � �� �� and a

Dirac delta�function about � � � 	Appendix C�� We write

Flm	�� � F
��	
lm 	�� " F

��	
lm �	�� 	���

where 	C����

F
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l%�"m%'

�
� 	��

where #� � ���	� " ��� 	For m �� �� these expressions hold for all l� For m � �� there is an ambiguity at

the l � � harmonic� We shall see that the correct choices are then F
��	
�� � F

��	
�� � ���

When � � �� the expression 	��� becomes
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�

���
ln �Lz d

%Lz
%Lz

� 	���

Hence the angular momentum function is simply a delta�function in ��

Flm	�� �
�� �

�

����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

�
�	��� 	�
�

	Again� for m � �� F��	�� � ��� For � � �� we do not pick up the �o��diagonal� terms contained in

F
��	
lm 	�� in eq� 	���� These are terms with � �� �� describing a response at wavelengths di�erent from that

of the original perturbation� Thus the response to a neutral log�spiral must be a pure log�spiral at the

same wavelength� There is no coupling mechanism for exciting responses at di�erent wavelengths� We

note that F
��	
lm 	�� has no unique limiting value as � � �� speci�cally� it does not tend to zero in this limit�

There is a discontinuity� the case � � � cannot be recovered by taking the limit � � �� Physically� this is

a consequence of the symmetry of the disk� A pure log�spiral is self�similar 	Lynden�Bell � Lemos ���
��

and a neutral log�spiral introduces no length� or time�scales through its growth rate and pattern speed�



Thus the response must be purely self�similar� i�e�� a pure log�spiral� Once the log�spiral is allowed to

grow or rotate � however slowly � a length� and time�scale has been introduced� The response is no

longer self�similar� but involves contributions at many wavelengths� We discuss the neutral modes� with

� � �� in section ��� We now proceed to show that any modes with � �� � must form a continuum� In

section � we investigate these growing modes in more detail� and discuss whether such modes are in

fact possible�

As we did for the angular momentum function in 	���� we divide the transfer function into a regular

part and a Dirac delta�function�

Sm	�� ��� � S��	m 	�� ��� " �	�� ���S��	m 	�� ��� 	���

S��	m 	�� ��� and S��	m 	�� ��� may be obtained from 	������ using F
��	
lm and F

��	
lm respectively in place of Flm�

From eq� 	���� we see that F
��	
lm 	�� admits the factorisation

F
��	
lm 	�� � ei� ln �� #F

��	
lm 	��� 	���

where #F
��	
lm 	�� is independent of the growth rate and pattern speed� Since the transfer function depends

on the growth rate only through the angular momentum function� S��	m 	�� ��� is independent of %�� while

the dependence of S��	m 	�� ��� on %� can be factorised out as

S��	m 	�� ��� � ei�����	 ln �� #S��	m 	�� ���� 	���

where #� is de�ned analogously to #�� i�e� #� � ���	� " ��� #S��	m 	�� ��� is independent of %�� We write the

response transformAres	�� as a complex multiple of the imposed transformA	��� so that Ares	�� � �A	��

	a step explained in more detail in section ����� We then de�ne

#A	�� � e�i� ln ��A	��� 	����

Then the integral equation 	���� becomes

� #A	�� � #A	��S��	m 	�� �� "

Z ��

��
d�� #A	��� #S��	m 	�� ���� 	����

where none of the quantities depend on %�� This means that if a non�trivial solution #A	�� exists at all� we

can build self�consistent modes A	�� with any growth rate and pattern speed� This is not a consequence

of the particular distribution function employed� rather� it is a necessary property of a self�similar disk�

which possesses no characteristic length� or time�scale� and hence cannot distinguish between di�erent

growth rates and pattern speeds�



Why does the reference radius R� not provide a length�scale� We have introduced the reference radius

R�� reference density  � and reference velocity v� � related by 	���� It thus appears as if we have two

degrees of freedom� for example� we could choose  � and R� 	v� then being de�ned through 	����� If this

were the case� R� would provide a length�scale� and R��v� a time�scale� However� one of these �degrees of

freedom� is illusory� The surface density is  �  �R
���
� R����� so we cannot tell the di�erence between

disks with the same  �R
���
� � We are therefore free only to choose  �R

���
� � which then determines v��R

�
�

through 	���� The disk is therefore characterised by only two quantities� one with dimensions +M ,+L,����

and the other with +L,��� +T ,��� It is apparent that these cannot be combined to yield a quantity with

dimensions of length or of time� This means that either there is no �special� frequency� or that that

frequency is zero 	Lynden�Bell � Lemos ���
��

When we carve out the centre of the disk� we break the self�similarity� The radius R � R� at which the

inner cut�out is applied de�nes a length�scale� A time�scale is then provided by the period of a circular

orbit at this radius� The integral equation 	���� then depends on the frequency %�� We are free to adjust

%� so as to obtain non�trivial solutions� The self�similarity of the scale�free disk removes this freedom�

The only parameter we can adjust is the temperature� We expect that when the disk is hot� no modes

exist� As we decrease the velocity dispersion below a critical value� we may �nd that modes become

possible� The symmetry of the disk prevents it from selecting modes with a special frequency� unless that

frequency is zero� Thus the disk may admit isolated neutral modes� equally it may admit a continuum

of modes with all possible frequencies� Both types of modes are in principle possible�

We should stress that the neutral modes are not related to the growing modes� There is no reason to

suppose that the two should set in at the same temperature� Further� the isolated modes necessarily have

a di�erent morphology to the growing modes� As we have seen� the neutral modes are pure log�spirals�

We show in section � that the growing modes must contain contributions at many di�erent wavelengths�

Thus the growing mode with %s � %'p � ����� has a completely di�erent form from the neutral mode

with %s � %'p � �� We emphasise this point because the situation is counter�intuitive� It is tempting to

try and derive the neutral modes from the continuum of growing modes� or draw conclusions about the

growing modes by making small adjustments to the neutral modes� This is not possible�

��� Neutral modes

We have seen that for neutral modes� the angular momentum function is simply a delta�function in �

	�
�� Thus the transfer function 	����� is also proportional to a delta�function� We write Sm	�� ��� �
R�	� � ����where R is the response function�

R �

�
�� �

�

�
�
GK	��m� %CR���

� v
�
�
����	

�

Z
d %U J�	 %U� %U

�
������
%U� " � � �
��

�����
�
�
� �
�
� �

� ��X
l���

jQlm	��j�
����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

� 	����



We note that R	�� � �S��	m 	�� ��� This is because the angular momentum function Flm	�� for neutral

modes is twice the delta�function term Flm	��
��	�	���

Due to the delta�function in Sm� the response density transform Ares	�� at any wavenumber � is simply

proportional to the imposed density transform Aimp	�� at that wavenumber� so there is no need to build

a matrix� The ratio of the response density to the imposed perturbation is given by the response function

R� If R � �� the perturbation grows� if R � �� the perturbation dies away� Self�consistent modes

require R � �� We note that R is real and independent of the radial position in the disk� so that the

phase of the perturbation is unchanged� and the disk is either stable or unstable everywhere� We recall

the symmetry property of the Kalnajs function 	K	��m� � K	���m�� eq� 	����� and of the Fourier
coe�cients 	Qlm	�� � Q�

lm	���� eq� 	������� Thus the response function is independent of the sign of
the wavenumber� This is the expression of the anti�spiral theorem 	Lynden�Bell � Ostriker ��
�� for the

scale�free disk� Every spiral of wavenumber � comes with an �anti�spiral� of wavenumber ��� Hence
any neutral modes will come in pairs� one leading and one trailing�

It is instructive to consider an alternative derivation of the response function 	����� This is especially

useful for the case m � �� since it resolves the ambiguity at the l � � harmonic� In this derivation� we

begin by considering the response to a growing perturbation� We also assume that the response to a pure

log�spiral is itself a pure log�spiral� This ensures that we recover the neutral modes when we �nally let

� � ��

Putting together eqs� 	������ 	����� 	��
�� and 	��
��� we obtain

fimp	t� � %CL���z jEj�������������mimp	t�

�
����� �� " �

�
� �

�

���� LzjEj " i

����� �� " �

�
� �

�

���� LzjEj� �m�

�Z t

��

��mimp 	t
��

��mimp	t�
dt�
�

	����

Substituting eq� 	���
� for ��mimp� we obtain

fimp	t� � �
G %C pK	��m�R�L
���
z jEj����������� ei�m	��t	

�
R

R�

�i�� �
�
����� �� " �

�
� �

�

���� LzjEj
"i

����� �� " �

�
� �

�

���� LzjEj� �m�

�Z t

��
ei	m�	��		���t��t	�

�
R�

R

�i�� �
�

dt�
� 	���

The integral in this equation can be split up into an in�nite sequence of integrals over the radial period

T � Successive integrals di�er by exp	�iT 	m'� ����

fimp	t� � �
G %C pK	��m�R�L
���
z jEj�����������ei�m	��t	

�
R

R�

�i�� �
�
����� �� " �

�
� �

�

���� LzjEj
"i

����� �� " �

�
� �

�

���� LzjEj� �m�

�
�

�� e�iT �m���	

Z t

t�T
ei	m�	��		���t��t	�

�
R�

R

�i�� �
�

dt�
� 	����

For m �� �� we simply set � � � to obtain

fimp	t� � �
G %C pK	��m�R�L
���
z jEj�����������eim	

�
R

R�

�i�� �
�

�
����� �� " �

�
� �

�

���� LzjEj � im�

�� e�im�T

Z t

t�T
eim�	��		

�
R�

R

�i�� �
�

dt�
�
�

	��
�



This expression can then be integrated over velocity space to obtain the response density  res�

 res � �
G %C pK	��m�R�e
im	

�
R

R�

�i�� �
�
ZZ

du dv L���z jEj�����������

�
����� �� " �

�
� �

�

���� LzjEj � im�

�� e�im�T

Z t

t�T
eim�	��		

�
R�

R

�i�� �
�

dt�
�
�

	����

For self�consistent solutions� we require this response density  res to be equal to the imposed density

 imp� Since we are considering the response to a single log�spiral component 	����� with zero growth

rate� the imposed density is 	�����

 imp �  pe
im	

�
R�

R

�����i�
�

As in the previous section� we de�ne the response function R �  res� imp� This is then

R � �
G %CK	��m�R

ZZ
du dv L���z jEj�����������

�
����� �� " �

�
� �

�

���� LzjEj � im�

�� e�im�T

Z t

t�T
eim�	��		

�
R�

R

�i�� �
�

dt�
�
�

	����

This expression is equivalent to that obtained directly from the integral equation� eq� 	����� As a

preliminary to proving this� we �rst transform the integration variables in eq� 	����� performing the

integration over %U and %R instead of u and v� The Jacobian of the transformation is given by combining

du dv � dU dRH

�
�� �

�

�
v�
R

�
R�

RH

���� %Uq
%U� " �� %R�� " �

� 	
%R�� � ��

� 	����

and

dU dRH � d %U d %Rv�R %R
����
H

%R�� � d %U d %Rv�R�
%R
�����
H

%R��� 	����

We also substitute for energy and angular momentum in terms of eccentric velocity and home radius

	eqs� 	����� and 	���� �� The response function 	���� then becomes

R �

�
�� �

�

�
�
GK	��m� %CR���

� v
�
�
����	

�

ZZ
d %U %U

d %R
%R

�q
%U� " �� %R�� " �

� 	
%R�� � ��������

%U� " � � �
��

�����
�
�
� �
�
� �

�
����� � " �� � ��

� %U� " � � �

����� im�v�

R�
%R
�����
H

�

�� e�im�T

Z t

t�T
eim�	��		

�
R�

R

�i�� �
�

dt�
�
�

	����

where� as in section ���� the eccentric velocity is integrated from zero to in�nity for negative �� for positive

� the upper limit is 	��� � ������ %R is integrated from %Rmin to %Rmax�

We now use the relation

d %R

d�
�
%uJ�	 %U�
�


�
J�	 %U�
�


r
%U� " �� %R�� "

�

�

�
%R�� � �

	
	����



so that

R �

�
�� �

�

�
�
GK	��m� %CR���

� v
�
�
����	

�

Z
d %U J�	 %U� %U

������
%U� " � � �
��

�����
�
�
� �
�
� �

�

�
Z

�

�


d�
%R

����� � " �� � ��
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����� im�v�

R�
%R
�����
H

�

�� e�im�T

Z t

t�T
eim�	��		

�
R�

R

�i�� �
�

dt�
�
�

	����

Eq� 	���� holds for m �� �� When the imposed perturbation is axisymmetric� eq� 	���� becomes�

fimp	t� � �
GK	�� �� %C pR�e
st

�
R

R�

�i�� �
�

L���z jEj�����������

�
����� �� " �

�
� �

�

���� LzjEj �
���� �� " �

�
� �

�

���� LzjEj s

�� e�sT

Z t

t�T
es�t

��t	
�
R�

R

�i�� �
�

dt�
� 	���

We must then use l�H#opital�s rule to take the limit as s� ��

fimp	t� � �
GK	�� �� %C pR�

���� �� " �

�
� �

�

����
�
R

R�

�i�� �
�

� L�z jEj�������������
�
�� �

T

Z t

t�T

�
R�

R

�i�� �
�

dt�
�
�

	����

This can be integrated over velocity to obtain the m � � response function

R � �
GK	�� �� %C

���� �� " �

�
� �

�

����R
�
ZZ

du dv L�z jEj�������������
�
�� �

T

Z t

t�T

�
R�

R

�i�� �
�

dt�
�
�

	��
�

For the Toomre�Zang disk� the axisymmetric response function becomes

R � �
GK	�� �� %C
R���

��u

ZZ
du dv v� e��u

��v�	�����u	

�
�� �

T

Z t

t�T

�
R�

R

�i�� �
�

dt�
�
� 	����

where ��u � v���	� " ��� and %C is a function of � given by 	��
��� This � � � limit was clearly already

well known to Toomre and Zang in ���
�

As for the non�axisymmetric case� we can rewrite the integral so that it is carried out over %U and �

instead of u and v� We then obtain

R �

�
�� �

�

�
�
GK	�� �� %CR���

� v
�
�
����	

�

���� �� " �

�
� �

�
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Z
d %UJ�	 %U� %U

�
������
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�
�
� �
�
� �

�
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�
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Z
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%R

�
�� �

T

Z t

t�T

�
R�

R

�i�� �
�

dt�
�
�

	����

We now embark on demonstrating the relationship between the expressions derived here� eqs� 	����

and 	����� and that obtained directly from the integral equation� eq� 	����� It is easiest to work

backwards from the latter expression� We begin with the case m �� �� We consider the sum over l



in 	����� Substituting for Q�
lm	�� from the de�nition of the Fourier coe�cient 	������ we obtain

�X
l���

Qlm	��Q
�
lm	��

����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

�

�
�

�


Z �


�

e�im�	��t	��i�� �
� �
%Xd�

�X
l���

Qlm	��e
il

����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

� 	����

But from 	����� we have

��X
l���

Qlm	��e
il � eim�	��t	��i�� �

� �
%X 	����

where %X � ln %R � ln	R�RH�� This gives us the �rst term in curly brackets in 	����� To obtain the

second term� we multiply both sides of 	���� by exp	im't" i�t� and integrate between t� � t� T and

t� � t�

�i
�

��X
l���

Qlm	��e
il�t��im�t��i�t�

l�"m'" �

�t��t
t��t�T

�

Z t

t�T
eim	��i�t�

�
R�

RH

�i�� �
�
dt�� 	����

Remembering that exp	il�T � � exp	�i
l� � �� this is

�i
��X
l���

Qlm	��e
il�t�im�t�i�t

l�"m'" �

�
�� e�im�T�i�T � � Z t

t�T
eim	��i�t�

�
R�

RH

�i�� �
�
dt�� 	����

We now let � � � to obtain 	in terms of � � �t and the dimensionless variables %� and %'�

��X
l���

Qlm	��e
il

l%�"m%'
�

iv�

R�
%R
�����
H

e�im�t

�� e�im�T

Z t

t�T
eim	�

�
R�

RH

�i�� �
�
dt�� 	����

We can now substitute 	���� and 	���� into 	�����

�X
l���

Qlm	��Q
�
lm	��

����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

�
�

�

�


Z �


�

d�
%R

�
��
�
���� � " �� � ��

� %U� " � � �
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R�
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�����
H

�

�� e�im�T

Z t

t�T
eim�	��		

�
R�

R

�i�� �
�
dt��

��
�

	���

With this result� the expression for the response function 	���� obtained from the integral equation is

identical to the alternative expression 	���� obtained by assuming that the response is a pure log�spiral�

Eq� 	��� fails for m � �� To derive a suitable expression for the axisymmetric case� we consider

the sum of the modulus�squared of the Fourier coe�cients over all radial harmonics except the zeroth�P��
l����l��� jQl�	��j�� Using eq� 	����� to substitute for Q�

l�	��� we write this as

��X
l����l���

Ql�	��Q
�
l�	�� �

�

�


Z �


�

e��i��
�
� �
%X

��X
l����l ���

Ql�	��e
il�td�� 	����



The de�nition of the Fourier coe�cients 	����� gives us

e�i��
�
� �
%X �

��X
l���

Ql�	��e
il�t �

��X
l����l���

Ql�	��e
il�t "Q��	��� 	��
�

Writing

Q��	�� �
�

T

Z t

t�T
%R�i��

�
� dt�� e�i��

�
� �
%X � %R�i��

�
� �� 	����

where %R� is used as a shorthand for %R	t��� we have

e��i��
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%X

��X
l����l���
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��
��� �

T

Z t

t�T

�
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R

�i�� �
�
dt�

��
� � 	����

Substituting this into the expression for the Fourier series 	����� we obtain

��X
l����l���
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T
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We can now substitute this into our expression for the response function 	���� to obtain

R � �
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	���

Equating this to our previous expression 	���� with m � �� we now see how to resolve the troublesome

l � � harmonic� It is simply omitted) In terms of our integral equation approach� this means that we

must take F�� � ��

In subsequent chapters� we shall investigate the form of the response function for di�erent azimuthal

harmonics� We shall �nd that modes� for which R � �� are in general possible at su�ciently low

temperature�

��� Growing modes

As discussed in section ��� growing modes are not self�similar� so that the response to a pure log�

spiral now contains contributions at many wavenumbers� Thus any investigation of the growing modes

necessarily involves the full integral equation approach� We have also shown that the dependence on

pattern speed and growth rate could be factored out of the integral equation� We obtained a modi�ed

integral equation 	�����

� #A	�� � #A	��S��	m 	�� �� "

Z ��

��
d�� #A	��� #S��	m 	�� ����



This equation is hard to solve numerically� since the term S��	m 	�� �� is singular at � � ��� We have

therefore concentrated on its analytical properties� It immediately seems unlikely that growing� non�

axisymmetric modes could exist in the self�consistent disk� All the quantities in eq� 	���� are complex�

so we e�ectively have two equations� we must satisfy simultaneously Re	�� � � and Im	�� � �� In the

cut�out case� we had two free parameters� the frequency � and temperature �� Now� in the self�consistent

case� we have only one free parameter� the temperature �� It seems unlikely that we can satisfy both

equations simultaneously without some special circumstances� In the axisymmetric case� this is exactly

what happens� We shall show that when m � �� the kernel is Hermitian and the imaginary part of the

eigenvalue vanishes identically� We thus have one equation and one free parameter� which we can in

principle adjust to obtain growing axisymmetric modes� When m �� �� we have been unable to prove that
there are no solutions� However� we believe it is unlikely that any exist�

In this section� we record our investigations into the growing modes� We begin by de�ning a modi�ed

transfer function and eigenfunction�
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For axisymmetric perturbations� the angular momentum function is zero at l � �� F�� � �� Thus the

l � � term must be omitted from the sum in this case� although for notational brevity this is not explicitly

indicated� Care is required with the logarithm� l%�"m%' can be positive or negative depending on the sign

of l� As discussed in Appendix C� we choose the phase of the quantity 	l%�"m%'��%� to be such that the

imaginary part of the logarithm ln+	l%�"m%'��%�, is in the range � to �
� This requires the choice 	C���

ln	l%�"m%'� � ln jl%�"m%'j" �i
� l%�"m%' � �� 	��

ln	l%�"m%'� � ln jl%�"m%'j" i
� l%�"m%' � �� 	���

We therefore have to split the sum in eq� 	��� into prograde and retrograde parts� We de�ne the critical

harmonic lc to be the integer less than or equal to �m%'�%�� Then the prograde terms are those for which
l � lc� and the retrograde those for which l � lc�



Then 	��� becomes
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We now make the further de�nitions
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The integral equation 	��� now becomes
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The new transfer function is
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We now divide this into Hermitian and anti�Hermitian parts� We write
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�� � G�h	
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Note that for axisymmetric disturbances� the critical harmonic lc is zero� and we have the additional

symmetry Ql�	�� � Q�l��	�� 	see eq� 	������� Furthermore� we have seen that the l � � term must be

omitted in the axisymmetric case� Thus the prograde and retrograde sums cancel in eq� 	����� so that

G
�a	
� � �� Axisymmetric modes have Hermitian kernels� 	We shall see in Chapter 
 that this is true for

cut�out disks as well��

We record a further symmetry property of G
�h	
m and G

�a	
m �

G�h	�
m 	������� � G�h	

m 	�� ���� G�a	�
m 	������� � �G�a	

m 	�� ���� 	���

From eqs� 	����� and 	��� S��	m 	�� ��� is
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We note that S��	m 	�� �� is purely real� From the symmetry property of the Fourier coe�cients� we also

have the symmetry S��	m 	�� �� � S��	m 	�������

The integral equation 	��� is

�C	�� � C	��S��	m 	�� �� "
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d��C	���G�h	

m 	�� ��� "
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d��C	���G�a	
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�

In principle� this must be solved to obtain the eigenvalues � and eigenfunctions C	��� We are interested

in proving de�nite results about the eigenvalue � for instance� if we could show that its real part is

necessarily negative� we could conclude that a continuum of modes is not possible� We have derived

separate equations for Re	�� and Im	�� in terms of C	��� Even though C	�� is unknown� our hope was

that we should be able to derive constraints on � which hold for arbitrary functions C	��� In fact� we

have been unable to prove any such results for non�axisymmetric modes� Nevertheless� in the following

paragraphs we present our investigations into the problem�

Multiplying 	��
� by C�	�� and integrating over wavenumber �� we obtain
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where for convenience we have assumed that the eigenfunction is normalised such that
R jC	��j�d� � ��

We take the complex conjugate and interchange � and �� in the double integral�

�� �
Z ��

��
d�jC	��j�S��	m 	�� �� "

Z ��

��
d�

Z ��

��
d��C�	��C	���G�h	�

m 	��� ��

"

Z ��

��
d�

Z ��

��
d��C�	��C	���G�a	�

m 	��� ���

	����

where we have used the fact that S��	m 	�� �� is real� We now use the symmetry properties of G
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Adding eq� 	���� to eq� 	����� we obtain
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The imaginary equation 	�
�� can be written 	substituting in the expression for the anti�Hermitian kernel
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We note that the double integrals over wavenumber contain a convolution� We de�ne the Fourier trans�

form %Dlm	x� as
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This is the convolution theorem� which states that the convolution of two functions is equal to the inverse

Fourier transform of the product of the transforms of the individual functions� Conversely� the Fourier

transform of a convolution is equal to the product of the individual transforms� We therefore have
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This result is useful in our expressions for the real and imaginary parts of the eigenvalue� We begin by
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Now we substitute our result 	�
�� and obtainZ ��

��
d�D�

lm	��

Z ��

��
d��Dlm	�

��f	�� ��� �
p
�


Z ��

��
dx j %Dlm	x�j� %f	x�� 	����

Thus we have converted our double integral over wavenumber to a single integral over radius� The

function %Dlm	x� is unknown� but appears only as j %Dlm	x�j�� which is positive de�nite�



In the real equation 	�
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Now we use Parseval�s theorem 	e�g� Arfken 	��
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Our attempt to constrain the allowed range of � has proved less fruitful than hoped� For general m� we

cannot draw any conclusions about the sign of Im	��� because we do not know whether the prograde or

retrograde sum will �win�� Similarly� the presence of the term in curly brackets in eq� 	���� prevents us

from drawing any conclusions about the sign of Re	��� We can� however� draw an additional conclusion

about the eigenvalues of modes with m � �� In this case� the integrand is positive de�nite� For axisym�

metric modes� then� we can at least conclude that the eigenvalue is real and positive� A continuum of

axisymmetric modes thus appears possible�

For non�axisymmetric modes� it would be surprising if eqs� 	���� and 	��
� could simultaneously be

satis�ed at any temperature �� It seems even less likely that they could be satis�ed over a range of



temperatures �� as must happen if the growing modes a�ect all disks below a critical temperature� To

clarify the remarkable properties which would have to be possessed by any solution� we rewrite eq� 	��
�

as
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If the growing modes� like other modes� exist at a range of temperatures� the eigenvalue must be real

� and so this integral must vanish � for all temperatures less than the critical temperature� This is a

powerful constraint� We have a problem where in shorthand

g	�� �

Z ��
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dx f	x� ��� 	����

Under what circumstances can g	�� vanish for a range of �� Two obvious possibilities are that the

integrand f	x� �� is odd or identically zero� However� there are functions f	x� �� which are even and have

a �nite number of zeros� which yet give zero g	�� for a range of �� As an example� if f	x� �� has the form

f	x� �� � a�	��e
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It is apparent that� by suitable choice of the ai	y� and Bi	y� for even i� the integral g	�� can be made to

vanish identically� A simple example is the function

f	x� �� � 	�� ��x��e��x� 	����

Thus although it seems to us highly unlikely that there exist any eigenfunctions simultaneously satisfying

Re	�� � � and Im	�� � �� we have been unable to rule it out� It is in theory possible that a continuum

of non�axisymmetric modes exists� either at one particular temperature �� or even across a range of

temperatures�

The relationship between neutral and growing modes

In section ��� we stated that the neutral modes were isolated from the continuum of growing modes�

and would in general set in at a di�erent temperature� We also claimed that the growing modes would



have a di�erent shape from the neutral modes� since 	loosely speaking� the growing modes are built of

log�spirals at many wavenumbers� whereas the neutral modes are pure log�spirals� In this section� we

justify these claims in more detail by investigating the relationship between the neutral modes and any

growing modes which might exist� Speci�cally� we are interested in whether a neutral mode could ever

satisfy the integral equation� If this were the case� the neutral modes would not be isolated� but would

form �one end� of the continuum � modes would be possible with all growth rates and pattern speeds�

down to and including s � � and 'p � �� In this case� the existence of neutral modes at a particular

temperature would imply the existence of a continuum of modes� The temperature at which the disk

�rst admits neutral modes � which we can easily calculate � would then be the temperature at which

the disk becomes wildly unstable to a continuum of modes� The neutral modes would thus be of crucial

importance in determining the stability of the disk� rather than the isolated curiosities we have so far

considered them�

However� we shall now prove that no neutral modes can ever satisfy the integral equation� This is an

important result� because it proves that the neutral modes are always isolated from the growing modes�

They could conceivably set in at the same temperature� but there would be no compelling reason for them

to do so� It means that the neutral modes are irrelevant in determining the existence of a continuum�

We begin by considering a neutral mode consisting of a pure log�spiral� A	�� � A��	������ The modi�ed
eigenfunction C	�� is then
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If we simply integrate this over �� it seems entirely reasonable that� at some temperature� solutions could

exist with unit mathematical eigenvalue� For the case m � �� we would simply require
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However� although this is a necessary condition for eq� 	���� to be satis�ed� it is not su�cient� Eq� 	����

must hold for all � independently� Away from � � ��� this requiress
K	���m�

K	��m�
e
��� ��	��ei��� ��	 ln ��Gm	�� ��� � �� 	����

for all � �� ��� It immediately seems highly implausible that such a condition could be satis�ed for all

wavenumbers� and the reader may be happy to conclude that neutral modes cannot satisfy the integral



equation� However� it is worth going through a slightly more detailed treatment for the axisymmetric

case� This is the easiest case to deal with analytically� and also the most interesting� since it is only for

m � � that we believe a continuum could exist�

For m � �� eq� 	���� becomes 	substituting for Gm from eq� 	�����
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We can simplify this by multiplying throughout by

e�
��� ��	��e�i��� ��	 ln �� sinh
	#�� #���


�

since this expression is guaranteed to be non�zero for � �� ��� Then eq� 	��
� becomes
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where for brevity we have called the left�hand side of this equation f	��� We require f	�� � � for

all � �� ��� Now� by hypothesis� �� is the wavenumber of a neutral mode at this temperature� Thus

R	��� � �� and from 	���

�
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Thus we have f	��� � ��	�"��� which is clearly not close to zero� To satisfy our integral equation 	�����

we require f	�� to jump from ��	� " �� at � � �� to zero at � � �� " � That is� f	�� must have a

discontinuity at � � ��� However� eq� 	���� shows that f	�� is in fact a smooth function of �� The

Fourier coe�cients and exponentials on which it depends change smoothly as the wavenumber is varied�

We have therefore shown 	���� cannot be satis�ed for all � �� ��� This means that a pure log�spiral

mode is not capable of satisfying the integral equation�

At a given temperature� it is possible that more than one wavenumber could simultaneously satisfy

R	�� � �� If this occurred� the most general neutral mode in that disk would be not a pure log�spiral�

but a superposition of several pure log�spirals� The above proof may readily be generalised to show that

no superposition of a �nite number of log�spirals � and hence no neutral mode at all � is capable of

satisfying the integral equation� Equally� we can view this result as proving that any possible solution

of the integral equation must be made up of a continuum of log�spiral components� 	We note that

this applies also to the cut�out disks� We have thus found that modes in the cut�out disk must be

made up of a continuum of log�spiral components� In subsequent chapters we shall see that this is true�



although the density transforms are often fairly peaked at a dominant wavenumber�� Thus� as claimed

in section ��� the growing modes necessarily have a di�erent morphology from the neutral modes� The

neutral modes therefore are isolated from the continuum of growing modes� they can never form one end

of the continuum�

��� Summary

In this Chapter� we have considered the particular problems associated with a self�similar disk� We have

seen that any growing or rotating modes must form a continuum of modes� Thus at any temperature�

there are three possibilities� Either there is a continuum of modes with all possible pattern speeds and

growth rates� or there are neutral modes� with growth rate and pattern speed both zero� or there are

no modes at all� We have found an analytical expression for the response function R� which describes
whether or not neutral modes are possible� In subsequent chapters� we shall evaluate this response

function for di�erent azimuthal harmonics in turn� We shall �nd that neutral modes set in for every m

at su�ciently low temperature� We have also derived the integral equation which must be satis�ed by

any growing or rotating modes� We have not been able to �nd any solutions of this integral equation�

equally� we have not be able to prove that none exist� Our treatment is therefore somewhat inconclusive�

In this Chapter� we have presented various arguments as to why we believe that there is no continuum of

non�axisymmetric modes� We return to this question again in Chapter ��� where we discuss additional

evidence gained from our study of the cut�out disks�



Chapter �

Numerical Methods

��� Introduction

This chapter discusses the numerical algorithms required to evaluate the transfer function and to solve

the integral equation� Numerical quadrature is needed to �nd the Fourier coe�cients for the stellar orbits

and to perform the integration over orbit shape to obtain the transfer function� The integral equation is

converted to a standard form� the so�called Fredholm integral equation of the second kind� The kernel is

evaluated on a �nite grid in wavenumber space� This reduces our problem to a search for the algebraic

eigenvalues of a �nite matrix�

Results of research that depend largely on numerical calculations have no value unless the computer code

has been extensively checked� Part of the aim of this chapter is to convince the reader that the necessary

checks and tests have indeed been carried out�

��� The Fourier coe�cient

The Fourier coe�cients are 	�����

Qlm	�� �
�

�


Z �


�

exp
n
im %Y "

�
i�� �

�

�
%X � il�

o
d��

where %Y is the deviation from the mean angular motion� %X is the scaled logarithmic radius and � is the

orbital phase� %X and %Y are both periodic with period T � This means that the integration gives the same

result when carried out over any �
 region in �� as sketched in �g� ���� Since the integrand has period

�
� the region on the right marked with lines sloping upwards gives the same contribution as the region

on the left marked with lines sloping down� We can replace the integral from � to �
 with one centred on

the star�s pericentre� as indicated by the dashed line� We are therefore free to de�ne � � � to correspond

��



Figure ���� A periodic function

to pericentre� This means that at the time t � �� the star has radial coordinate R � Rmin� Then %X will

be even� and %Y odd� about � � �� We write

Qlm	�� �
�




Z 


�

exp
n�
i�� �

�

�
%X
o
cos	m %Y � l�� d�� 	����

The equations of motion 	����� are solved by fourth�order Runge�Kutta integration 	Press et al� �����

ch� ��� to obtain the stellar position as a function of time� and thus %X and %Y as a function of �� The

integration over � is carried out by the mid�point method 	Press et al� ����� ch� �� We used n� points

in the mid�point integration� and �n� in the Runge�Kutta� The problem is to choose n� large enough to

obtain excellent accuracy� while keeping it as small as possible in order to save time� Eccentric orbits need

more work to obtain good accuracy� so� as suggested by Zang 	���
�� n� is made to depend exponentially

on %U �

n� � aacc exp	bacc %U�� 	����

We found that the values aacc � �� and bacc � ��� usually worked well�

The following tables compare the e�ect of di�erent aacc and bacc at two di�erent %U �

Q��	� � �� %U � ����
bacc aacc � � aacc � �� aacc � ��

��� ����

� ��������i ��������� ��������i �������� �������i
��� ��������� ��������i �������� ��������i �������� �������i
��� �������� ��������i �������� �������i �������� �������i

Q��	� � �� %U � ����
bacc aacc � � aacc � �� aacc � ��

��� ���������" ��������i ������� �������i �����
���� ��������i
��� ������

� �����i ���������" ��������i ��������
" �������i
��� ���������" ��������i ���������" ��������i ���������" ��������i

The suggested values aacc � �� and bacc � ��� are accurate to 
 signi�cant �gures or so for %U � ���� but

only � s�f� for %U � ���� which might imply that a higher value of aacc or bacc would be better� However�



Q�� is also an order of magnitude less at %U � ��� than %U � ���� It turns out that the Fourier coe�cients

are generally smaller for higher values of the eccentric velocity� In the integrand of the expression for

the transfer function� two Fourier coe�cients are multiplied together at every eccentric velocity� so the

integrand is much smaller at high eccentric velocities� The accuracy with which the transfer function is

obtained is thus dominated by the accuracy of the Fourier coe�cients at low eccentric velocities� This is

useful� since the Fourier coe�cients are most costly to evaluate to a given accuracy when the eccentric

velocity is high� In section ��
� we consider the e�ect of aacc and bacc on the mathematical eigenvalue�

and show that the inaccuracy in Qlm at high %U does not a�ect the eigenvalue to 
 s�f�

The following two graphs show the Fourier coe�cient as a function of wavenumber� for two di�erent

eccentric velocities� The Fourier coe�cient is shown only for positive wavenumber� Its behaviour for

negative wavenumber is readily deduced from the symmetry property of the Fourier coe�cient� Qlm	�� �

Q�
lm	���� We see that %U controls the amplitude and the frequency of oscillation of Qlm�

Figure ���� Graph of Q�� plotted against �
 In the left	hand plot� �U � ���� on the right� �U � ���
 In each case� the solid
line is the real� and the dotted line the imaginary� part of Q��
 �� � ����� m � �� l � �� aacc � ���� bacc � ���
�

The next set of plots compares Qlm at di�erent l� For high values of l� Qlm remains close to zero until

� is large� thereafter it oscillates with lower frequency� Log�spiral components must be tightly�wound in

order to excite responses at high radial harmonics�

Figure ���� Graph of Qlm plotted against �� for four di�erent radial harmonics l
 In each case� the solid line is the real�
and the dotted line the imaginary� part of Qlm
 �� � ����� m � �� �U � ���� aacc � ���� bacc � ���
�



��� The transfer function

The summation over Fourier harmonics

The expression for the transfer function 	����� involves a sum over l from �� to "�� where l is the
radial harmonic number� Let us write the summand as S� where S � Qlm 	�

��Q�
lm 	��Flm 	�� ����

Fortunately� the magnitude of the terms in this sum decreases sharply with jlj� as the following �gure
demonstrates�

Figure ��� The �gure shows the summand S plotted against the radial harmonic number l
 The crosses show the real
part of the function� and the squares the imaginary part �see text�
 �� � ����� N � �� M � �� �Lz � ���� m � �� �p � ����

s � ���� 
 � ����� �U � ���� �� � ���� � � ���

The left�hand plot shows the real and imaginary parts of S on linear axes� The right�hand plot shows

the magnitudes of Re	S� and Im	S� plotted with a logarithmic vertical axis� so as to demonstrate the

order of magnitude� Clearly only the �rst few values of jlj contribute to the sum� Here the summand
falls by an order of magnitude when jlj exceeds � or so� We also see that negative values of l decrease
their contribution faster than positive l� This turns out to be true in general� A good approximation to

the sum is given by summing from l � lmin to l � lmax� where lmin is negative and jlminj is less than lmax�

Values of lmin � ���� lmax � �� usually worked well 	see below� section ��
��

The integration over orbit shape

Sm is an integral over %U � which adds up orbits of all possible shapes� We have 	������

Sm 	�� ��� �
Z
d %U J�	 %U� %U

������
%U� " � � �
��

�����
����������� ��X

l���
Qlm 	�

��Q�
lm 	��Flm 	�� ��� 	����

The equivalent expression for the Toomre�Zang disk 	����� contains a factor exp
�� %U��	�%��u�

�
� in place

of the term in modulus bars above� This prompted Zang 	���
� to use Gauss�Laguerre quadrature to

evaluate Sm� The fundamental formula isZ �

�

f	x�e�xdx �
nGLX
i��

wif	xi�� 	���



where f	x� is a smooth function� well approximated by a polynomial� The weights wi and abscissae xi are

well�known 	see Abramowitz � Stegun ����� Press et al� ����� ch� � sec� ��� Gauss�Laguerre quadrature

with nGL points is exact when f	x� is a polynomial of order less than or equal to �nGL� �� This method
suggests the substitution V � �

�
%U��%��u� However� Zang 	���
� found it preferable to reduce %�u in this

expression� replacing it with %�n � f�%�u� where the fraction f� is around ���� This concentrates attention

on the lower values of %U � where the integrand is larger� For the power�law disks� the distribution of radial

velocities at any spot is similar � but not exactly equal to � a Gaussian with dispersion %�u� This suggests

that Gauss�Laguerre quadrature may still work well� Although our integrand is not directly of form 	����

it is readily made so� The limits on our integral are zero and in�nity for negative �� For positive �� the

upper limit is %U � 	���������� At least for the models of most interest in galactic astronomy 	j�j � �����
this distinction is in practice unimportant� since the integrand has fallen to negligibly small values well

before this limit on the eccentric velocity�

Let IU be the integrand in Sm when the integration is carried out over %U � so Sm 	�� ��� �
R�
�
IUd %U � We

then have

IV � IU %�
�
n

%U
exp



%U�

�%��n

�
� 	����

where Sm 	�� ��� �
R�
� IV e�V dV and V � �

�
%U��%��n� Fig� ��� compares the integrands IU and IV � for

di�erent values of f� � The vertical dashed lines indicate the positions of the abscissae� In section ��
� we

consider the e�ect on the mathematical eigenvalues of di�erent values of f��

The reliability of Gauss�Laguerre quadrature can be tested by comparison with the extended midpoint

method 	Press et al� ����� eq� 	�������� The following results are for the example illustrated in �g� ����

with the same perturbation and numerical accuracy parameters� In the Gauss�Laguerre integration� f�

was ���� in the midpoint integration� the lower and upper limits on %U were ���� and ��� respectively�
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Gauss�Laguerre quadrature is a remarkably e�cient way of performing the integral� 
 s�f� accuracy is

obtained with only six function evaluations� whereas over a thousand evaluations are needed for equivalent

accuracy with the midpoint method)

Figure ���� The e�ect of the transformation from �U to V on the integrand of the transfer function
 The four di�erent
rows show di�erent values of f�� f� � ���� �
�� �
� and �

 In each case nGL � �
 The four plots in the left	hand column
show IU plotted against �U � with the six Gauss	Laguerre abscissae marked by vertical dashed lines
 The four plots in the
right	hand column show the corresponding IV e�V plotted against V 
 The abscissae are marked with vertical dotted lines
�note that they occur at the same value of V in each plot�
 In each case� the solid line represents the real part� and the
dotted line the imaginary part
 �� � ����� N � �� M � �� �Lc � ���� m � �� �p � ����� s � ����� 
 � ����� �� � ����
� � ���
 Numerical accuracy parameters� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���� bacc � �
�

��� The response function

In section ��� we derived two alternative expressions for the function R describing the response of the

self�consistent disk to neutral disturbances� First� we used the integral equation to obtain expressions



	eq� 	���� for non�axisymmetric modes� and eq� 	��� for m � �� involving integration over eccentric

velocity and an expansion in Fourier harmonics� We also derived alternative expressions 	����� 	��
�

containing a double integral over radial and tangential velocity� We demonstrated analytically that these

expressions are equivalent� Checking this numerically provides an additional test of our methods� The

following table compares the results for a disk with � � ����� In each case� the upper result in a cell is

that obtained by using the midpoint method to perform the double integration over u and v in 	��
��

The lower result is that obtained by Gauss�Laguerre quadrature over %U as in 	����� +Numerical accuracy

parameters� With the midpoint method� the integrals over u and v were both evaluated to an accuracy

of ���� for � � �� For � � �� the integrals were slow to converge� and were evaluated to an accuracy of

����� The integral over t was evaluated using �� function evaluations� With the Gaussian quadrature�

nGL � �
� lmin � ��� lmax � ��� �f � ���� aacc � ��� bacc � ���� ,
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The agreement is in general excellent� The results start to diverge only for large � and %�u� For large %�u�

the range of eccentric velocities covered by the Gauss�Laguerre integration is much greater� This means

that fewer values are sampled in the region of low eccentric velocity where the integrand is largest� This

is probably responsible for the discrepancy at high %�u�

We now investigate the convergence of the response function as these accuracy parameters are varied�

We consider an m � � perturbation in a disk with � � ����� To begin with� we consider low temperature�

Qs � ���� and low wavenumber � � ��� �f � ����

m � �� � � ����� Qs � ���� � � ��
aacc� lmin� lmax
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For this low temperature� many radial harmonics are not needed� If n� is too low� the terms with higher

eccentric velocities and higher radial harmonics are not evaluated accurately� Thus when aacc � ���

bacc � ���� di�erent answers are obtained for di�erent orders of Gauss�Laguerre quadrature and di�erent

ranges in l� However� when aacc and bacc are large enough� increasing the order of Gauss�Laguerre

quadrature and the range in l has no e�ect� indicating that the eigenvalue has converged�

At higher temperatures� the convergence is worse� We now consider Qs � ���� at the same wavenumber

� � ���

m � �� � � ����� Qs � ���� � � ��
aacc� lmin� lmax

nGL bacc ������ ������ ������
������ �������� �����
�� �����
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At these higher temperatures� more stars are on highly eccentric orbits� Thus more points are required

in the orbit integration� more Gauss�Laguerre integration points and a higher range of radial harmonics

are needed�

When both the temperature and the wavenumber are high� the convergence is even worse� For Qs � ����

and � � ��� the accuracy is essentially � d�p� The following table includes results from high�order Gauss�

Laguerre quadrature� going up to high eccentric velocities� For high nGL and high aacc and bacc� n�

	usually determined by 	����� is truncated at a particular value� nmax� If nmax is set too low� then the

contribution of the last few terms in the Gauss�Laguerre sum� which should be tiny� tend to be over�

estimated� We found that it was better to set the contribution from these points to zero� rather than risk

overestimating them by using too few points in the orbit integration� This method was employed in the

results shown here� for which nmax was ��
��

m � �� � � ����� Qs � ���� � � ��
aacc� lmin� lmax
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The lesson of these investigations is that the response function is calculated reliably at low temperatures�

but that convergence is much worse at high temperatures 	and� to a lesser extent� high wavenumbers��

In this thesis� we shall mainly be interested in the temperature %�u�min at which neutral modes with

wavenumber �u become possible� Fortunately� both %�u�min and �u turn out to be low enough that R
can be accurately evaluated� The canonical accuracy parameters adopted were nGL � ��� lmin � ����
lmax � ���� aacc � ��� bacc � ���� The response curves obtained for di�erent m are investigated in later

chapters�

��� Computational solution of the integral equation

Given that the kernel of the integral equation can be evaluated to high accuracy� we now need to devise

a method for its numerical solution� We ultimately seek self�consistent solutions� for which Ares	�� �

Aimp	��� However� the �rst step is to consider the more general problem for which the response density is a

complex multiple of the imposed density� i�e�� Ares	�� � �Aimp	��� This casts the integral equation 	����

into the form

�A 	�� �

Z ��

��
d��A 	���Sm	�� ���� 	��
�

where we have dropped the subscripts on A� We shall refer to � as the mathematical eigenvalue� Of

course� only the instance when � is unity carries the physical signi�cance of a mode� The advantage of

this mathematical arti�ce is that the integral equation 	��
� is in the standard form of a homogeneous�

linear� Fredholm equation of the second kind 	see e�g� Courant � Hilbert ����� Delves � Mohamed ������

For a given value of �� such an equation normally admits only the trivial solution� A	�� 
 �� The values
of � for which non�trivial solutions exist are the eigenvalues of the equation� We seek an iterative scheme

which drives the eigenvalue to unity� thus providing a self�consistent mode�

There is a close analogy between linear algebraic equations and linear integral equations� The former

de�ne relations between vectors in a �nite�dimensional vector space� the latter de�ne relations between

functions in an in�nite�dimensional vector space 	technically a Banach space�� This analogy can be made

explicit by applying a quadrature rule to the integration in 	��
� to obtain

�A 	�j� �
X
i

wiA 	�i�Sm	�j � �i�� 	����

where wi are some appropriate weights� This general approach is called the Nystrom method 	Delves �

Mohamed ������ It evidently reduces the solution of an integral equation to the solution of an algebraic

eigenvalue problem� The latter is a classic and well�studied area of numerical analysis� for which many

tried and tested techniques are available�

Much of the skill in the numerical solution of integral equations comes from the choice of quadrature rules

and weights� Fortunately� we can rely here on the work of Zang 	���
�� who devised an elegant method



based on locally approximating the kernel and the response by Lagrangian interpolating polynomials�

This is naturally adapted to the instance when the kernel varies on a much smaller scale than the

solution� First� to obtain smoother functions� the Kalnajs gravity factor is extracted by de�ning

Sm 	�� ��� � K 	���m� %Sm 	�� ��� � A 	�� �
%A	��

K 	��m�
� 	����

The eigenvalue equation now becomes

� %A 	�� � K 	��m�

Z ��

��
d�� %A 	��� %Sm 	�� ��� � 	����

Let us introduce a �nite grid of points in wavenumber space� �r� If we need to know the value of %A or %Sm
at a value of � intermediate between the gridpoints �r and �r��� we interpolate over the eight gridpoints

from �r�� to �r��� This is illustrated in �g� ��
�

�r�� �r�� �r�� �r �r�� �r�� �r�� �r��
�

Figure ��
� The interpolation over eight points in wavenumber space


Lagrange�s classic formula for the interpolating polynomial P 	�� through N points f	�k� is 	Press et

al� ����� ch� ���

P 	�� �
NX
k��

	�k � �k�
QN

j��	�� �j�

	� � �k�
QN

i��	�k � �i�
f	�k�� 	�����

For � equally�spaced points (� apart� going from �r�� to �r��� this becomes

P 	�� �

�Y
i��

	�� �r�i���
�X

k���

	���k
	� " k�)	� k�)

f	�r�k�

	(���	�� �r � k(��
� 	�����

De�ning x � 	�� �r��(�� this becomes

P 	�� �

�Y
i��

	x" � i�

�X
k���

	���k f	�r�k�

	� " k�)	� k�)	x� k�
�

�X
k���

Lk+x,f	�r�k�� 	�����

where

Lk+x, � 	���k
Q�

i�� 	x" � i�

	� " k�)	� k�)	x� k�
� 	�����



Then the interpolated approximations to the response and the transfer function are 	cf� Zang ���
� app�

D�

%A	��� �
�X

k���
Lk+x

�, %A	�r�k�� %Sm	�� ��� �
�X

k���
Lk+x

�, %Sm	�� �r�k�� 	����

where x� � 	�� � �r��(��

The in�nite range in the integral equation ��
 is a kind of singularity� Truncation of the wavenumber

range at large �nite values is the simplest but most brutal way of handling the singularity� In practice� we

found this to be surprisingly e�ective� Wavenumber space is approximated by a �nite grid with n points

along each side� We choose n� and the grid�point spacing (�� so as to obtain a su�ciently accurate

solution of the integral equation 	����� The �nite size of the grid means that we encounter problems

when evaluating %Aimp and %Sm for values of � near the edges of the grid� We are interpolating over eight

points� so we need data from ��� to �n��� We shall deal with this problem by simply assuming that

our function is zero outside the grid� This is illustrated in the following �gure� Function evaluations at

grid�points lying in the shaded region are set to zero�

��

���
���
��
��
��
��
��

�n��
�n��
�n
�n��
�n��
�n��

�

��� �� �� �� �n�� �n �n��

.

Figure ���� Interpolation in a �nite grid
 Suppose we wish to �nd the value of the function at the point indicated by an
asterisk
 Then r � �� so we interpolate over the eight values from ��� to ��
 The values of the function at ��� and �� are
set to be zero


This is acceptable provided the grid is large enough� Then the values of the kernel at the missing

interpolation points are negligibly small� This procedure is justi�ed empirically by the demonstration

that the mathematical eigenvalue converges to a value independent of grid size 	see section ��
��



We are now in a position to carry out the integration� Substituting the Lagrange�interpolated approxi�

mations for %Aimp and %Sm 	���� into the modi�ed integral equation 	����� we obtain

� %A 	�� � K 	��m�

�X
i���

�X
k���

Z �n

��

d��Li

�
�� � �r
(�


Lk

�
�� � �r
(�


%A	��r�i� %Sm	�� ��r�k�� 	�����

Note that the integration over wavenumber now runs from � � �� to �n� instead of from � � �� to ��
We break this integration into n portions of (��

� %A 	�� � K 	��m�

nX
r��

�X
i���

�X
k���

�
Z �r�
�

�r

d��Li

�
�� � �r
(�


Lk

�
�� � �r
(�


%A	��r�i� %Sm	�� ��r�k��

	���
�

Then� changing variables to x� � 	�� � �r��(�� we obtain

� %A 	�� � K 	��m�

nX
r��

�X
i���

�X
k���

%A	�r�i� %Sm	�� �r�k�(�
Z �

�

dx�Li+x�,Lk+x�,� 	�����

Let us de�ne the weighting coe�cients Cik by 	cf� Zang 	���
�� app� D�

Cik � (�

Z �

�

dxLi+x,Lk+x,� 	�����

Note the symmetry properties of Cik � Cik 
 Cki� and Cik 
 C���i	���k	� Thus although there appear

to be 
 Cik� only �� of them are independent� The weighting coe�cients are easily evaluated using the

midpoint method given in Press et al� 	����� ch� �� The following table shows values of Cik�(��

i k � �� k � �� k � �� k � � k � � k � � k � � k � 
�� �������� ��������� �������� ��������� ��������� �������� ��������� ��������
�� ��������� �������
 �������� �������� �����
�� �������� �������� ���������
�� �������� �������� �����
�� ����� �����
�� �������
 �������� ��������
� ��������� �������� ����� ���
��� �������� �����
�� �����
�� ���������
� ��������� �����
�� �����
�� �������� ���
��� ����� �������� ���������
� �������� �������� �������
 �����
�� ����� �����
�� �������� ��������
� ��������� �������� �������� �����
�� �������� �������� �������
 ���������
 �������� ��������� �������� ��������� ��������� �������� ��������� ��������

Equation 	����� can now be written as�

� %A 	�j� � K 	�j �m�

nX
r��

�X
i���

�X
k���

Cik %Sm	�j � �r�k� %A	�r�i� 	�����

Terms in this multiple sum for which r " i is less than � or greater than n contribute nothing� We can

thus write the above equation in terms of a single sum from �� to �n� and collect the weighting coe�cient

Cik � smoothed transfer function %Sm and density pro�le %A together into a single quantity S�

� %A	�j� �
nX
s��

Sjs %A	�s�� 	�����



This is of course just a matrix equation for the mathematical eigenvalue �� If there is an eigenvalue of

the matrix S equal to unity� then the corresponding eigenvector A gives us a self�consistent mode� i�e� a

self�sustaining density perturbation�

Sjs cannot be simply expressed in terms of Cik � %Sm and %A� But we see that it represents the total

coe�cient of %A	�s� in eq� 	������ So we can calculate its elements by going through the multiple sum

in 	������ and� for each value of j� adding up all the terms for which r" i � s� The algorithm is as follows�

j runs
from �
to n

�

�

�

r runs
from �
to n

�

�

�

i runs
from ��
to 

�

�

�

k runs
from ��
to 

� �

�

s � r " i
if � � r " i � n
and � � r " k � n�
then Sjs � Sjs"

K 	�j �m�Cik %Sm	�j � �r�k�

Figure ���� Diagram of the algorithm used to calculate the matrix elements

Having obtained the matrix Sjs� we now wish to �nd its eigenvalues� We used the eigensystem package

	EISPACK� developed by Smith et al� 	������ which returns the eigenvalues of a matrix� and� optionally�

the corresponding eigenvectors�

EISPACK �nds the eigenvalues by converting the matrix to triangular form� The eigenvalues are then

given by the diagonal entries� Once the eigenvalues have been obtained� the eigenvectors can be calculated

by substitution� The triangularisation process uses a theorem due to Schur� which states that any matrix

may be triangularised by a unitary similarity transformation� This is a transformation of the form

A � S��AS� in which the matrix S is unitary� i�e� Sy � S��� Schur�s theorem is implemented by

applying a series of similarity transforms�

Ak�� � S��k AkSk 	�����

The iteration is continued until all the subdiagonal elements of Ak�� are less than the round�o� errors�



We also used the power method to provide an independent check on the largest eigenvalue� This relies on

repeated application of the matrix S to a test vector t 	Berezin � Zhidkov ��
�� ch� �� sec� ��� Suppose

we apply the n� n matrix S to some vector t� In general� the result can be expressed as a sum of the n

eigenvectors ei

St �
nX
i��

ciei� 	�����

Repeated application of the matrix S to this equation yields

Sjt �

nX
i��

ci�
j��
i ei� 	�����

As j ��� the sum will be dominated by the largest eigenvalue ��� Then for each of the components k�

we have

�
Sjt

�
k
� c��

j��
� 	e��k � 	����

We see that

�� � lim
j��

�
Sjt

�
k

	Sj��t�k
� 	�����

When implementing this numerically� we chose k to be the largest component of Sjt� The power method

is a fast and accurate way of obtaining the largest eigenvalue� It typically agreed with EISPACK to � s�f�

or so�

��� The accuracy parameters

In this chapter� various accuracy parameters have been introduced which control the result obtained for

the eigenvalue� We shall now spend some time considering the e�ect of each of these� The accuracy

parameters involved in the calculation of the mathematical eigenvalue are

Accuracy
Quantity a�ected parameter What it controls
Mathematical eigenvalue � n Number of points along each side of the grid
Mathematical eigenvalue � (� Grid�spacing
Fourier components Qlm aacc� bacc Number of steps in mid�point integration

Transfer function Sm lmin� lmax

Plmax
l�lmin

approximates
P��

l���
Transfer function Sm nGL Number of Gauss�Laguerre abscissae
Transfer function Sm f� Position of Gauss�Laguerre abscissae



These quantities are tabulated for reference in Appendix A� Further accuracy parameters are involved in

the midpoint routine to �nd the frequencies %�� %' and the weighting coe�cients Cik � and in the Newton�

Raphson routine to �nd the extrema %Rmin� %Rmax 	see Chapter ��� However� it is easy to �nd these

quantities to high accuracy� and so these integrations have virtually no e�ect on the eigenvalue�

To investigate the e�ect of these parameters� consider an m � � perturbation with 'p � ��� and s � ���

applied to a � � ���� disk with N � �� M � 
� %Lc � ��� and � � ����� 	%�u � ������� For this situation�

we believe the correct answer is ���
����� �������
i to 
 s�f� We choose the canonical set of accuracy
parameters to be� n � ���� (� � ���� lmin � ��� lmax � ��� nGL � 
� f� � ���� aacc � ��� bacc � ���� We

shall vary each of these in turn� while keeping the others constant�

Eect of grid�spacing �constant grid size�

First let us investigate the e�ect of grid�spacing on the mathematical eigenvalues� We shall do this while

holding the range of the grid in � constant� As a �rst guess� we set the range of the grid 	n� ��(� equal
to ���

Grid�spacing Number of
(� grid points n Largest mathematical eigenvalue
���� �� ���

�� �������i
����� �� ���
����� ��������i
���� 
� ���
����� �������i
����� �� ���
����� ��������i
����� ��� ���
����� ��������i

The answers have converged to � s�f� or so� But is this the right answer� or is the range of � covered by

the grid too small� To answer this� we increase the range of the grid to �� in ��

Grid�spacing Number of
(� grid points n Largest mathematical eigenvalue
����� �� ���
����� ��������i
����� ��� ���
���
� ��������i
���� ��� ���
���
� ��������i
����� �
� ���
���
� ��������i
����� ��� ���
���
� ��������i

These have converged to a slightly di�erent answer� so the range of �� in � was clearly not large enough

for 
 s�f� accuracy� To see whether the grid is big enough yet� we increase the range of the grid again� to

����

Grid�spacing Number of
(� grid points n Largest mathematical eigenvalue
����� ��� ���
����� ��������i
����� ��� ���
���
� ��������i
���� ��� ���
���
� ��������i
����� ��� ���
���
� ��������i
����� ��� ���
���
� ��������i

These answers have not changed from the previous set to within 
 s�f�� so we conclude that a range in �

of �� is su�cient�



In general� the spacing of the gridpoints is much more important than the size of the grid� provided that

this covers a su�cient range in �� We want to choose the minimum n possible� since large n greatly

increases the running�time of the code� Typically� we take n � ���� (� � ��� as suitable values�

Eect of range in l

We now consider the range in l�

Range in l Largest mathematical eigenvalue
��� to �� ���
����� ��������i
��� to �� ���
����� �������i
��� to �� ���
���
� ��������i
��� to �� ���
����� ��������i
��� to � ���
����� �������
i
�� to � ���
����� �������
i
�� to �� ���
����� �������
i

We have found that summing over l from ��� to �� is generally su�cient for 
 s�f� accuracy� It is

worth pointing out that including a larger range of radial harmonics does not necessarily lead to higher

accuracy� Harmonics with large l are in general very small� but need a large number of points in the

orbit integration to be accurately evaluated� If aacc and bacc are set too low for the given range in l� an

unfortunate e�ect may occur in which the Fourier coe�cients for extreme l are vastly overestimated� and

distort the answer�

Eect of number of Gauss�Laguerre abscissae

The e�ect of nGL� the number of Gauss�Laguerre abscissae� on the transfer function was considered in

section ���� Here we look at the e�ect of nGL on the mathematical eigenvalue�

nGL Largest mathematical eigenvalue
� ���
����� �������i
 ���
���� �������
i
� ���
����� ��������i

 ���
���
� ��������i
� ���
����� ��������i
� ���
����� ��������i
� ���
����� ��������i
�� ���
����� ��������i

The eigenvalue is not very sensitive to the number of Gauss�Laguerre abscissae� even nGL � � su�ces for

 s�f� accuracy� We usually use nGL � � to be sure of high accuracy�

Eect of aacc and bacc

aacc and bacc control the number of steps n� in the Runge�Kutta integration used in �nding Qlm� we set

n� � aacc exp	bacc %U�� The e�ect of these factors on Qlm was considered in ���� now we investigate their

e�ect on the eigenvalue itself�



aacc bacc Largest mathematical eigenvalue
� � ���
���
� ��������i
�� � ���
���
� ��������i
�� � ���
���
� ��������i
� ��� ���
���
� ��������i
�� ��� ���
���
� ��������i
�� ��� ���
���
� ��������i
� ��� ���
���
� ��������i
�� ��� ���
���
� ��������i
�� ��� ���
���
� ��������i

The eigenvalue is not at all sensitive to n�� In fact changes only appear in the �th decimal place� Changes

in bacc� predictably� have a greater e�ect than changes in aacc�

Eect of factor f�

Most of the other accuracy parameters have a clearly�de�ned e�ect on the accuracy� For example� larger

n and smaller (� increase the accuracy� It is not immediately obvious� however� what value of f� is best�

nor do we expect the answer to converge as we change f� � In order to understand the e�ect of f�� the

code was �rst run with very high accuracy� n � ���� (� � ���� lmin � ��� lmax � ��� nGL � �� aacc � ���

bacc � ���� For f� � ���� the largest mathematical eigenvalue is ���
���
�� �������

i� For f� � ����

it is ���
���
�� �������
�i� We conclude that the mathematical eigenvalue is ���
����� ��������i to 

s�f�

Running the code with less accuracy� we look for the value of f� which gives an answer closest to the

true answer� Using our canonical set of accuracy parameters� n � ���� (� � ���� lmin � ��� lmax � ���

nGL � 
� aacc � ��� bacc � ���� we �nd�

f� Largest mathematical eigenvalue
��� ���
����� ��������i
��� ���
����� ��������i
��� ���
���
� ��������i
��� ���
����� ��������i
��
 ���
�
�� �������
i

Clearly there is little to choose between f� � ���� ��� and ���� We use f� � ����

We usually use relatively fast� low�accuracy parameters for the �rst few calculations� to locate the 	����

eigenvalue roughly� Typical values might be n � ���� (� � ��� lmin � ��� lmax � ��� nGL � 
� f� � ����

aacc � ��� bacc � ���� We then use slow� high�accuracy values when homing in on the exact position of

the unit eigenvalue� Typical values might be n � ���� (� � ���� lmin � ��� lmax � �� nGL � �� f� � ����

aacc � ��� bacc � ����

��	 The mode��nding algorithm

Having established that we can �nd the mathematical eigenvalue to good accuracy� we now consider how

to locate the unit eigenvalues which correspond to self�consistent modes� The mathematical eigenvalue



depends on several quantities� First� there are the parameters describing the disk to which the perturba�

tion is applied� The disk parameter �� the cut�out indices N and M � and the core angular momentum

%Lc together determine the active surface density� while the anisotropy parameter � or radial velocity

dispersion %�u describes the temperature of the disk� The pattern applied to that disk is described by its

rotational symmetry m� its growth rate s and its pattern speed 'p�

We shall investigate modes of a given azimuthal symmetry in a given disk� meaning that m� �� N � M

and %Lc are held �xed� This leaves us free to adjust �� s and 'p� A disk at a given temperature� if it

admits a mode at all� will do so only for a particular growth rate and pattern speed� We may therefore

hold � �xed� and adjust s and 'p until a mode is found� This is in fact a search in only one dimension�

since the mathematical eigenvalue � depends on growth rate and pattern speed only through the complex

frequency � � m'p " is� We use the Newton�Raphson method in one dimension to �nd such modes�

When the disk is su�ciently hot� it is completely stable� As the disk is cooled� instabilities set in

through the marginal modes� for which the growth rate s is zero� We are therefore often interested in

the marginally stable modes� To �nd these� we set s to some vanishingly small value� and perform a

two�dimensional search in 'p and �� The diagram in �g� ��� shows curves of constant 'p and constant

�� at a �xed value of s�

�

�

Im	��

Re	��
	����

'p � '�

'p � 'n

'p � 'n "('n

� � �n

� � ��

� � �n "(�n

	�n�'n�

	�n�'n "('n�

	�n "(�n�'n�

Figure ���� The mode	�nding algorithm
 Solid lines show curves of constant temperature and pattern speed in the plane
of the mathematical eigenvalue


We used the Newton�Raphson method in two dimensions� Suppose that the solution � � � is at � � ��

and 'p � '�� Suppose we have an approximation to the solution� 	�n�'n�� We evaluate the eigenvalue

for these values of � and 'p� and obtain some value �� which di�ers from unity� In order to probe

how � depends on � and 'p� the eigenvalue is next evaluated at two further points� 	�n "(�n�'n� and

	��'n"('n�� To obtain the next approximation to the solution� �n���'n��� we pretend that � depends

linearly on � and 'p� The dotted lines in �g� ��� indicate the corresponding approximations to the curves



of constant � and 'p� Under this approximation�

�	�n���'n��� � �	�n�'n�� �n�� � �n
(�n

+�	�n�'n�� �	�n "(�n�'n�,

� 'n�� � 'n
('n

+�	�n�'n�� �	�n�'n "('n�, �

	���
�

Requiring �	�n���'n��� � � in this equation� and comparing real and imaginary parts� we obtain

expressions for �n�� and 'n���

�n�� � �n "(�n��� 'n�� � 'n "('n��� 	�����

where

(�n�� � �(�n
(

f+�� �R	�n�'n�, +�I	�n�'n�� �I	�n�'n "('n�,

"�I	�n�'n� +�R	�n�'n�� �R	�n�'n "('n�,g �
	�����

and

('n�� �
('n
(

f+�� �R	�n�'n�, +�I	�n�'n�� �I	�n "(�n�'n�,

"�I	�n�'n� +�R	�n�'n�� �R	�n "(�n�'n�,g �
	�����

where

( � +�R	�n�'n�� �R	�n "(�n�'n�, +�I	�n�'n�� �I	�n�'n "('n�,

� +�I	�n�'n�� �I	�n "(�n�'n�, +�R	�n�'n�� �R	�n�'n "('n�, 	�����

and �R� �I denote the real and imaginary parts respectively of the eigenvalue� This process is repeated

until the root has been found to the desired accuracy�

We used a di�erent method to check that the modes obtained in this way were indeed self�consistent

solutions of the integral equation 	����� We calculated the transfer function Sm	�� ��� over a grid of �
and ��� using the growth rate and pattern speed at which a mode was known to exist� This enabled us

to calculate the response Ares	�� to an imposed density pattern Aimp	�
��� We iterated this procedure

several times� so that

An��	�� �

Z ��

��
d��An	�

��Sm	�� ���� 	�����

Romberg integration 	Press et al� ����� was used to perform the integration� without employing any

smoothing procedures or Lagrange interpolation� If the initially�imposed density transform� A�	�
���

was a mode obtained using EISPACK� then the same density pattern was recovered at each successive

iteration� Furthermore� if initially a single leading log�spiral component was imposed 	so that A�	�
�� �

�	�������� then the pattern evolved until after about ��� iterations it had stabilised at the eigenfunction
corresponding to the mode� This process therefore con�rms our methods for locating modes� It relies on

the same routines to calculate the transfer function� but acts as an additional check on the techniques

used to build the matrix� �nd its eigenvalues and eigenvectors� and locate a unit eigenvalue�



��
 Comparison with numerical simulation studies

Thanks to the help of David Earn� we were able to compare our analysis with the results from a numerical

simulation� Earn studied a general power�law disk as described in his thesis 	Earn ������� His method

involves expanding the potential in a set of basis functions� much as we have done using logarithmic

spirals� Preliminary results were given in his thesis� but Earn later concluded that insu�cient basis

functions had been used� Earn has kindly provided us with revised values for three modes in a doubly

cut�out disk with a rising rotation curve�

Earn 	����� studied a disk with � � ���������� N � � M � 
� � � ���� The disk was given a quiet

start as described by Sellwood 	������ The simulations were �tted with normal modes using the method

of Sellwood and Athanassoula 	���
�� For the case %Rc � ��� Earn found two modes� a dominant mode

with %s � ���� and a secondary mode with %s � ����� To �nd the dominant modes� we varied the growth

rate s and pattern speed 'p until the largest mathematical eigenvalue was unity� To �nd the secondary

mode� we varied s and 'p until the second mathematical eigenvalue was unity� The results are compared

in the table below� Earn�s results are quoted with their estimated error� below are the results of our

analysis�

%Rc Pattern speed %'p Growth rate %s
�� ����	 ���� ��
� ����	 ���� 
���
	dominant� ����
�� ���� �������� ���
�� ����	 ���� ��� ����	 ���� ���
	secondary� ������� �� ��������� ���
� ����	 ����� ����� �����	 ����� ���

�����
�� ��� �������� ����

+Earn�s simulation� �� m � � functions active� ��� million particles� Linear analysis� n � ���� (� � ����

lmin � �� lmax � 
�� nGL � �� f� � ���� aacc � ��� bacc � ����,

The upper percentage in each cell is the error quoted by Earn� The lower percentage is the discrepancy

between our results and those of Earn� We see that in most cases the discrepancy is at least roughly

consistent with the error quoted by Earn� The major exception is the secondary mode� where our analysis

reports a negative growth rate 	equivalently no mode�� There are signi�cant di�erences in the treatment

adopted by Earn and the present analysis� For instance� Earn uses an inner and outer energy cut�o� as

well as the angular momentum cut�o�s� Orbits that venture outside a certain radial range 	in the present

case� ��� � R�R� � ��� are ignored� This has the e�ect of �nailing down� mass due to these orbits� In

the circumstances� the agreement between our methods is encouraging�

�Earn�s notation is di�erent from ours
 The quantity denoted � in Earn�s thesis is � �
�
of our �
 Earn�s N�� N� �eqs


�
��� and �
��� in his thesis� correspond to our N�� M�� de�ned in eq
 ��
���
 Earn uses the letter q for the anisotropy
parameter �which we call 
�� and uses 
 for the growth rate �which we call s�




Chapter �

Global Axisymmetric

Modes

��� Introduction

In this chapter� we consider the simplest case of axisymmetric perturbations to axisymmetric disks�

Toomre�s 	��
� famous study of the axisymmetric stability of disks using local theory is summarised�

Then a complete global stability analysis is presented for both the self�consistent and the cut�out disks�

The analysis is simpli�ed in the axisymmetric case because there is then no dependence on pattern speed�

This is intuitively obvious from the symmetry � nothing can be changed by rotating an axisymmetric

pattern � and has been proved rigorously by Kalnajs 	������

There are two kinds of axisymmetric instabilities� The �rst are axisymmetric Jeans modes� which cause

the disk to break up into hoops of compressed and rare�ed density� Cold disks are always violently

unstable to such clumping� As the velocity dispersion is increased� there comes a point when pressure

can stabilise the axisymmetric Jeans modes� This critical temperature is calculated via a global stability

analysis� It is found that local theory always gives good � sometimes excellent � agreement with the more

complicated global analysis� The second kind of axisymmetric stabilities are breathing modes� which

cause dispersal or concentration of the disk� The gaseous power�law disks are known to be susceptible to

such instabilities 	Lemos et al� ����� Syer � Tremaine ���
�� Our global stability analysis shows them

to be absent in the stellar dynamical power�law disks� Disks of stars are more stable than disks of gas to

breathing modes�

��� Local stability

Toomre 	��
� �rst discussed the stability of razor�thin disks to axisymmetric distortions� At low

wavenumber 	high wavelength�� the centrifugal forces arising from the rotation of the disk are su��

cient to stabilise the disk against the tendency to gravitational clumping� Conversely� for disturbances

of short wavelength� the stars� radial velocity is enough to carry them out of the potential disturbance

��



before it has managed to grow appreciably�

Toomre 	��
� 	see also Binney � Tremaine ����� ch� �� sec� �� gives the following simple argument to

explain the instability at low wavenumber� Consider a small circular patch� of area 	(R��� located on a

thin stellar sheet rotating with angular velocity '�	R�� We shall assume for the moment that the disk is

cold� so that all the stars are on circular orbits� Now suppose that the sides of the patch are reduced by

a factor 	���� The mass M �  	R�	(R�� contained within the patch is unchanged�

O

�

R

�
'�	R�

� �(R

�

�
(R

O

�

R

�
'�	R�

� �	�� �(R

�
�	�� �(R

Figure 
��� A patch of matter in a disk
 On the left the patch is shown in its original state� on the right� after being
compressed so its sides are reduced by a factor ��� ��


The force on a unit mass at the edge of the patch pulling it towards the centre of the patch was originally

GM�	(R��� After the compression� this force has increased by an amount (Fg � GM�(R� � G 	R��

However� this tendency towards clumping is resisted by centrifugal forces due to the rotation of the disk�

The angular momentum per unit mass of a star on the edge of the original patch� about the centre of the

patch� is of order L � '�	R�	(R�
�� The centrifugal force per unit mass is of order '�

�(R � L��	(R���

We expect that L will be conserved� so when the patch is compressed� the centrifugal force increases by

an amount (Fc � L��	(R�� � '�
�(R� If (Fc is less than (Fg� the patch continues to shrink� the

initial perturbation is ampli�ed� and the disk is unstable� If (Fc exceeds (Fg� the centrifugal force is

su�cient to overcome the clumping� The compressed patch expands back again� and the disk is stable�

The condition for stability is therefore (Fc � (Fg� or

(R �
G 

'�
�

� 	
���

Thus the wavelength of the perturbation must exceed a critical value �crit for the disk to be stable�

Toomre 	��
�� with a more rigorous treatment� obtains for �crit and the corresponding wavenumber
�

�crit�

�crit �

�G 

���
� �crit �

���R

�
G 
� 	
���

where �� is the epicyclic frequency� i�e� the frequency of radial excursions about the circular orbit�

Substituting for the surface density of the self�consistent power�law disks 	����� we �nd that the disk is

stable if

� � �crit � 	�� ��
!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

� � 	
���

�Here � is our dimensionless logarithmic wavenumber� which is ��R� �see eq
 ��
����
 It is not the same as
Toomre�s ������ �� which is ���� and thus has dimensions of reciprocal length




The self�consistent power�law disks are totally scale�free� so the critical wavenumber is independent of

radius� The dependence of �crit on the disk parameter � is shown in �g� 
��� Note that the vertical axis

is logarithmic�

Figure 
��� The dependence of the critical wavenumber �crit on �

The wavenumber rises 	wavelength falls� as � increases� Physically� we can see why this occurs by

considering eq� 	
��� and the arguments used to derive it� Since there is no dependence on radius� it is

simplest to consider a patch situated at the reference radius R�� The circular velocity here is v� � which

in our units is independent of � 	section ����� so all disks have the same circular velocity at this point�

In disks with rising rotation curves� relatively less of the density is concentrated inside R � R� 	�g� �����

so the surface density needs to be greater at R� in order to achieve the same circular velocity� Thus the

density of the patch  � is greater for negative � 	as is readily veri�ed from eq� 	����� We saw that the

force tending to compress the patch� (Fg � G �� is opposed by a restoring centrifugal force due to the

angular momentum of stars about the centre of the patch� This restoring force depends on the circular

frequency at the patch� '� � v��R�� Thus (Fc � v��(R�R
�
�� The gravitational force is greater for disks

with rising rotation curves� To restore the balance� we must increase the size of the patch (R� Thus

longer wavelengths are necessary for stabilisation by centrifugal forces when the rotation curve is rising�

The discussion so far has been for a cold disk� Simple physical arguments have indicated that the disk

is stable to disturbances of su�ciently long wavelength� but unstable to perturbations of wavelength less

than a critical value� This instability at short wavelengths can be overcome by heating the disk� If the

disk is warm� then its stars have random motions� described by %�u� which tend to carry them outside the

region in which the perturbation is growing� This limits their participation in the co�operative e�ects

which cause instability� The disk is stable if the random velocities are large enough to carry stars out of the

compressed patch within the characteristic growth time � of the perturbation� �u � (R�� � To estimate

� � we write (R � exp	�t���� Then d�(R�dt� � �(R���� Equating this to the force GM�	(R�� acting

on a unit mass at the edge of the patch� we obtain � � 	(R�G ����� The condition for stability is

thus 	Binney � Tremaine ����� ch� ��

(R �
��u
G 

� 	
��



This places a lower limit on the wavelength of an unstable perturbation� If this coincides with 	or exceeds�

the upper limit provided by 	
���� no unstable disturbances will be possible� We thus arrive at an order

of magnitude expression for Toomre�s stability criterion� the minimum velocity dispersion necessary for

stability is approximately

�u�min � G 

'�
� 	
���

Toomre 	��
� carried out an exact calculation for a thin� warm� rotating disk composed of a continuum of

stars with an assumed Maxwellian distribution of velocities� His analysis is valid if the velocity dispersion

is small compared to the circular speed and the disturbances are of short wavelength� that is� �u �� vcirc

and � �� �� He found that marginally stable perturbations were described by the following implicit

equation for the dimensional wavenumber k � �
�� 	also derived by Kalnajs in ��
��

jkj��u
�
G 

" e�k
���u��

�
�I�

�
k���u
���

�
� �� 	
�
�

I� is a modi�ed Bessel function� I�	z� � e�i
���J�	zei
��� 	see Binney � Tremaine ����� app� ��C��

Eq� 	
�
� can be solved to give the marginal stability curve for a particular surface density�

To investigate the solutions to this equation� we de�ne a response function

R	�� %�u� �
�
j�j%��u

!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

� " exp��	�%�u� �
���

	
I�

�
	�%�u�

�
���

	���
� 	
���

This is the reciprocal of the left�hand side of 	
�
�� expressed in terms of � and %�u� Solutions to 	
�
� thus

correspond to R	�� %�u� � �� We plot R	�� %�u� against wavenumber � for several values of the velocity
dispersion %�u in �g� 
��� For all %�u� there is a solution at � � �� as is apparent from eq� 	
���� These are

the breathing modes 	Lemos et al� ������ for which the density perturbation has no radial nodes� Let us

remark that local theory may not be a good guide for such long�wavelength disturbances� A full global

analysis is really needed to ascertain the existence of the breathing modes� For su�ciently high values of

%�u� there are no solutions other than the breathing mode� The disk is stable to the Jeans instability� As

%�u is reduced� we encounter a value %�u�min for which the disk is just stable� the curveR	�� %�u� touches the
line R � � only once� at the most unstable wavenumber �u� For %�u � %�u�min� the curve R	�� %�u� crosses
the line R � � twice� so there are two solutions in addition to the breathing mode� This is illustrated in

�g� 
�� which focuses on the region of low wavenumber close to R � �� It shows the curve R	�� %�u�min�

	dashed line� and marks the most unstable wavenumber �u�



Figure 
��� The function R��� ��u� plotted against wavenumber � for � values of the velocity dispersion� ��u � ����� �
���
�
��� �
�� 


 �
�
 The line R � �� corresponding to solutions of ��
��� is marked with a dotted line
 The left	hand plot
shows � � ����� for which ��u�min � ����� and �u � ����
 The right	hand plot shows � � ������ for which ��u�min � �����
and �u � ���


Figure 
�� The function R��� ��u� plotted against
wavenumber � for � � ���� and � values of the veloc	
ity dispersion� ��u � ����� �
��� �
��� �
�� 


 �
�
 The
dashed curve is that with ��u � ��u�min
 The most unstable
wavenumber �u is marked with a dotted line
 For � � �����
��u�min � ����� and �u � ����


Figure 
��� The local marginal stability curve R � � for
disks with � � ����
 The minimum temperature needed for
stability and the most unstable wavenumber are marked
with dotted lines
 For � � ����� ��u�min � ����� and �u �
����


The solutions of eq� 	
�
� de�ne the marginal stability curve for a particular surface density� Fig� 
�� shows

this for � � ����� As we saw in �gs� 
�� and 
�� for su�ciently high values of the velocity dispersion

%�u� there are no solutions 	other than the breathing mode�� As the disk is cooled� it becomes unstable at

the minimum velocity dispersion %�u�min and most unstable wavenumber �u� marked by dotted lines on

the above plots� For still lower values of %�u� there are two solutions for each %�u�

Fig� 
�� indicates that disks with rising rotation curves 	negative �� are less stable than those with falling

rotation curves� The curves in �g� 
�� are shifted upwards for � � ����� relative to � � ����� Thus a

curve such as that with %�u � ���� which for � � ���� never crosses the line f � �� intersects f � � twice



for � � ������ %�u � ��� is enough to stabilise the disk with � � ����� but not that with � � ������ To
see in more detail how %�u�min and �u depend on �� we rewrite 	
�
� in terms of

x �
�

�crit
� y �

�crit�u
R��

�
�u��
�
G 

� 	
���

where �crit is de�ned by 	
���� Eq� 	
�
� then becomes

jxjy� " e�x
�y�I�	x

�y�� � �� 	
���

This de�nes a marginal stability curve in the x�y plane separating stable regions from unstable� analogous

to that shown in �g� 
��� The maximum value of the curve � call it the point 	xmax� ymax� � de�nes both

the velocity dispersion �u�min at which the disk is locally just stable and the most unstable wavenumber

�u� The power of Toomre�s approach is that these can be calculated completely generally without making

assumptions about the form of  and ��� Eq� 	
��� can be solved numerically to give xmax � �������
�

and �
ymax � ���������� So for the self�consistent power�law disks� local theory predicts that the

wavenumber of the �rst mode to appear as the disk is cooled is

�u � �������
� 	�� ��
!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

� � 	
����

Local theory predicts stability when

� � %�u�min �
���������

�

p
�� �

!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

�
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�
�
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�
!
�
�
� 	� " ��

� � 	
����

The following graph shows the dependence of the dimensionless velocity dispersion %�u�min on �� Note

that the vertical axis is logarithmic�

Figure 
�
� The dependence of the minimum dimensionless velocity dispersion ��u�min on �

The minimum dimensionless velocity dispersion falls steeply with increasing �� Mathematically� this

is due to the gamma functions in 	
����� We can see physically why it occurs by returning to the



arguments used in deriving the order�of�magnitude expression 	
���� We saw in the derivation of 	
���

that a cold disk is always unstable to gravitational clumping on a su�ciently small scale� since the

centrifugal force can stabilise perturbations only down to a �nite wavelength �crit� A warm disk can

become stable to these low�wavelength perturbations� if its stars have enough random velocity �u to

carry them out of the perturbation before it has grown signi�cantly� The larger the perturbation� the

further the star has to travel in order to be clear� on the other hand� larger perturbations also grow more

slowly� The growth time of the perturbation increases with wavelength only as
p
�� so as the wavelength

of the perturbation increases� stars need more random velocity in order to escape� �u �
p
�� As in

the discussion following �g� 
��� we consider a patch situated at the reference radius R�� and de�ne the

surface density here to be unity� We saw then that for disks with rising rotation curves 	negative ��� the

circular frequency '� is smaller and the centrifugal force weaker� and thus the patch remains unstable

up to longer wavelengths than for disks with falling rotation curves� As we have just seen� the stars

need to move faster in order to stabilise longer wavelengths� Thus the random motion needed to ensure

stability at all wavelengths is greater for rising than for falling rotation curves� In fact� this tendency is

exacerbated by the dimensionless variables we use� The dimensionless velocity dispersion %�u is obtained

by comparing the dimensional velocity dispersion �u to the reference velocity v� 	������ For negative ��

�u�min is larger and v� is smaller� This explains the steep fall in %�u�min as � increases�

Here we have used the dimensionless velocity dispersion %�u�min to compare the stability of di�erent disks�

It is not immediately clear that this is the best parameter to use for the comparison� since the conversion

of %�u into a physical velocity dispersion depends on �� The magnitude of the physical velocity dispersion

at a particular point in various disks depends on the units used� If we use our usual units� in which

v� � R� � �� then the dependence of the minimum dimensional velocity dispersion �u�min on � is given

by

�u�min �
���������v�

�

p
�� �

!
�
�
� 	� " ��

�
!
�
�
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����

In units in which  � � R� � �� the dependence on � is

�u�min �
���������p
�� �

r
G �R�
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Figs� 
�� and 
�� show how the dimensional velocity dispersion �u�min varies with radius� in disks with

di�erent values of �� In �g� 
��� units where v� � � are employed� in �g� 
��� G � � � 	c�f� �gs� ���

and ���� Except at the very centre of the disk� where the velocity dispersion becomes in�nite� �u�min

is always larger for disks with rising rotation curve� Thus there is no unit�dependent ambiguity� we can

de�nitely state that disks with rising rotation curves are less stable� In the remainder of this thesis� we

shall always use units in which v� � ��



Figure 
��� The minimum dimensional velocity dispersion
�u�min� in units where v� � R� � �
 �u�min� given in
eq
 ��
���� is plotted against radius for  di�erent values of
�� from � � ���� to � � ����


Figure 
��� The minimum dimensional velocity dispersion
�u�min� in units where G�� � R� � �
 �u�min� given in
eq
 ��
���� is plotted against radius for  di�erent values of
�� from � � ���� to � � ����


Toomre 	��
� introduced the quantity Q to describe the stability� Q� the stability parameter� is the ratio

of the velocity dispersion at a point to that necessary for local axisymmetric stability� Thus in general

Q 
 �u
�u�min

�
�

���������

�u��
G 

� 	
���

Subsequently� when discussing cut�out disks� we shall often �nd it useful to relate the velocity dispersion

%�u in a particular disk to the %�u�min 	
���� necessary to ensure local axisymmetric stability in the self�

consistent disk� We shall refer to this ratio as Qs

Qs 
 %�u
!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��
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�
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���������
� 	
����

This is not quite Toomre�s Q� in that we are comparing the actual velocity dispersion to that needed for

stability in a di�erent disk� Qs is related to the usual Q by

Q � Qs
 eq

 active
	
��
�

��� Global stability to an axisymmetric perturbation

We now begin our global stability analysis� In the following sections� we investigate the global stability

of the self�consistent and cut�out disks� using the integral equation machinery developed in the preceding

chapter� In the case of an axisymmetric perturbation� the integral equation admits certain symmetries�

The �rst simpli�cation is that the frequency is purely imaginary� � � is� There is no dependence on

the pattern speed� since nothing is changed by rotating an axisymmetric pattern� Secondly� the integral

equation is equivalent to one with a Hermitian kernel� and hence must have purely real eigenvalues�



As a preliminary to proving this� we �rst note the symmetries of the angular momentum function and

the Fourier coe�cient in the axisymmetric case� From the de�nition of Flm 	������ we have

Fl� �
�

�


���� � " �� � ��

� %U� " � � �

����
Z �

�

l%�e�i�
�

���
ln �Lz

l%�� i%s%L
���
���
z

%H	%Lz�
d%Lz
%Lz

� 	
����

It is straightforward to see that� whatever the form of the cut�out function�

Fl�	�� � F �
�l�	���� 	
����

Similarly� from the de�nition of Qlm given in eq� 	����� we have

Ql�	�� �
�




Z 


�

exp
n�
i�� �

�

�
%X
o
cos l� d�� 	
����

and hence the symmetries

Q�
l�	�� � Ql�	��� Q�l�	�� � Ql�	�� 	
����

	The �rst of these in fact holds for general m�� We now recast the integral equation 	��
� into a form with

a Hermitian kernel� Following Zang 	���
�� we de�ne a modi�ed transfer function and density transform
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�� �

s
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The integral equation 	��
� now becomes
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��
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The value of this transformation is that T�	�� �
�� is Hermitian� We have� from eqs� 	
���� and 	�����
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We make the transformations �� ��� �� � �� l� �l� and take the complex conjugate� to obtain
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We now use the symmetries Q�l�	�� � Ql�	�� and F
�
�l�	�

� � �� � Fl�	� � ��� to derive the Hermitian

nature of T��

T �� 	�
�� �� � T�	�� �

�� 	
����



The modi�ed integral equation 	
���� is thus a homogeneous� linear Fredholm integral equation with a

Hermitian kernel� It must therefore have real eigenvalues and orthogonal eigenfunctions 	Tricomi ������

Each eigenvector Bn must satisfy the modi�ed integral equation 	
���� with its corresponding eigenvalue

�n�

�nBn	�� �

Z ��

��
d��Bn	�

��T�	�� ���� 	
���

We then multiply this equation by the complex conjugate of another eigenvector Bm� and integrate over

all � to arrive at

�n
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If we interchange n and m and take the complex conjugate� we obtain

��m
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��� 	
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We now interchange the dummy variables � and �� and swap the order of integration� and then use the

fact that the kernel is Hermitian and hence T �� 	�
�� �� � T�	�� �

��� This yields

��m
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��
d�Bn	��B

�
m	�� �
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��
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We now subtract 	
���� from 	
���� to obtain

	�n � ��m�
Z ��

��
d�B�

m	��Bn	�� � �� 	
����

Thus if n �� m� the eigenvectors are orthogonal� while if n � m� the integrand is positive de�nite and hence

the eigenvalue is purely real 	except for the trivial case Bn	�� � ��� This occurs because axisymmetric

eigenvalues have no dependence on pattern speed� In general� the mathematical eigenvalue � is an analytic

function of the complex frequency �� For m � �� the frequency is purely imaginary� from covering the

complex plane� it collapses onto the imaginary axis� As a result� the eigenvalue collapses onto the real

axis� Our problem thus becomes one�dimensional� Mathematically� the proof that the eigenvalues are

real depends on the symmetry Fl�	�� � F �
�l�	��� 	
����� which in turn depends on the fact that � is

imaginary�

There is a further symmetry� If we make the transformations � � ��� �� � ���� l � �l in 	
���� and
take the complex conjugate� we obtain
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Using the symmetry properties of the Fourier coe�cients 	
���� and the angular momentum func�

tion 	
����� along with that of the Kalnajs gravity factor K	��m� � K	���m� 	����� we obtain the
result

T �� 	������� � T�	�� �
��� 	
����

This has the consequence that the eigenvalues are degenerate� if B	�� is an eigenvector with eigenvalue

�� then so is B�	���� To see this� we make the transformations � � ��� �� � ��� in the modi�ed
integral equation 	
����� and take the complex conjugate� We obtain

�B�	��� � �
Z ��

�
d��B�	����T �� 	������� �

Z ��

��
d��B�	����T�	�� ���� 	
����

i�e� B�	��� also satis�es the integral equation 	
����� In terms of our original density transforms�

A	�� and A�	��� are a degenerate pair with the same eigenvalue �� This is expected for axisymmetric
perturbations� When m � �� the logarithmic �spirals� are just rings� and there is no di�erence between

log�spirals with wavenumber 	�� Thus the integral equation cannot favour one sign of the wavenumber
over another�

��� Neutral modes in the self�consistent disk

The self�consistent disk has no intrinsic length� or time�scales� A neutral mode contributes no length�

or time�scales of its own� meaning that the problem is entirely self�similar� so the response to a single

log�spiral is itself a log�spiral� In Chapter � we derived an expression for the neutral response function

R 	���� The form of this function for m � � is shown in �g� 
��� This �gure is analogous to �g� 
���

which plotted the response function for the local disk� We see that the structure of the curves is very

similar� Once again� increased velocity dispersion always tends to stabilise the disk�

The major di�erence between �g� 
�� and �g� 
�� is that the local response curves have a solution at

� � �� whereas the global curves do not� The global analysis does not admit breathing modes� Breathing

modes are analogous to the instability of stars with � � ��� where � is the ratio of the heat capacity

at constant pressure to the heat capacity at constant volume 	see Binney � Tremaine ����� ch� �� p�

����� These are stars dominated by radiation pressure� In the stellar dynamics of spherical systems�

� � ���� as for a monatomic gas� Thus breathing modes do not exist in spherical stellar systems� It

appears that a similar result holds for our disks� The indication by local theory that breathing modes

exist 	section 
��� was misleading� This is not surprising� since the theory had been taken so far beyond

the small�wavelength regime in which it is trustworthy�



Figure 
��� The response function R��� ��u� for the � �
���� disk
 R is plotted as a function of wavenumber � for
� values of the velocity dispersion� ��u ��
�� �
��� �
�� �
��


 �
�
 Also shown� with a dashed line� is the curve with
��u � ��u�min
 The most unstable wavenumber �u is marked
with a dotted line
 For � � ����� ��u�min � ����� and
�u � ����


Figure 
���� The marginal stability curve R � � for the
� � ���� disk
 The solid lines show the result of the global
calculation� the dotted lines show results using local theory

The temperature and wavenumber at which instability sets
in are marked
 These are ��u�min � ����� for global stability�
��u�min � ����� for local stability� �u � ���� for global
stability� �u � ���� for local stability


As Binney � Tremaine 	����� explain� breathing modes can occur in gas disks because the gas molecules

have internal degrees of freedom� which absorb energy released in changes such as contraction� This energy

is then not available to the translational degrees of freedom which contribute to the pressure� There is

thus insu�cient pressure to resist gravitational collapse� Conversely� when a stellar disk contracts� all

the energy released contributes to increased random velocity� which tends to counteract the e�ect of the

increased gravity� Thus stellar disks are more stable than gaseous disks to breathing modes�

We plot the marginal stability curve R � � in the plane of dimensionless wavenumber � and velocity

dispersion %�u� just as performed in section 
�� for local theory� Fig� 
��� compares the marginal stability

curves obtained using local theory 	dotted lines� and global theory 	solid lines�� The agreement is good�

especially close to the critical temperature�

Figure 
���� The most unstable m � � modes in self	consistent disks with � � ���� and � � �����
 The graphs show
the real part of the density� ��R� � �R��R�	�� cos��u ln�R�R���
 For � � ����� �u � ����� for � � ������ �u � ���
 The
vertical dotted lines mark the maxima and minima of the cos term� which occur at R � exp�n����




Fig� 
��� shows the �rst neutral mode to set in� for disks with � � 	����� For the falling rotation curve
	� � ������ the most unstable wavenumber is larger than for the rising rotation curve 	� � ������� Thus
the maxima of the oscillatory component in  	R� are more closely spaced for the falling rotation curve�

Figs� 
��� and 
��� compare the results obtained with a global calculation 	solid lines� to those from local

theory 	dotted lines�� The results used in these graphs are tabulated in Appendix E� Fig� 
��� shows

the minimum temperature needed for axisymmetric stability� In the left�hand plot� this is shown as the

minimum velocity dispersion %�u�min� As Toomre and Zang found for � � � 	Zang ���
�� the agreement

is excellent� The right�hand plot presents the same data in terms of Toomre�s stability parameter Qs�

This is the ratio of the global %�u�min to that calculated by local theory� It is clearer in this plot that the

local and global results coincide most closely at � � �� where the rotation curve is �at� This is probably

because Toomre�s local analysis assumes that the stellar disk has a Maxwellian velocity distribution� This

is roughly true for the Toomre�Zang disks 	see eq� 	��
���� but not for the other power�law disks�

Figure 
���� Minimum temperature for global axisymmetric stability plotted against �
 In the left	hand plot� this is
presented as the minimum velocity dispersion ��u� and in the right	hand plot as the stability parameter Qs� necessary to
stabilise the disk to axisymmetric perturbations
 The dotted line shows the minimum temperature needed for local stability


Figure 
���� Most unstable wavenumber �u plotted against �� for an axisymmetric perturbation in a self	consistent disk

The solid line shows the results of the global calculation� the dotted line those for local theory
 The right	hand plot shows
the same data expressed in terms of the most unstable wavelength u � ��R��u




Local theory is seriously discrepant only when � � ������ Toomre�s local analysis assumes that the
velocity dispersion is small compared to the circular velocity� and that the wavelength of any disturbance

is small compared to the radius R at the point under consideration� In our notation� these two conditions

become %�u �� � and � �� �� We see from �gs� 
��� and 
��� that these conditions cease to be valid when

� � ������ As � becomes more negative� the wavelength of the unstable perturbation becomes larger�
undermining local theory� The local calculation then underestimates the velocity dispersion needed for

axisymmetric stability� Disks with rising rotation curves remain globally unstable even when they are

hot enough to be locally stable�

��� Global stability of the cut�out disks

How does this marginal stability analysis for the self�consistent disk compare with results from the cut�

out disks� The most obvious di�erence is that the self�consistent disk is self�similar� so that instabilities

set in at all radii at once� When we introduce a cut�out� we break this self�similarity� In the cut�out

regions of the disk� the active surface density is now less than the equilibrium density� Using 	����� as

an approximation for the density of a doubly cut�out disk� the stability criterion �u�min � ���
G ���

becomes
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This tends to the self�consistent disk result if R� �� R �� R�
%Rc� The cut�out function lowers the density

 in certain regions of the disk� and thus tends to reduce the minimum velocity dispersion needed for

local stability in these regions� The minimum velocity dispersion needed to stabilise the disk everywhere

to axisymmetric perturbations is set principally by the regions of the disk which have been least a�ected

by the cut�out� Thus we expect to �nd that the presence of the cut�out does not greatly a�ect %�u�min�

This conclusion holds because axisymmetric log�spiral waves do not propagate through the disk� We can

see this mathematically by considering the real part of each log�spiral component 	������

Re	 �mimp� �  pe
st

�
R�

R

����

cos

�
m	� �'pt� " � ln

R

R�


� 	
����

Crests of the density wave occur when the argument of the cosine is equal to �n
� Along a line of constant

�� the radial position of the nth crest varies as

Rcrest � R� exp
�

�
+�n
 �m	� �'pt�,� 	
����

For m � �� the crests of the density wave remain in the same position� The wave grows or decays� but

does not propagate through the disk� Thus the axisymmetric perturbation is relatively una�ected by the



presence of the cut�out� For non�zero values of m� the waves do propagate� They are greatly a�ected by

the presence of the inner density cut�o�� which presents a boundary where re�ection and refraction can

occur 	see section ����� In subsequent chapters� we shall see that the self�consistent and cut�out disks

have very di�erent stability to non�axisymmetric modes�

The limit of vanishing growth rate

In the axisymmetric case� the limit of vanishing growth rate is rather delicate� and worth some discussion�

As for the scale�free disk� the results of setting s equal to zero are not the same as the limiting value of

the results as s � �� The general expression for the angular momentum function for the inner cut�out

disk is derived in Appendix C� This expression has no limiting value as s � � for m � �� From 	C��
��

we obtain
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Taking the principal value of the logarithm� we �nd that
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and hence the limit in 	
��� is
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�s���

e�i� ln
l��
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�s���

e�i� ln jjlj����sj 	
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For very negative values of �� the e
� term in 	
��
� ensures that the limit is approximately zero� But

for positive �� the expression for Flm fails to converge to any de�nite limit� This might be expected

to present problems for numerical implementation� Fortunately� it turns out that the mathematical

eigenvalue converges even though Flm does not�

The following table shows the results for a particular Flm as s � ��� The results for each of the two

terms inside the braces in 	
��� are shown separately� We consider an m � � perturbation in an inner

cut�out disk with � � ����� N � � and � � ����� 	corresponding to Qs � ��� We study the angular

momentum function at � � ��� %U � ���� l � ��

Contribution from Contribution from N

Growth rate s pole at ln l���m��
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The contribution from the �rst pole converges to a constant magnitude� but its phase fails to converge�

This means that the answer for Flm fails to converge� However� the largest mathematical eigenvalue

for this perturbation does converge as s � �� as demonstrated below� +Numerical accuracy parameters�

n � ���� (� � ���� lmin � ��� lmax � �� nGL � �� f� � ���� aacc � ��� bacc � ����,

Growth rate s Largest mathematical eigenvalue �
�� ���� ��
�

�
���� ����
���
���� �������
���� ����
��
���� �������
���� ��������
���� �������
���� �������
���� �������

The mathematical eigenvalue is clearly converging to a value close to unity� This is presumably because the

eigenvalue is dominated by the matrix elements along the diagonal � � �� where the angular momentum

function diverges 	eq� 	
����� Here the troublesome term 	
��
� is simply unity� We now look at this

convergence in more detail� We work out the eigenvalue using four di�erent sets of numerical accuracy

parameters�

Accuracy set n (� lmin lmax nGL f� aacc bacc
Accuracy set � 
� ��� �� �� 
 ��� �� ���
Accuracy set � ��� ��� �� �� � ��� �� ���
Accuracy set � ��� ��� �� � � ��� �� ���
Accuracy set  ��� ��� � �� � ��� �� ���

The mathematical eigenvalues obtained with the di�erent accuracy sets were�
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Both real and imaginary parts of the mathematical eigenvalue � are recorded� We know that the eigen�

value should be real� so the size of jIm	��j is a useful clue as to the accuracy� As we expect� jIm	��j
decreases as the accuracy parameters are made more strict� However� jIm	��j increases as the growth
rate tends to zero� and this cannot be overcome by tightening the accuracy parameters� since there is

already no di�erence between accuracy sets � and � We can be con�dent that the limiting value of the

mathematical eigenvalue as s � � is ����� to � d�p�� the �nite size of Im	�� indicates that we cannot

claim higher accuracy� The eigenvalues shown in the table were calculated using EISPACK 	section �����

They were also checked with the power method� there was no di�erence to within the size of jIm	��j�
except that the sign of the Im	�� was sometimes di�erent from that reported by EISPACK�

We also �nd� as reported by Toomre and Zang 	���
�� that the smaller eigenvalues become larger fractions

of the dominant eigenvalue as s is decreased� They suggest that this e�ect is linked to the existence of a



continuum of modes in the self�consistent disk� For example� for accuracy set � the �rst six eigenvalues

reported by EISPACK for successively smaller growth rates are

s � ��� s � ���� s � ���� s � ����� s � ����
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We also notice that the successive pairs of eigenvalues are close together� in accordance with the theoretical

expectation that the eigenvectors occur in degenerate pairs�

For the self�consistent disk exposed to an axisymmetric perturbation with vanishing growth rate� the

transfer function is proportional to a Dirac delta�function� Once the self�similarity has been broken by

applying a cut�out� a delta�function no longer occurs in the analysis� However� the transfer function

Sm	�� ��� still becomes more peaked about the diagonal � � �� as the growth rate s� �� The following

contour plots show the real and imaginary parts of the m � � transfer function for an inner cut�out disk�

Positive contours are drawn with solid lines� and negative with dotted� These plots also demonstrate

the Hermitian nature of the transfer function� 	Strictly speaking� it is the modi�ed transfer function

T�	�� �
�� 	
���� which is Hermitian� but close to the diagonal T�	�� ��� � S�	�� ���� and thus S� 	�� ��� �

S�� 	��� ����

Figure 
��� The transfer function S���� ��� for s � ���
 Contours are drawn at ���� ���� ���� ���������� of the
maximum value of jRe�S��j in the left	hand plot� and of jIm�S��j in the right	hand plot
 Positive values are drawn with
solid contours� and negative with dotted
 �� � ����� N � �� ��u � ������ 
 � ����� m � �� �p � ���� s � ����



Figure 
���� The transfer function S���� ��� for s � ����
 Contours are drawn at ���� ���� ���� ���������� of the
maximum value of jRe�S��j in the left	hand plot� and of jIm�S��j in the right	hand plot
 Positive values are drawn with
solid contours� and negative with dotted
 �� � ����� N � �� ��u � ������ 
 � ����� m � �� �p � ���� s � �����

We see that for vanishing growth rate� most contributions come from small values of �� where the imposed

and response wavenumbers are similar� In the expression for the angular momentum function for the

inner cut�out disk 	C��
�� we can then write

N	�� e�
��N � � 
#�� 	
����

The dependence on the inner cut�out function N is cancelled out in the matrix elements close to the

diagonal� where the transfer function is largest� We thus expect the stability of the inner cut�out disk to

be virtually independent of N �

For the doubly cut�out disk� the angular momentum function is given by 	C���� It is straightforward to

take the limit m � �� s� � and obtain�
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Unless %Lc is very large� no such cancellation of N and M occurs� We therefore expect the results for the

doubly cut�out disk to depend on the cut�out indices�



��� Marginal modes

Having convinced ourselves that we can �nd the mathematical eigenvalue to good accuracy� even in the

rather strange limit s � �� we proceed to consider the marginal stability of the cut�out disks� First we

look in general terms at how the mathematical eigenvalue depends on growth rate and temperature�

Figure 
��
� Dependence of the largest mathematical eigenvalue on growth rate s and temperature Qs
 Curves are drawn
for six di�erent values of Qs� Qs � ���� �
�� �
�� �
�� �
�� �
�
 The Qs � � curve is drawn with a bolder line
 For the
� � ���� disk� Qs � � corresponds to a velocity dispersion of ��u � ������ and for � � ������ to ��u � �����
 The curves are
for an inner cut	out disk with N � �


For su�ciently small Qs� we see that a unit eigenvalue can always be found for su�ciently large s� when

the disk is cool� it is susceptible to fast�growing modes� As the disk is heated� the growth rate of the

unstable mode decreases� When the disk is su�ciently hot� the disk is stable and no modes exist� The

temperature at which the disk is marginally stable is given by the Qs for which the s � �
� eigenvalue is

unity� We see that this value of Qs is close to unity� in accordance with our argument that the cut�out

disks should have stability properties close to those of their self�consistent counterparts� We investigated

the dependence of the marginal stability upon � by setting s � ���� and using the Newton�Raphson

method to �nd the velocity dispersion %�u�min necessary for a self�consistent mode�

The inner cut�out disks

Tables of the marginal modes are given in Appendix E� The results are shown in �g� 
���� The left�

hand plot shows the velocity dispersion %�u�min as a function of �� The results from the present global

calculation for an inner cut�out disk are shown with a solid line� Four di�erent values of N were used� but

they made so little di�erence to the results that the curves are scarcely distinguishable� For comparison�

the results for the self�consistent disk are also shown 	with dotted and dashed lines for local and global

results respectively�� reproducing �g� 
����



Figure 
���� Minimum temperature for axisymmetric stability plotted against �� for disks with various cut	out functions

The left	hand plot shows the minimum velocity dispersion ��u� the right	hand one shows the same data in terms of the
stability parameter Qs
 The solid lines indicate results for an inner cut	out disk
 Results for N � �� �� �� � are plotted
in both graphs� but coincide so closely as to be virtually indistinguishable in the left	hand graph
 The dotted and dashed
lines show the results for the self	consistent disk derived from local and global theory respectively
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���� �� � ��

��
 �

As expected� the inner cut�out disks have almost exactly the same stability as the self�consistent disk�

This is in accordance with Toomre and Zang�s �nding that the stability criteria for the self�consistent

and N � � cut�out disks agreed �to within a few tenths of one percent� 	Zang ���
�� The inner cut�out

does have a slight e�ect on the global stability� which is more easily seen when the results are expressed

in terms of Qs� This is the ratio of the velocity needed for global axisymmetric stability in the present

cut�out disk to that needed for local axisymmetric stability in the corresponding self�consistent disk 	see

eq� 	
������ This is shown in the right�hand plot of �g� 
���� The dotted line shows Qs � �� which is

by de�nition the result for local theory in the self�consistent disk� The dashed line shows the result of

a global calculation in the self�consistent disk� and the solid lines those of a global calculation in the

cut�out disks� For both rising and falling rotation curves� the inner cut�out function tends to make the

disk slightly more stable� in that the temperature can be lowered slightly further before axisymmetric

instabilities set in� As expected� the value of the cut�out index has little e�ect� The lowest curve in the

right�hand plot of �g� 
��� is for N � �� N � �� ��  are practically indistinguishable�

For the self�consistent disk� the neutral modes are single log�spirals� In accordance with this� the density

transforms for the cut�out disks are strongly peaked� Fig� 
��� shows density transforms of marginal modes

in the N � � disks with � � 	����� Also shown are the most unstable wavenumbers for the corresponding
self�consistent disks� We de�ne the dominant wavenumber to be that at which the amplitude of the density

transform A	�� is maximum� We then de�ne the most unstable wavenumber �u for the cut�out disks to

be the dominant wavenumber of the marginal mode� Fig� 
��� suggests that this wavenumber is typically

close to the most unstable wavenumber of the corresponding self�consistent disk�



Figure 
���� Density transforms A��� for marginal modes in the inner cut	out disk with N � �
 The left	hand plot is
for � � ���� and the right	hand one for � � �����
 In each case� the solid line is Re�A����� the dotted line is Im�A����
and the dashed line is the envelope �jA���j
 The vertical line marks the �u for the corresponding self	consistent disk
 For
� � ����� �u � ����� ��u�min � ������ 
max � ����� for � � ������ �u � ���� ��u�min � ����� 
max � ����
 �Numerical
accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���� �� � ��

��
 �

Fig� 
��� con�rms this� The solid lines shows the dominant wavenumber plotted against � for various

inner cut�out disks� The dotted line shows the most unstable wavenumber for the self�consistent disk�

reproducing �g� 
���� The results for the self�consistent and cut�out disks are very similar across the full

range of �� Note that our method of solving the integral equation involves discretising in wavenumber�

The � are thus available to the nearest (�� which accounts for the slightly wobbly appearance of the

curves for the cut�out disks�

Figure 
���� Most unstable wavenumber �u plotted against �� for disks with various inner cut	out functions
 The solid
lines show the most unstable wavenumber for inner cut	out disks with N � �� �� � and �
 The dotted line shows the
most unstable wavenumber for the self	consistent disk
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ����
lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���� �� � ��

��
 �

The doubly cut�out disks

Tables of the marginal modes for doubly cut�out disks are given in Appendix E� Twelve disks were

studied� those with inner cut�out index N � �� �� �� � in each case with outer cut�out indexM � �� � 
�

and %Rc � ���� The results are summarised in �g� 
���� The presence of the outer cut�out does not change

the basic shape of the curve� As expected from the form of the angular momentum function 	
����� there

is more dependence on the value of the cut�out indices N andM than there was for the inner cut�out disk

in �g� 
���� Again� it is helpful to consider this data in terms of Toomre�s stability parameter Qs� We



compare the velocity dispersion needed for global stability in the various cut�out disks with that needed

for local stability in the self�consistent disk� This ratio Qs is shown in the right�hand plot of �g� 
����

The results obtained previously for the self�consistent disk are also shown�

Figure 
���� Minimum temperature for axisymmetric stability plotted against �� for disks with various cut	out functions

The left	hand plot shows the minimum velocity dispersion ��u� the right	hand one shows the same data in terms of the
stability parameter Qs
 The solid line shows the global� and the dotted line the local� stability of the self	consistent disk

The broken lines are for various doubly cut	out disks
 The inner cut	out indices are N � �� �� �� �� with in each case M � ��
�� �� �Rc � ���
 In the ��u�min plot� they coincide too closely to be easily distinguished
 �Numerical accuracy parameters�
n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���� �� � ��

��
 �

The additional outer cut�out function tends to make the disk more stable� in that less heat is needed

to stabilise the doubly cut�out disk� The outer cut�out has most e�ect for rising rotation curves� It is

interesting that the presence of the outer cut�out makes the inner cut�out more signi�cant� Whereas for

the inner cut�out disk� the value of N had little e�ect� here N has a noticeable e�ect on the stability� All

the cut�out disks are more stable than the self�consistent disk� but those where the cut�out is gentle 	i�e�

low N� are more stable than those with a sharper cut�out 	high N�� A similar e�ect was seen with the

outer cut�out� For each N � the curve with M � 
 lies above the curve with M �  which lies above the

curve with M � �� so the more gently tapered disks are more stable�

��	 Summary

In this Chapter� we have studied the stability of the power�law disks to axisymmetric modes� We �rst

considered the local axisymmetric stability� and found that disks with rising rotation curves are inherently

less stable than those with rising rotation curves� We then studied the global stability of both the

self�consistent and the cut�out power�law disks� We found that the presence of a cut�out made very

little di�erence to the stability of the disk� Local theory is a remarkably accurate predictor of global

axisymmetric stability�



Chapter �

Global Bisymmetric

Modes

	�� Introduction

In this chapter� we investigate the stability of the power�law disks to bisymmetric perturbations� The

situation is more complicated than for the axisymmetric perturbations we examined in Chapter 
� The

pattern can now rotate� introducing an extra degree of freedom into the problem� This is re�ected in

the fact that the mathematical eigenvalue is now 	in general� complex� rather than purely real as for

axisymmetric perturbations�

	�� Wave mechanics

Disks sustaining self�consistent modes are like a resounding gong or a clanging cymbal� When a gong is

struck� a standing wave pattern is excited in it� This pattern can be regarded as being made up of many

travelling waves� which re�ect o� the boundaries of the gong� The travelling waves superpose in such a

way as to create a relatively persistent standing wave pattern� A similar e�ect occurs in galactic disks�

We can regard our global mode as being made up of the combined e�ects of many waves propagating

through the disk� These waves may be leading or trailing� travelling inwards or outwards� They re�ect

o� the inner cut�out and the Lindblad resonances in much the same way as waves in the gong re�ect o�

its edges�

The behaviour of these waves may be investigated analytically if we make the assumption that the waves

are tightly�wound� i�e� � �� �� This method is also known as the WKB approximation� because of its

similarities to the Wentzel�Kramers�Brillouin approximation in quantum mechanics� In the case of tight

winding� successive spiral arms are close together� and long�range gravitational e�ects are negligible in

comparison� Thus the WKB approach is a local theory� analogous to that discussed in section 
�� for

axisymmetric perturbations� However� we shall see that the local approach is very much less successful

in predicting the global response of the disk to non�axisymmetric than to m � � perturbations�

���



Lin � Shu 	��

� and Kalnajs 	��
�� independently derived a dispersion relation relating the frequency

of tightly�wound waves to their wavenumber ��

m�	'� �'p�
�

���
� �� �
G 

���

j�j
R
F 	����

F is the reduction factor describing how the e�ects of the spiral perturbation are lessened for stars

with random motion in the radial direction 	see Appendix D�� Eq� 	���� contains the quantity � �

m	'p � '������ This has a simple physical interpretation� m	'p �'�� is the frequency at which a star

on a circular orbit encounters successive maxima of the perturbing potential� � is the ratio of this forcing

frequency to the natural radial frequency of the star� ��� For the power�law disks� this ratio is

� �
m	'p �'��
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�
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� ���
�

� �
�

	����

The case� � � corresponds to co�rotation� when the pattern speed of the waves is matched to the circular

velocity of stars at this radius� The radii at which j�j � � are the Lindblad resonances� These represent

the positions at which the forcing frequency is equal to the natural frequency� We naturally expect the

response of the disk to be greatest at these radii� As we shall see� in a very hot stellar disk stationary

disturbances can exist only at the Lindblad resonances� However� as the disk is cooled� gravitational

interactions between the stars become more important� and reduce the natural radial frequency below

��� This means that for a su�ciently cold disk� waves can exist when j�j � �� In a stellar disk� no

mechanisms exist to increase the natural radial frequency above ��� and so no modes can exist where

j�j � �� Eq� 	���� gives the positions of the three resonances for the power�law disks�
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Lin � Shu 	��

� calculated the reduction factor using the Schwarzschild distribution function 	D�����

In Appendix D� the reduction factor is calculated for our power�law distribution function 	given by

eqs� 	���� and 	������� Fig� ��� compares the reduction factors obtained using the Schwarzschild distri�

bution function 	solid line�� the self�consistent power�law distribution function 	���� 	dotted line� and

a cut�out distribution function 	����� 	dashed line�� The di�erent distribution functions cause only very

slight di�erences in the reduction factor� The Schwarzschild reduction factor is numerically much faster

to evaluate� since two out of the three necessary integrations can be carried out analytically 	see Ap�

pendix D�� In the following discussion� we therefore use the Schwarzschild reduction factor� con�dent

that this will not qualitatively a�ect our results�



Figure ���� The reduction factor obtained with three di�erent distribution functions
 The reduction factor F is plotted
against wavenumber � for several di�erent temperatures Qs
 In the left	hand plot� � � ����� in the right	hand plot
� � ���
 In each case� F is drawn for three di�erent distribution functions
 The solid line shows the reduction factor
obtained with the Schwarzschild distribution function� the dotted line that obtained with the self	consistent power	law
distribution function� and the dashed line that obtained with an inner cut	out distribution function with N � �
 �� values
of Qs are shown� from Qs � ��� to Qs � ��� in steps of �
�
 � � ����


When the Schwarzschild distribution function is used� it is convenient to write the dispersion relation

	���� in terms of the ratio �� and the general variables x� y 	
��� and �crit 	
���� which we introduced in

section 
�� when discussing the local stability to axisymmetric perturbations� x expresses the wavenumber

of the density wave as a multiple of �crit� the wavenumber below which a cold disk is stable to axisymmetric

perturbations� y contains the dependence on temperature�

The Schwarzschild reduction factor is given by 	Lin � Shu ��

� Binney � Tremaine ����� app� 
�A�

eq� 	D�����

F
H
�
����
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�
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�

d� e�����cos	 sin�� sin�� 	���

where � � x�y�� The dispersion relation 	���� can then be written simply as

�� � �� jxjFH	�� x�y��� 	����

This may be solved to yield curves of � against x for di�erent values of y� Fig� ��� shows such curves�

The di�erent values of y are expressed in terms of Toomre�s stability parameter Qs� As we saw in

section 
��� the criterion for local axisymmetric stability� Qs � �� corresponds to y � �����������
� For

all temperatures� the solutions fall into two classes� the long�wave solutions at small �� where � falls

as wavenumber increases� and the short�wave solutions at large �� where � increases with wavenumber�

The long�wave solutions are not trustworthy� since they violate the tight�winding approximation on which

this treatment depends�



Figure ���� The dispersion relation for tightly	wound
waves in general disks
 The ratio � of the forcing frequency
to the natural radial frequency of the star is plotted against
x� the ratio of the wavenumber to the critical wavenumber

Curves are drawn for � values of Toomre�s stability param	
eter Qs� from Qs � ��� to Qs � ��� in steps of �
�
 The
curve with Qs � � is drawn with a bolder line


Figure ���� The dispersion relation for tightly	wound
waves in a power	law disk
 The position of the wave in
the disk is plotted against wavenumber for m � � waves
in the � � ���� disk
 Both leading and trailing waves� in	
side and outside co	rotation radius� are shown
 Curves are
drawn for � values of Toomre�s stability parameter Qs�
from Qs � ��� to Qs � ��� in steps of �
�
 The arrows
indicate the direction of increasing Qs on each branch
 The
curves with Qs � � are drawn with a bolder line
 The solid
horizontal line marks co	rotation� and the dotted lines the
Lindblad resonances


The case Qs � � � drawn with a bolder line in �g� ��� � demarcates two di�erent behaviours� For

Qs greater than �� there are solutions at all wavenumbers� but none close to co�rotation� So for hot

disks� waves of all wavenumbers are possible� but there is a �forbidden region� around the co�rotation

radius� For Qs less than �� there is no forbidden region� waves can exist anywhere between the Lindblad

resonances� However� there are wavenumbers at which no solutions exist� The short� and long�wave

solutions are not continuous�

Using the expressions for the circular and epicyclic frequency 	����� we can derive the pattern speed

and wavenumber of waves in the power�law disks� The value of the pattern speed depends on where the

wave is in the disk� we have 	����
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Alternatively� we can express the position of the wave in the disk in terms of pattern speed� The position

of the wave is given in terms of the co�rotation radius 	���� by
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Similarly� the wavenumber is given by
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Eq� 	���� is independent of the sign of � and x 	since the Schwarzschild reduction factor has the symmetry

FH	�� �� � FH	��� ���� Solutions therefore come in quartets with 	��	x� The sign of the wavenumber
distinguishes leading 	� � �� from trailing waves 	� � ��� From eq� 	����� we see that the sign of

� distinguishes waves on either side of co�rotation� Fig� ��� shows the position of the wave in the

disk� relative to co�rotation� plotted against the wavenumber �� All four solutions 	leading�trailing�

inside�outside co�rotation� are shown� As in �g� ���� curves are drawn for disks of several di�erent

temperatures�

This �gure illustrates that the waves are con�ned between the Lindblad resonances� In disks with Qs � ��

the forbidden region con�nes the waves either inside or outside co�rotation� The hotter the disk� the more

narrowly the wave is con�ned� In very hot disks� waves can exist only at the Lindblad resonances� In

cooler disks� the waves can exist anywhere in the region between the Lindblad resonances� To study the

propagation of the waves� we need to know their direction of travel� The waves travel through the disk

with a group velocity 	Toomre ��
�� Binney � Tremaine �����
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We can therefore deduce the sign of the group velocity from �g� ���� The group velocity is directed

outwards when the curves slope upwards� and inwards when they slope downwards� Fig� �� shows waves

for Qs � �� Qs � �� with the direction of travel indicated with arrows�

Figure ��� The dispersion relation for tightly	wound waves in a power	law disk with � � ����
 The position of the wave
in the disk is plotted against wavenumber for m � � waves in disks with Qs � ��� and �
�
 Both leading and trailing waves�
inside and outside co	rotation radius� are shown
 The arrows indicate the direction of the group velocity on each branch

The solid horizontal line marks co	rotation� and the dotted lines the Lindblad resonances


We �rst consider disks with Qs � �� as in the left�hand plot of �g� ��� Here� a packet of leading

waves initially close to the inner Lindblad resonance travels outwards towards co�rotation� becoming less

tightly�wound as they do so� The packet is �re�ected� from the forbidden region around co�rotation� and



propagates back towards the centre again� The WKB theory indicates that the packet is re�ected by

the inner Lindblad resonance� having changed the sense of winding to become trailing�� Once again� the

waves re�ect o� the forbidden zone� They travel back towards the inner Lindblad resonance� becoming

ever more tightly wound� Mark 	���� showed that they are eventually absorbed at the inner Lindblad

resonance�

In disks with Qs � �� the waves fall into two distinct classes� the long�wave 	j�j � �� and short�wave

	j�j �� �� solutions� Leading short�wave packets move towards co�rotation� whether they are initially

inside or outside the co�rotation radius� They unwind as they travel� but never change from leading

to trailing� The amount of unwinding depends on the temperature� at co�rotation the leading waves

are looser in warmer disks� Trailing short�wave packets move away from co�rotation� becoming more

tightly�wound as they do so� They end up at the inner or outer Lindblad resonances� depending on

which side of co�rotation they were initially� This gives us another insight into why cool disks are less

stable� In hot disks� waves inevitably end up as tightly�wound trailing waves� which are absorbed at the

Lindblad resonances� In cold disks� the lacunae in allowed wavenumber separate the di�erent solutions�

This prevents the di�erential rotation from twisting all waves into tightly�wound trailing waves�

Fig� ��� suggests that leading long�wave packets move away from the co�rotation radius towards one of

the Lindblad resonances� There they are re�ected back towards co�rotation as loosely�wound trailing

waves� However� the long�wave solutions do not satisfy the WKB approximation� and so we cannot rely

on �g� ��� as an accurate guide to their behaviour� The inability of the WKB approach to explore the

behaviour of the long�wave branch is a serious de�ciency� The long�wave branch turns out to be of crucial

importance in understanding the global behaviour of the disks� As the long�wave leading waves change

over into trailing waves� their amplitude is greatly enhanced� an e�ect known as swing ampli�cation� This

mechanism was noticed independently by Goldreich � Lynden�Bell 	��
�a� and Julian � Toomre 	��

��

and reviewed and revived by Toomre 	������ It depends on a brief match in velocities between a spiral

arm as it unwinds from leading to trailing and the epicyclic motion of individual stars� This can greatly

enhance the perturbing e�ect of the density wave on the star�s orbit� and lead to rapid growth of the

amplitude of the wave as it unwinds� For swing ampli�cation to be e�ective� the disk must be reasonably

cool� High values of Qs make the disk insensitive to the gravitational interactions between stars on which

swing ampli�cation depends� Further� swing ampli�cation only functions when the arclength between

adjacent spiral arms� �
R�m� is su�ciently small relative to the critical wavelength �crit at which Jeans

instabilities �rst set in� The ratio of these two quantities is the parameter X 	Toomre ����� Binney �

Tremaine ������ For the power�law disks� this parameter is
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The critical wavenumber �crit was plotted in �g� 
�� on logarithmic axes for j�j � �� Fig� ��� shows the

�Of course� the tight	winding approximation on which this treatment is based breaks down as the waves unwind from
leading to trailing
 It therefore cannot be relied upon to trace the evolution of the waves at this point
 However� a more
rigorous treatment �Goldreich � Tremaine ���� indicates that the behaviour implied by the tight	winding approximation
does occur provided that the parameter X� de�ned in eq
 �
���� is su ciently large




parameter X in the range of interest� j�j � ���� A rule of thumb is that swing ampli�cation is powerful

when X � � 	Toomre ������ This condition is satis�ed throughout the range of ��

Figure ���� The dependence of the parameter X � �crit�m on
�� for m � �


Figure ��
� A model incoming trailing wave being re	
!ected from the inner cut	out
 Particles initially trav	
elling inwards with velocity v are re!ected from the
inner cut	out
 The dotted line shows where the parti	
cles would have been in the absence of a cut	out
 In
this sketch� the e�ect of di�erential rotation is not in	
cluded


Swing ampli�cation on its own is not su�cient to make the disk unstable� Leading waves are greatly

ampli�ed as they are unwound into trailing waves� but the trailing waves then travel in towards the inner

Lindblad resonance� becoming ever more tightly�wound� and are absorbed� We need a method of stoking

the furnace� a feedback loop returning trailing waves as leading waves which can be swing�ampli�ed� In

our disks� this is provided by the inner cut�out� Without a detailed analysis� we can see that incoming

trailing waves are re�ected from the inner cut�out as outgoing leading waves� Fig� ��
 sketches how this

happens� It shows model �density waves�� consisting of a set of particles travelling radially inwards with

velocity v� The relative positions of the particles are arranged so that they lie on a log�spiral wavefront�

with radius R � exp+	�
 �m����,� When the particles reach the inner cut�out� the direction of their

velocity is reversed� Fig� ��� traces a set of incoming trailing wavefronts as they are re�ected into outgoing

leading waves�

Figure ���� Incoming trailing waves being re!ected from the inner cut	out
 Several wavefronts are shown at successive
time	steps
 Incoming trailing waves are re!ected from the inner cut	out �dotted circle� as outgoing leading waves
 The
arrows indicate the direction of propagation of the waves
 The e�ect of di�erential rotation is included
 The radial speed
with which the waves propagate is chosen to be equal to the circular velocity at the cut	out
 The unit of time is chosen to
be the time taken to travel from the cut	out to the origin




In terms of �g� ��� the feed�back loop provided by the inner cut�out turns the �at plots into tori� so

that as waves leave the diagram on the right� they re�enter on the left� Of course� the inner cut�out is

not a perfect mirror� but rather a beam�splitter� The re�ectivity depends on the inner cut�out index�

When N is small� the density departs only gradually from the self�similar case 	�g� ������ and most of

the incoming wave propagates straight through the cut�out radius R � R�� When N is larger 	� ���

the abrupt discontinuity in the density presents a much more e�ective barrier to the waves� propagation�

Almost all incoming waves are then re�ected out� forming an e�ective feed�back loop� In doubly cut�out

disks� the outer cut�out acts as a second re�ector� Sketches similar to those in �g� ��� indicate that

outgoing trailing waves return from an outer re�ective boundary as incoming leading waves� However�

the outer cut�out involves considerably gentler changes to the discontinuity than the inner cut�out 	cf�

�gs� ���� and ���
�� and is thus an ine�cient re�ector� Accordingly� we shall see that the presence of an

outer cut�out has a minimal e�ect on the stability of the disk�

The stability of the disk depends critically on the relative positions of the inner Lindblad resonance

and the inner cut�out� If the inner Lindblad resonance lies outside the inner cut�out� it stabilises the

disk� both directly by absorbing incoming trailing waves� and indirectly by preventing feedback to the

swing ampli�er� The position of the inner cut�out controls whether the waves are re�ected as leading

waves which can be swing�ampli�ed� or absorbed as trailing waves by the inner Lindblad resonance� The

situation is summarised in �g� ����

Figure ���� Sketch of the feedback loop and ampli�cation
 The position of the inner cut	out controls whether the waves
are re!ected as leading waves which can be swing	ampli�ed� or absorbed as trailing waves by the inner Lindblad resonance


We have thus assembled the components causing instabilities in our disks� A sharp inner cut�out protects

incoming trailing waves from the damping in�uence of the inner Lindblad resonance� and re�ects them out

as leading waves� Di�erential rotation unwinds the leading waves into trailing waves� Swing ampli�cation

enhances the spiral arms as they pass from leading to trailing� These instabilities can be removed by

either disabling the ampli�er� or breaking the feedback circuit� Heating the disk is an example of the

former� it weakens the self�gravity and reduces the swing ampli�cation� Smoothing the inner cut�out�

thus reducing the re�ection and giving the waves access to the damping Lindblad resonance� is an example

of the latter�



	�� Global stability of the cut�out disks

We recall that the mathematical eigenvalue is de�ned by Ares	�� � �Aimp	�� 	section ����� If the

modulus of the complex mathematical eigenvalue j�j is greater than unity� the response is more vigorous
than the imposed perturbation� if j�j � �� the response is less than the original disturbance� When

the mathematical eigenvalue is unity� the response is equal in magnitude and phase to the imposed

disturbance� and we have found a self�consistent mode� When investigating stability� therefore� we are

principally concerned to understand the position of the eigenvalue in the complex plane� and to learn

what choices of growth rate� pattern speed and temperature can bring it to the point 	�� ���

In general� cool disks are less stable than warm ones� We thus expect the modulus of the mathematical

eigenvalue to be greater for disks with low velocity dispersions� In Chapter 
� we saw that a disk could be

made stable to axisymmetric disturbances by increasing the temperature su�ciently� We anticipate that

a similar e�ect obtains for bisymmetric stability� by increasing the temperature su�ciently� we expect

to be able to shrink the modulus of the mathematical eigenvalue so that no choice of growth rate and

pattern speed will enable it to attain the value 	�� ���

The mathematical eigenvalue depends on growth rate and pattern speed only through the single complex

frequency � � m'p " is� However� the growth rate s and pattern speed 'p have di�erent e�ects on the

disk�s response� We expect to be able to excite slowly�growing disturbances more easily than faster ones�

Thus we expect that the modulus of the mathematical eigenvalue will be greater for smaller growth rates�

The pattern speed has a more complicated e�ect� First� it seems intuitively plausible that the pattern

speed should a�ect the phase of the response� If the imposed pattern is rotating too fast for the disk� we

expect the response to lag behind� This is expressed in the phase of the mathematical eigenvalue� Second�

the pattern speed a�ects the position of the co�rotation radius RCR and the inner and outer Lindblad

resonances� RILR and ROLR� As we have seen� any modes are expected to be con�ned to the region

between the two Lindblad resonances� For %'p � � "
�
�

p
�� �� the outer Lindblad resonance lies inside

the inner cut�out at R � R�� The disturbance is thus con�ned to a part of the disk where there is not much

matter free to respond� We expect the response� and hence the mathematical eigenvalue� to be small for

large pattern speeds� For %'p � �� �
�

p
�� �� the inner Lindblad resonance lies beyond the inner cut�out�

In this case we expect that the presence of the inner cut�out will have a minimal e�ect on the response�

since the density experienced is similar to that in the self�consistent disk� As we saw in Chapter �

each imposed log�spiral then excites only a pure log�spiral in response� and the eigenvalue is expected

to be real� In a doubly cut�out disk� with su�ciently low pattern speed the inner Lindblad resonance

would fall beyond the outer cut�o� at R � Rc� This would require %'p �
�
�� �

�

p
�� �

	
%R
� ���

�
c � In

this circumstance we again expect the mathematical eigenvalue to be very small� In practice� we usually

choose %Rc � ���� so this would require vanishingly small values of 'p� It turns out that the stability

of the disk is little a�ected by the presence of an outer cut�out� so in what follows we concentrate on

inner cut�out disks� The anticipated e�ect of pattern speed on the stability of an inner cut�out disk is

summarised in the following table�



Pattern speed� %'p � �� �
�

p
�� � �� �

�

p
�� � � %'p � � "

�
�

p
�� � %'p � � "

�
�

p
�� �

Position of RILR Outside inner cut�out Inside inner cut�out Inside inner cut�out
Position of ROLR Outside inner cut�out Outside inner cut�out Inside inner cut�out

Eigenvalue �
As for self�consistent
disk� roughly real

A�ected by cut�out Tends to zero

The e�ect of growth rate and pattern speed

Having discussed the behaviour of the mathematical eigenvalue from a theoretical point of view� we now

examine the actual results obtained� In the following plots� the temperature of the disk has been chosen

to be that at which the self�consistent disk would be locally stable to axisymmetric perturbations� i�e�

Qs � � 	see eq� 	
������ As we saw in Chapter 
� this is close to the temperature required for the cut�out

disks to be globally stable to axisymmetric perturbations� We take as an example the inner cut�out

disk with N � �� The following plots show how the largest eigenvalue depends on the growth rate and

pattern speed� for di�erent values of �� In these and subsequent plots� the diamonds indicate the data

points actually calculated� The smooth curves joining the data points were obtained using a spline �tting

procedure�

Figure ���� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � ����
 This
is for Qs � �� i
e
 ��u � ����� and 
 � ����
 The solid lines show curves of constant s at intervals of �
� from s � �� to
s � ���
 The dotted lines show curves of constant �p at intervals of �
� from �p � ��� to �p � ���
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�



Figure ����� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � ���
 This is
for Qs � �� i
e
 ��u � ���� and 
 � ����
 These results were obtained using code written specially for the Toomre	Zang
disk
 The solid lines show curves of constant s at intervals of �
� from s � �� to s � ���
 The dotted lines show curves
of constant �p at intervals of �
� from �p � ��� to �p � ���
 Note that this �gure corresponds to the �gure on p
 ��� of
Zang�s ����� thesis� but there are visible discrepancies between the two
 This is because Zang�s �gure was only intended
as a guide to the shape of the curves� and was obtained using� as Zang says� "coarse results in which only a few radial
harmonics are kept
# �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ����
aacc � ��� bacc � ���
 �

Figure ����� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � �����
 This
is for Qs � �� i
e
 ��u � ����� and 
 � ����
 The solid lines show curves of constant s at intervals of �
� from s � �� to
s � ���
 The dotted lines show curves of constant �p at intervals of �
� from �p � ��� to �p � ���
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�

These curves have the general behaviour expected from our theoretical discussion� Very roughly� the

growth rate controls the modulus� and the pattern speed the phase� of the mathematical eigenvalue� The

modulus decreases as the growth rate increases� and the phase increases as the pattern speed increases�

At any particular pattern speed� the marginal eigenvalue curve� for which the growth rate is ��� has

the greatest modulus� As the pattern speed is increased beyond � �� the modulus of the mathematical

eigenvalue declines� For large 'p� it looks as if the eigenvalue is turning towards to the origin� and the



growth rate is becoming less signi�cant� The disk responds to the perturbation only very weakly� since

most of the mass has been removed from the region which would otherwise respond�

We note that the mapping of the s�'p plane to the � plane is conformal� As the kernel is analytic� the

mathematical eigenvalue � can be written as a power series in ��

�A	�� �

Z ��

��
d��A	���Sm	�� �����

�

Z ��

��
d��A	���

�
Sm	�� ������ " 	� � ���

�Sm
��

����
��

"
	� � ���

�

�

��Sm
���

����
��

� � �

� 	�����

Equivalently� � is an analytic function of � 	see e�g� Rudin 	���
�� ch� ��� This means that �	�� gives

a conformal mapping of the upper half of the complex ��plane 	as the growth rate is positive� to the

complex ��plane� Conformal mappings preserve the angles of in�nitesimal polygons� This means � as is

evident in the �gures � that curves of constant s and constant 'p cross at right�angles�

The following two �gures demonstrate the conformal map from the ��plane to the ��plane and vice versa�

The �rst �gure� like those above� demonstrates how curves of constant pattern speed 'p and growth rate

s map to the eigenvalue plane�

Figure ����� The mapping from frequency to eigenvalue
 This is for a disk with � � ������ N � �� Qs � �
 The solid
lines show curves of constant s at intervals of �
� from s � �� to s � ���
 The dotted lines show curves of constant �p at
intervals of �
� from �p � ��� to �p � ���
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ����
nGL � �� f� � ���� aacc � ��� bacc � ���
�

The second �gure demonstrates how curves of constant � map back onto the frequency plane�



Figure ����� The mapping from eigenvalue to frequency
 This is for a disk with � � ������ N � �� Qs � �
 The solid
lines show curves of constant Re�� at intervals of �
� from Re�� � ��� to Re�� � ���
 The dotted lines show curves of
constant Im�� at intervals of �
� from Im�� � ���� to Im�� � ���
 �Numerical accuracy parameters� n � ���� �� � ����
lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�

Referring back to �g� ���� we see a problem which can occur� There is a discontinuity near 'p � ����

s � ��� although � is expected to change smoothly� The discontinuity arises because here the second

largest eigenvalue has overtaken the previously largest one� so that we are no longer following the same

eigenvalue� The e�ect can be seen in �g� ���� which is a �close�up� on the region of the discontinuity�

Figure ���� How eigenvalues can swap positions� see text for explanation� These results are for m � �� N � �
and � � ����� This is for Qs � �� i�e� 	�u � ���
� and � � ����� �Numerical accuracy parameters n � ����
�� � ���� lmin � ���� lmax � ���� nGL � �� f� � ��
� aacc � ��� bacc � ���� �

The left�hand plot shows the position of the largest eigenvalue� marked with a diamond� for six values

of s from ���� to ���� and nine values of 'p from ���� to ��

� Solid lines join together constant s

and constant 'p� There is clearly a severe discontinuity� and the picture does not look like a conformal

mapping from � to �� The right�hand plot shows how this comes about� Here� the position of the largest

eigenvalue is marked with a diamond� and that of the second largest eigenvalue with an asterisk� The

�nets� of solid and dotted lines follow the changes in a particular eigenvalue over the grid of 'p and s�



These nets give the conformal mapping from � to �� they are therefore smooth� and lines of constant s

and constant 'p intersect at right�angles� However� one sees that the two eigenvalues swap places over

the region studied�

Now that we understand in general terms how the mathematical eigenvalue depends on growth rate�

pattern speed and temperature� we wish to �nd sets of these variables for which the eigenvalue is unity�

Figs� ��� � ���� strongly suggest that� for Qs � � disks with � in the range ����� to ����� no choice

of growth rate and pattern speed results in an eigenvalue equal to unity� For each �� the curves of

constant growth rate arc down and cross the real axis signi�cantly to the left of unity� From theoretical

considerations� we expect the mathematical eigenvalue to continue towards the origin as the pattern speed

is increased beyond �� With the constraints that� at any pattern speed� the marginal eigenvalue curve has

the largest modulus� and that the curves of constant s cannot cross� it seems unlikely that any solutions

can exist at pattern speeds lower than those shown in �gs� ��� � ����� However� it is possible that� as 'p

is reduced further� the curves of constant growth rate bend back up again and touch the real axis again�

Also� we have not yet examined the behaviour of other eigenvalues� Figs� ��� � ���� showed the behaviour

of the dominant eigenvalue� i�e� that which has the largest modulus at a particular pattern speed and

growth rate� For the range of pattern speeds investigated so far� the modulus of the dominant eigenvalue

has not reached unity� and so we know that none of the lower eigenvalues can yield a mode� However� it

is conceivable that� at some low value of the pattern speed� the dominant eigenvalue has a modulus in

excess of unity and a phase presumably between �
�� and �
� while one of the lower eigenvalues has a

modulus of unity and a phase of zero� It is therefore prudent to examine the full spectrum of eigenvalues�

Our �nite matrix approximation to the kernel of the integral equation has n eigenvalues� where n is the

number of points along each side of the grid in wavenumber space 	see Chapter ��� To this extent� the

eigenvalue spectrum is dependent on the grid size and spacing� However� once the number of grid points

is large enough for accuracy� most of the eigenvalues accumulate at the origin� The positions of the

relatively small proportion with larger modulus are independent of the precise choice of n� The set of ��

plots shown in �g� ���� demonstrates how the eigenvalue spectrum depends on growth rate and pattern

speed� The three rows of �g� ���� show eigenvalue spectra for three di�erent growth rates� s � ����� ����

���� The six columns show spectra for increasing pattern speeds� 'p � ����� ����� ���� ���� ��� and ����

In each plot� the position of the largest mathematical eigenvalue is marked with a line drawn to it from

the origin�

At high pattern speed� the eigenvalues all have approximately the same phase� The phase of each

eigenvalue is also roughly independent of growth rate for pattern speeds � ���� As the pattern speed

decreases� the phase of each eigenvalue decreases by an amount dependent on the magnitude of the

eigenvalue� The largest eigenvalue moves clockwise more than the second largest� and so on� As the

pattern speed decreases� the initially straight line formed by the eigenvalues shears out into a spiral� At

smaller growth rates� the moduli of the eigenvalues are larger 	as expected�� At vanishing growth rate�

the eigenvalues continue to be strung out in a spiral as the pattern speed is brought to zero� The tip of

the spiral moves clockwise towards the real axis as 'p is reduced� The behaviour of eigenvalues for higher



Figure ����� The eigenvalue spectra for perturbations with various growth rates and pattern speeds in an inner cut	out
disk with N � �� � � ����� Qs � ���
 The three rows of plots show eigenvalue spectra for increasing growth rates� s � �����
���� ���
 The six columns show spectra for increasing pattern speeds� �p � ����� �
��� �
�� �
�� �
� and �
�
 In each case�
the position of the largest mathematical eigenvalue is marked with a line drawn to it from the origin
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
 �

growth rates is di�erent in this limit� The eigenvalues separate into two branches� forming a shape like a

lambda� Most of the eigenvalues are clustered on a line of roughly constant phase� A few are strung out

with more negative phases� They do not end up on the real axis as 'p is brought towards zero� Note that

in the limit of vanishing pattern speed� large jumps can occur in the position of the largest mathematical

eigenvalue� as it moves from one branch to another� This is one reason why it is best to study the full

spectrum of eigenvalues in this limit�

We now trace the behaviour of the four largest marginal eigenvalues over a wide range of pattern speeds�

Figure ���
� The dependence of the four largest eigenvalues on pattern speed� for a perturbation with vanishing growth
rate in an inner cut	out disk with N � � and � � ����
 This is for Qs � �� i
e
 ��u � ����� and 
 � ����
 The solid lines are
the �rst four marginal eigenvalue curves
 The dotted lines show curves of constant �p� as labelled
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�



As the pattern speed is reduced� the phase continues to decrease monotonically� and the mathematical

eigenvalues move on arcs around the origin� as shown in �g� ���
� As the pattern speed tends to zero� they

appear to end up on or close to the negative real axis� There is no question of their returning to cross

the positive real axis for a second time� The behaviour of the four largest eigenvalues shown here is very

similar� The phase of the larger eigenvalues consistently lags behind that of the smaller ones� 	We saw

in �g� ���� that smaller eigenvalues are successively less sensitive to pattern speed� their phase decreases

more slowly as the pattern speed is reduced�� It appears� then� that we can rely on the largest eigenvalue

to determine whether or not modes exist� We note also that for very large or small pattern speeds� the

eigenvalues draw together� For large pattern speeds� they appear to come in degenerate pairs� For larger

growth rates 	not shown�� the behaviour of the eigenvalues is qualitatively similar� Their tendency to

draw together at low pattern speeds is less marked� and they do not approach the real axis as closely in

this limit�

So it seems that� indeed� for disks in this range of � with Qs � �� no choice of growth rate and pattern

speed results in an eigenvalue equal to unity� An N � � disk which is hot enough to be stable to

axisymmetric disturbances is also protected against bar�like modes� However� we note that as � is reduced

in �gs� ��� � ����� the set of curves tilts upwards� crossing the real axis at progressively higher values� and

thus coming closer to possessing a unit eigenvalue� The disks with rising rotation curves 	negative �� are

less securely stable than their relatives with falling rotation curves 	positive ��� This accords with our

�nding in Chapter 
 that disks with rising rotation curve are less stable to axisymmetric perturbations� In

fact� it turns out that disks with rising rotation curves are even less stable to bisymmetric perturbations

than would be expected from the axisymmetric stability� Fig� ���� illustrates this point� It shows marginal

eigenvalue curves for several di�erent values of � in the range ���� to "����� The curves are drawn for

Qs � �� so all the disks shown are already stable to axisymmetric perturbations� Thus the disks with

rising rotation curves have higher velocity dispersions than those with falling rotation curves� but even

so they are more prone to bisymmetric disturbances� As � is decreased� the magnitude of the marginal

eigenvalue at a given pattern speed increases� This means that eigenvalues in disks with rising rotation

curves cross the real axis at higher values than for their cousins with falling rotation curves�

For values of � � ������ Qs � � is insu�cient to stabilise the disk to m � � perturbations� Disks

whose rotation curves rise faster than this are more susceptible to bar�like than to ring�like modes� As

an example� �g� ���� shows the largest eigenvalue for � � ������ It is evident that the disk will admit
an m � � mode with growth rate s � ��� and pattern speed 'p � ���� A Newton�Raphson algorithm

indicates that this mode occurs at 'p � ������� s � ���������� The curves corresponding to this

pattern speed and growth rate are shown in dashed lines on �g� ����� The density transform for the mode

is shown in �g� ����� 	Of course� the overall magnitude and phase of the function shown are irrelevant�

since any complex multiple of an eigenvector is also an eigenvector�� We note that the density transform

is peaked at � � �� indicating that the mode is close to a log�spiral with this wavenumber�



Figure ����� Marginal eigenvalue curves for inner cut	out disks with N � � and �� values of � from � � ���� to � � ����
in steps of �
��
 The plot shows the largest mathematical eigenvalues for vanishing growth rate� s � ����� and �� values
of the pattern speed� �p � ������� �
����� �
���� �
���� �
��� �
��� �
��� �
�� �
�� �
�� � � � �
�� �
�
 The velocity dispersion
for each � is that corresponding to Qs � �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ����
nGL � �� f� � ���� aacc � ��� bacc � �
 �

Figure ����� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � �����
 This
is for Qs � �� i
e
 ��u � ���� and 
 � ����
 The solid lines show curves of constant s at intervals of �
� from s � �� to
s � ���
 The dotted lines show curves of constant �p at intervals of �
� from �p � ��� to �p � ���
 The dashed lines
mark the curves which pass through the unit eigenvalue
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ����
lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �

Figure ����� Density transform A��� of a bisymmetric mode in an inner cut	out disk with N � �� � � ����
 The mode
has pattern speed �p � ������� and growth rate s � ��������
 This is for Qs � �� i
e
 ��u � ���� and 
 � ����

The solid line is Re�A����� the dotted is Im�A���� and the dashed line shows the envelope �jA���j
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �



The actual form of the density is shown in the left�hand contour plot in �g� ����� The right�hand plot

shows the pure log�spiral with wavenumber � � �� The log�spiral describes the winding of the spiral

arms well� but not the shape of the density within them� The mode has a maximum density perturbation

just outside the inner Lindblad resonance� but extends out to the co�rotation radius� The log�spiral� in

contrast� is concentrated at the centre of the disk�

Figure ����� The left	hand plot is the density contour plot for a bisymmetric mode in an inner cut	out disk with N � ��
� � ����
 This is for Qs � �� i
e
 ��u � ���� and 
 � ����
 The density is plotted over the radial range from ���RILR

to ���RCR
 The solid lines plot ���� ���� ���� ��� and ��� of the maximum density within this range� the dotted lines
show the nodes� where the density perturbation is zero
 The dashed circles indicate the inner Lindblad resonance� at �
���
and the co	rotation radius� at �
��
 Units of R� � � are used
 The right	hand plot shows the log	spiral with m � �� � � ��
over the same range in R
 Again� contours are plotted at ���� ���� ���� ��� and ��� of the maximum density within
this range
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
bacc � �
 �

The e�ect of temperature

Raising the temperature of a stellar disk makes it more stable to any perturbations� Thus raising the

velocity dispersion %�u moves the marginal stability curves closer to the origin� while lowering it moves

them further out� At some value %�u�min� the marginal stability curve will pass through 	����� this is

the temperature at which the disk is just stable to bisymmetric perturbations� Figs� ���� � ���� show

how the temperature a�ects the marginal stability curves for a disk with a falling� �at or rising rotation

curve� The eigenvalue depends separately on the pattern speed and temperature� so the mapping from

the 'p�Qs plane to the � plane is not conformal� This is evident from the �gures� where lines of constant

'p and constant Qs clearly do not intersect at right�angles� Again� we see that disks with falling rotation

curves are very stable to m � � perturbations� Even when the velocity dispersion is only 
�� of that

needed for axisymmetric stability� these disks remain stable to bisymmetric perturbations�



Figure ����� The dependence of the largest mathematical eigenvalue on temperature and pattern speed for � � ����

Curves are plotted for an m � �� s � ���� perturbation in an inner cut	out disk with N � �
 The temperature used for
each curve is expressed in terms of Qs� ��u � �����Qs
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ����
lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
�

Figure ����� The dependence of the largest mathematical eigenvalue on temperature and pattern speed for � � ����

Curves are plotted for an m � �� s � ���� perturbation in an inner cut	out disk with N � �
 The temperature used for
each curve is expressed in terms of Qs� ��u � ����Qs
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ����
lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
�

Figure ����� The dependence of the largest mathematical eigenvalue on temperature and pattern speed for � � �����

Curves are plotted for an s � ���� perturbation in an inner cut	out disk with N � �
 The temperature used for each curve
is expressed in terms of Qs� ��u � �����Qs
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ����
nGL � �� f� � ���� aacc � ��� bacc � �
�



The e�ect of the inner cut�out

As expected from the discussion of tightly�wound waves in section ���� the inner cut�out has a profound

in�uence on the stability of the disk� To illustrate this� �g� ��� shows the marginal stability curves in

disks with di�erent � and di�erent values of the inner cut�out index N �

Figure ���� The dependence of the largest mathematical eigenvalue on pattern speed� for di�erent inner cut	out indices
N 
 Curves are plotted for a perturbation with vanishing growth rate in an inner cut	out disk
 The �rst two plots are for
� � ���� and � � ����� the second two are for � � ����� and � � �����
 The curves are labelled with the value of the inner
cut	out index N 
 In each case Qs � �
 The diamonds show the results for �p � ���� �
�� �
� 


 �
� �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
 �

Increasing the cut�out index N makes the disk much more susceptible to instabilities� Curves with higher

N cross the real axis at successively higher values of �� For these Qs � � results� the N � � and N � 

disks are already unstable to m � �� Disk with N � � are highly stable to m � � perturbations� and will

not be discussed further in this chapter�

To understand why the inner cut�out has such a profound e�ect on the stability of the disks� we need

to consider the position of the Lindblad resonances in relation to the inner cut�out� These are shown�

with their dependence on pattern speed� in �g� ����� The solid lines show the positions of the Lindblad

resonances� and the dotted line marks co�rotation� The dashed line marks R � R�� the position of the

inner cut�out�

For low values of the pattern speed� the inner Lindblad radius lies outside the inner cut�out radius R��

Incoming waves are absorbed by the inner Lindblad resonance� which thus damps down disturbances in

the disk� and reduces the possibility of a mode� However� once 'p exceeds � ����� the inner Lindblad

resonance moves inside the inner cut�out radius� If the cut�out is gentle 	N � ��� the incoming waves pass



Figure ����� The position of co	rotation and of the m � � Lindblad resonances for � � �����
 Units v� � R� � � are
used


through it� reach the inner Lindblad resonance and are absorbed� If however the cut�out is su�ciently

sharp 	as for larger cut�out indices�� it presents a barrier which re�ects the incoming trailing waves�

Instead of reaching the inner Lindblad resonance and being absorbed� they are re�ected back as outgoing

leading waves� The exceptional stability of N � � disks is mostly due to the fact that the surface density

is disturbed much less abruptly than for higher cut�out indices� presenting less of a re�ective barrier to

incoming waves� An additional� related factor is the much greater surface density within the inner cut�out

when N � �� For N � �� the surface density rapidly falls to zero within R�� Waves are thus suppressed

by simply having no medium through which to propagate) For N � �� the active surface density diverges

at the origin when the rotation curve is falling� and even when the rotation curve is rising the surface

density remains large to much smaller radii 	see �g� ������

Marginal modes

We are frequently interested in marginal stability� the stability of the disk to disturbances with zero

growth rate� To investigate this� we set s � ��� and keep only the temperature and pattern speed as

variables� For su�ciently high temperature� the disk is stable� even the largest eigenvalue curve crosses

the real axis at less than unity� and no self�consistent marginal modes are possible� How hot does the disk

have to be for this stabilisation to occur� We can answer this by �nding the temperature for which the

marginal eigenvalue curve passes through 	�� ��� The numerical procedure for �nding this unit eigenvalue

is described in Chapter �� section ���� The temperature � and pattern speed 'p were adjusted until

the di�erence between the largest mathematical eigenvalue and unity was less than some small quantity�

� � which was usually chosen to be ��
��� This means that the accuracy of �max and %�u�min was not

speci�ed in advance� An estimate of this accuracy is provided by the size of the last step found necessary

in the Newton�Raphson routine as the search homed in on the unit eigenvalue� This was typically less

than ���� for %�u and 'p� and less than ��
�� for �� indicating that �max and %�u�min are accurate to at

�Speci�cally� the iteration was continued until jRe�� � �j and jIm��j were both less than ��




least � s�f� The numerical accuracy parameters used are given underneath the graphs below� These were

chosen so as to ensure that the largest mathematical eigenvalue converged to at least 
 s�f� Tables of the

data used in �gures ���
 and ���� are given in Appendix E� The � � � results agree with those given in

Zang 	���
��

Fig� ���
 shows the minimum temperature needed for bisymmetric stability� as a function of �� The solid

lines show the results for the inner cut�out disks with N � �� �� � The broken lines show results for

the corresponding doubly cut�out disks with M � �� � 
� %Rc � ��� For comparison� the temperature

necessary for global axisymmetric stability of the self�consistent disk is also shown�

Figure ���
� Minimum temperature for bisymmetric stability plotted against �� for disks with various cut	out functions

The left	hand plot shows the minimum velocity dispersion ��u� the right	hand one the same data presented in terms of the
stability parameter Qs
 The solid lines indicate the results for inner cut	out disks with N � �� �� �� �
 The broken lines
indicate the corresponding doubly cut	out disks with M � �� �� � and �Rc � ��
 The remaining line shows the temperature
necessary for global axisymmetric stability in the self	consistent disk
 �Numerical accuracy parameters� n � ���� �� � ����
lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���� �� � ��

��
 �

Curves with di�erent N lie well apart� the inner cut�out function has a profound e�ect on the stability

of the disk� The more sharply the core is cut out� the more unstable the disk becomes� For each N �

the curves with di�erent M lie very close together� Even with this very low truncation radius� the outer

cut�out function has made very little di�erence to the temperature necessary for stability� With a larger

%Rc� say ���� the doubly cut�out curves are scarcely distinguishable from those with only an inner cut�out

	data not shown��

We can use �g� ���
 to compare the stability of the various cut�out disks to m � � and m � � perturba�

tions� The N � � disk is much less prone to bisymmetric than to ring�like perturbations over almost all

�� For N � �� the relative tendency to m � � and m � � disturbances depends on �� Roughly speaking�

N � � disks with rising rotation curves are more prone to m � � disturbances� and disks with falling

rotation curves are more prone to m � �� Conversely� disks with N �  disturbances are much more

prone to bisymmetric disturbances over almost all �� only when the rotation curve is steeply falling does

the m � � mode become harder to stabilise� It is perhaps surprising that it is the lowest outer cut�out

index� M � �� which shows the largest departure from the inner cut�out curves� It seems that tapering



the disk gently at large radius has more of an e�ect than truncating it abruptly� This is presumably

because for lower M � the e�ect of the outer cut�out is felt further in towards the centre of the disk� For

higher M � the outer cut�out is sharp� but occurs entirely outside the outer Lindblad resonance� As for

the axisymmetric case 	section 
�
�� disks with a gentle outer cut�out are more stable than those where

the cut�out is sharper�

The critical pattern speed obtained for these marginal modes is shown in �g� ����� We see that for all

cut�out functions and �� the pattern speed is con�ned to a fairly narrow range� roughly ��� to ��
� Over

a wide range in �� the pattern speed varies roughly linearly with ��

Figure ����� Critical pattern speed �p plotted against �� for an m � � perturbation in disks with various cut	out
functions
 The solid lines are labelled with the appropriate inner cut	out index N 
 For each N � di�erent outer cut	out
indices M are plotted
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ����
aacc � ��� bacc � �� �� � ��

��
 �

Let us look in more detail at the marginal modes� Fig� ���� shows the density transforms A	�� for modes

in inner cut�out disks with N � �� � � 	�����

Figure ����� Density transform A��� of the marginal modes in inner cut	out disks with N � �� � � �����
 The solid line
is Re�A����� the dotted is Im�A���� and the dashed line shows the envelope �jA���j
 For � � ����� the marginal mode has
Qs � ������ ��u � ������ 
 � ����� �p � �����
 For � � ������ the marginal mode has Qs � ������ ��u � ������ 
 � �����
�p � �����
 �Numerical accuracy parameters� n � ���� �� � ����� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
bacc � �
 �

The contour plots in �gs� ���� � ���� show the form of the marginal modes for � � 	���� in inner cut�out
disks with N � �� N � � and N � �



Figure ����� Density contour plot of a marginally stable mode in inner cut	out disks with N � �
 The left	hand plot is
for � � ����� for which the marginally stable mode has Qs � ������ 
 � ����� ��u � ������ �p � ������ �u � ����
 The
right	hand plot is for � � ������ for which the marginally stable mode has Qs � ������ 
 � ����� ��u � ������ �p � ������
�u � ���
 In each plot� the density is calculated between R � ���RILR and R � ROLR
 The solid lines mark ���� ���� ����
��� and ��� of the maximum density within this range� the dotted lines show the nodes� where the density perturbation
is zero
 The dashed circles indicate the Lindblad resonances and the co	rotation radius
 For � � ����� RILR � ������
RCR � ����� ROLR � ����� for � � ������ RILR � ������ RCR � ����� ROLR � ����� in units where R� � �
 �Numerical
accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �

Figure ����� Density contour plot of a marginally stable mode in inner cut	out disks with N � �
 The left	hand plot is
for � � ����� for which the marginally stable mode has Qs � ����� 
 � ����� ��u � ������ �p � ������ �u � ����
 The
right	hand plot is for � � ������ for which the marginally stable mode has Qs � ����� 
 � ����� ��u � ����� �p � �����
�u � ���
 In each plot� the density is calculated between R � ���RILR and R � ROLR
 The solid lines mark ���� ���� ����
��� and ��� of the maximum density within this range� the dotted lines show the nodes� where the density perturbation
is zero
 The dashed circles indicate the Lindblad resonances and the co	rotation radius
 For � � ����� RILR � �����
RCR � ����� ROLR � ����� for � � ������ RILR � ������ RCR � ����� ROLR � ���� � in units where R� � �
 �Numerical
accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �



Figure ����� Density contour plot of a marginally stable mode in inner cut	out disks with N � �
 The left	hand plot is for
� � ����� for which the marginally stable mode has Qs � ����� 
 � ����� ��u � ������ �p � ����� �u � ���
 The right	hand
plot is for � � ������ for which the marginally stable mode has Qs � ����� 
 � ������ ��u � ����� �p � ����� �u � ���
 In
each plot� the density is calculated between R � ���RILR and R � ROLR
 The solid lines mark ���� ���� ���� ��� and
��� of the maximum density within this range� the dotted lines show the nodes� where the density perturbation is zero

The dashed circles indicate the Lindblad resonances and the co	rotation radius
 For � � ����� RILR � ������ RCR � �����
ROLR � ����� for � � ������ RILR � ���� RCR � ���� ROLR � ���� in units where R� � �
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �

For falling rotation curves� the modes are much more tightly wound than for rising rotation curves� They

extend beyond co�rotation� up to the outer Lindblad resonance� whereas in disks with rising rotation

curves the modes are concentrated between the inner Lindblad resonance and the co�rotation radius�

The modes are also more tightly wound for disks where the cut�out function is gentler�

These correlations are related to the temperature of the disks� Disks with rising rotation curves are less

stable than disks with falling rotation curves� similarly� disks where the cut�out is sharp are less stable

than disks with gentle inner cut�outs� In both cases� higher temperatures are needed for marginal modes�

The observation that disks with negative � have looser� less extensive marginal modes re�ects the higher

temperature rather than an innate tendency for spirals to be more loosely wound in disks with rising

rotation curves� For comparison� we now investigate growing modes in disks with the same velocity

dispersion� We consider N � � disks with � � 	����� with in each case %�u � ���� This corresponds

to Qs � ����� in the disk with � � ����� and Qs � ����� in the disk with � � ������ The disk with
� � ����� is less stable� so at this velocity dispersion it admits much faster�growing modes than the disk
with � � ����� The fastest�growing modes in each case are shown in �g� ����� They are equally tightly

wound 	in each case the density transform A	�� peaks close to � � ��� con�rming that it is velocity

dispersion� rather than rotation curve� which principally a�ects the winding�



Figure ����� Density contour plot of growing modes in inner cut	out disks with N � �� ��u � ���
 The left	hand plot
is for � � ����� for which the fastest	growing mode has s � ������ �p � ����
 The right	hand plot is for � � ������ for
which the fastest	growing mode has s � ���� �p � �����
 In each plot� the density is calculated between R � ���RILR

and R � ROLR
 The solid lines mark ���� ���� ���� ��� and ��� of the maximum density within this range� the dotted
lines show the nodes� where the density perturbation is zero
 The dashed circles indicate the Lindblad resonances and the
co	rotation radius
 For � � ����� RILR � ������ RCR � ���� ROLR � ����� for � � ������ RILR � ������ RCR � �����
ROLR � ����� in units where R� � �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ����
nGL � �� f� � ���� aacc � ��� bacc � �
 �

We can see physically why the winding should be related to the velocity dispersion� If a growing mode

exists� then the stars cannot have enough random motion to move entirely out of a density enhancement

within one growth time 	see the discussion following �g� 
�
�� As the temperature increases� the stars

have more random motion� and the spiral modes can therefore be more loosely wound�

These points are illustrated in �g� ����� which plots the most unstable wavenumber �u against � and %�u

for inner cut�out disks with N � �� � and � As in Chapter 
� we de�ne the most unstable wavenumber to

be the dominant wavenumber of the marginal mode� This relies on the fact that the density transforms

A	�� tend to be fairly strongly peaked about the dominant wavenumber 	see �gs� ����� ������ Our method

of solving the integral equation discretises the wavenumber� so the values of �u shown below are correct

to the nearest (�� This accounts for the slightly wobbly appearance of the curves�

The left�hand plot of �g� ���� con�rms that modes are more tightly wound in disks with falling rotation

curves and disks where the cut�out is gentler� The right�hand plot illustrates that modes are more tightly

wound in cooler disks� The curves for di�erent cut�out indices are much closer together than in the left�

hand plot� indicating that most of the di�erence in the winding of marginal modes in disks with di�erent

cut�out indices can be ascribed to the di�erent critical temperatures�

Modes in the cooler disks shown in �g� ���� also extend slightly further out towards the outer Lindblad

resonance than the marginal modes shown in �g� ����� However� the mode in the disk with falling rotation

curve still extends further than the mode in the disk with rising rotation curve 	both in actual space�



Figure ����� Dependence of most unstable wavenumber �u on � and velocity dispersion for inner cut	out disks with
N � �� �� �
 The most unstable wavenumber �u is de�ned to be that wavenumber at which the amplitude of the marginal
density transform� jA���j� is maximum
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ����
nGL � �� f� � ���� aacc � ��� bacc � �
 �

and in terms of the co�rotation radius�� This suggests that rotation curve� as well as velocity dispersion�

in�uences the extent of the mode�

The positions of the Lindblad resonances and the co�rotation radius are determined by the pattern speed

'p of the mode� We saw in �g� ���� that the pattern speed of modes increases with � and is greater for

disks with lower cut�out indices� According to �g� ����� then� the pattern should be concentrated within

a smaller radius for � � ���� than for � � ������ and similarly for the lower cut�out indices� This is
indeed what we observe in �gs� ���� � ����� Fig� ��� shows the position of the Lindblad and co�rotation

resonances for marginal modes�

Figure ���� Position of resonances for marginal modes in cut	out disks with di�erent �
 The dashed horizontal lines
show the position of the inner and outer cut	out radii
 The pattern speed corresponding to the marginal mode in each disk
��g
 
�� is used to calculate the position of the resonances in the disk
 The solid lines mark the Lindblad resonances� the
dotted line marks co	rotation
 The three plots show results for N � �� � and �� each plot shows data for doubly cut	out
disks with M � �� �� �� �Rc � ��

 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� bacc � �
 �



It is signi�cant that for every value of � the pattern speed is such that the inner Lindblad resonance falls

just inside the inner cut�out� It appears that the disk will not admit modes unless the pattern speed

is large enough to push the inner Lindblad resonance safely within the inner cut�out� The resonance is

allowed nearer the cut�out when the cut�out is sharper� and hence a more e�cient re�ector� Similarly� if

we examine modes in an unstable disk 	Appendix F�� we �nd that the fastest�growing modes have the

largest pattern speeds� As the pattern speed decreases� allowing the inner Lindblad resonance to move

out closer to the cut�out radius� the growth rate slows� The pattern speed is also related to the winding

of the spiral mode� In �g� ����� the dominant wavenumber is plotted against pattern speed for modes in

N � � disks with various �� Modes which rotate quickly are more tightly wound�

Figure ����� Dependence of dominant wavenumber �u on pattern speed �p for modes in inner cut	out disks with N � ��
�� �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
bacc � �
 �

The Ostriker�Peebles criterion

Ostriker and Peebles 	����� suggested that disk galaxies are stable to bar�like modes only when the ratio

of total rotational energy T to total gravitational energy jW j is less than ���� The energiesW and T for

the self�consistent disk are given by eq� 	���
� and eqs� 	����� � 	������ We thus recover the expressions

given by Evans 	�����
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Note that the � � � result can be derived from the values for � �� � using a property of the gamma

function 	Gradshteyn � Ryzhik ����� ��������
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In the expression for negative �� we have
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Similarly in the expression for positive �� we have
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Fig� ���
 shows the ratio T�jW j calculated for the self�consistent disk 	eqs� 	����� and 	������� The

anisotropy parameter used at each � is � � �max� i�e� the temperature needed for marginal stability in

the cut�out disk� These values of � are tabulated in Appendix E�

Figure ���
� Comparison of the results for the cut	out disks with the Ostriker	Peebles criterion
 The solid lines are
labelled with the appropriate inner cut	out index N 
 For each N � di�erent outer cut	out indices M are plotted� as shown
in the key


For all the disks� the ratio T�jW j is much greater than the value of ��� suggested by Ostriker and
Peebles� 	Note that T�jW j can exceed ���� since the standard form of the virial theorem does not apply

to the power�law disks� see eq� 	������� This suggests that the Ostriker�Peebles criterion is not useful

in predicting the stability of the power�law disks� However� the temperatures used in �g� ���
 were

derived for the cut�out disks� and we have already seen that the self�consistent and cut�out disks have

very di�erent stability properties� We should therefore consider the form of T�jW j for the cut�out disks�
In this case� the density  	���� and streaming velocity hvi 	��
�� must be calculated numerically using
the appropriate cut�out distribution function� The integrations over radius in the expressions for T and

W 	eqs� 	������ 	����� must then also be performed numerically�

We used a Gaussian quadrature over eccentric velocity to calculate  and hvi� and then found the
energies by a midpoint integration over radius� The success of this approach was tested by comparing

the numerical results for the self�consistent disk with those calculated analytically� This indicated that



the accuracy was only � or � s�f�� the error stemming from the Gaussian quadrature� This is su�cient for

our purposes� which are to examine whether the Ostriker�Peebles criterion is a good rule of thumb�

Since the cut�out breaks the self�similarity� the ratio T�jW j now depends on radius� as shown in �g� �����

Figure ����� The ratio of the rotational to gravitational energy contained within a radius R� for inner cut	out disks
 The
solid lines are labelled with the appropriate inner cut	out index N 
 The arrows indicate the direction of increasing �� from
� � ���� to � � ���


For positive �� the T�jW j curves have levelled o� to a constant value at large radii� The convergence is
slower for negative �� Eq� 	���� shows that the cumulative mass rises much more slowly at large radii

for disks with falling rotation curves than for disks with rising rotation curves� Thus we expect the total

kinetic and gravitational energies within a radius R to converge faster with R when � is positive than

when � is negative�

Fig� ���� plots the value of T�jW j at R � ��� for a range of ��

Figure ����� The ratio of the rotational to gravitational energy plotted against �� for doubly cut	out disks
 The solid
lines are labelled with the appropriate inner cut	out index N 
 For each N � di�erent outer cut	out indices M are plotted� as
shown in the key
 The doubly cut	out disks all have �Rc � ��




The curves are similar in form to those in �g� ���
� The major di�erence concerns the doubly cut�out

disks with N � �� which depart from the curves for the N � � inner cut�out disk� 	This may well be

a numerical artefact� T and W are not evaluated very accurately� so an error of � ��� in their ratio is

entirely possible�� However� the main conclusion holds� namely that for the power�law disks the Ostriker�

Peebles criterion greatly overestimates the amount of energy which must be in the form of random motion

in order to achieve bisymmetric stability�

	�� Neutral modes in the self�consistent disk

We close this chapter with a brief examination of the bisymmetric neutral modes admitted by the self�

consistent disk� The response function R for these modes was derived in Chapter � eq� 	����� Fig� ����

shows the dependence of the response function on the wavenumber � for di�erent temperatures� As

discussed in Chapter �� it is di�cult to obtain an accurate value for R when both temperature and

wavenumber are high� In �g� ����� the curve for each temperature has been truncated when the inaccuracy

becomes severe enough to be visible on the graph�

Figure ����� The response function for the self	consistent disks with � � �����
 For � � ����� curves are shown for ten
values of Qs in steps of �
� from �
� to �
�
 For � � ������ curves are shown for seven values of Qs in steps of �
� from �
�
to �
�
 �Numerical accuracy parameters� lmin � ���� lmax � ���� nGL � ��� f� � ���� aacc � ��� bacc � ���
�

The response is qualitatively similar to that for cut�out disks� When the temperature is low enough� the

disk admits neutral m � � modes� The modes are more tightly wound in disks with lower temperatures�

As the disk is heated� the R�� curve drops� until a critical temperature is reached at which R � � only at

some wavenumber �u� Above this temperature� the response remains less than unity for all wavenumbers�

and the disk does not admit neutral modes�

It is apparent from �g� ���� that disks with falling rotation curves admit neutral modes at higher values of

the stability criterion Qs than disks with rising curves� For � � ����� the curve with Qs � �� intersects

the line R � �� whereas for � � ������ this curve never reaches R � �� This is the opposite of the

behaviour of the critical temperature for marginally�stable modes in the cut�out disks� Fig� ���
 shows



that cut�out disks with falling rotation curves require lower values of Qs for stability� We investigated

the dependency of the critical temperature on � by �nding the maximum of each R�� curve at a given
Q� and then adjusting Q until this maximum was unity� The results are shown in �g� ��� in terms of

the velocity dispersion %�u and the stability criterion Qs�

Figure ���� Velocity dispersion ��u and stability parameter Qs plotted against �� for an m � � perturbation in self	
consistent and cut	out disks
 The curves labelled with the inner cut	out index N show the ��u�min and Qs at which the
inner cut	out disks are marginally stable to bisymmetric disturbances
 The curve labelled "scale	free# shows the ��u�min and
Qs at which the self	consistent disk just fails to admit any bisymmetric neutral modes
 �Numerical accuracy parameters�
lmin � ���� lmax � ���� nGL � ��� f� � ���� aacc � ��� bacc � ���
�

In the limit of vanishing pattern speed� the inner Lindblad resonance moves far beyond the inner cut�out

radius� We then expect the cut�out disk to respond like the self�consistent disk� If the self�consistent disk

admits neutral modes� the cut�out disk should too� In our examination of the cut�out disks in section ����

we found no neutral modes� In the limit 'p � �� the eigenvalues approach the negative real axis 	�gs� ���


and ������ Thus neutral bisymmetric modes are not possible in cut�out disks at these temperatures� We

can see why this is so by considering �g� ���� Figs� ���
 and ���� were plotted for disks with Qs � ��

Fig� ��� shows that this temperature is high enough to abolish neutral modes in the self�consistent disk�

Very low temperatures are required before neutral bisymmetric modes become possible 	�g� ��� shows

we require %�u � ����� virtually independently of ��� At these low temperatures� in most cut�out disks

the neutral modes are already swamped by growing modes� However� �g� ��� indicates that when the

rotation curve is falling steeply� a higher temperature is required to banish neutral modes from the self�

consistent disk than to stabilise the N � � cut�out disk� We therefore investigated the eigenvalues of the

N � � disk with � � �� and Qs � ���� If we are correct in our supposition that the cut�out disk mimics

the self�consistent disk in its response to perturbations with vanishingly small pattern speed� this disk

should admit neutral modes even when it is stable to growing modes� This is indeed what is found� For

example� when %s � ���� and %'p � ��
��� the ��th eigenvalue is ����� �����



As demonstrated in �g� ����� modes tend to be more tightly wound in cooler disks� Since the neutral

modes set in only at very low temperatures� we expect them to be very tightly wound� This is illustrated

in �g� ���� In the left�hand plot� the wavenumber of the neutral mode at the critical temperature is

plotted against �� For comparison� the most unstable wavenumbers of the cut�out disks are also shown� In

the right�hand plot of �g� ���� the dominant wavenumbers of the modes are plotted against the velocity

dispersion at which they set in� 	For the self�similar disk� this curve is close to vertical� since the neutral

modes set in at almost the same velocity dispersion in all disks�� This �gure indicates that the neutral

modes are about as tightly�wound as would be expected from their low temperature�

Figure ���� Dependence of most unstable wavenumber on � and velocity dispersion� for the self	consistent disk and for
inner cut	out disks with N � �� �� �
 The curves labelled with the inner cut	out index N show the dominant wavenumber
of the marginally	stable mode which sets in as the temperature is lowered
 The curve labelled "scale	free# shows the
wavenumber of the �rst neutrally	stable mode to set in as the temperature is lowered
 In the left	hand plot� �u is plotted
against �� and in the right	hand plot against ��u�min
 �Numerical accuracy parameters� lmin � ���� lmax � ���� nGL � ���
f� � ���� aacc � ��� bacc � ���
�

	�� Summary

We began this Chapter by reviewing the results of local theory� We studied how waves could propagate

through our disks at di�erent temperatures� and sought to understand qualitatively how instabilities

could arise� We then studied the global stability of the cut�out disks� As Toomre and Zang 	���
� found

for the disk with �at rotation curve� the power�law disks are remarkably stable to m � � perturbations�

Gently cut�out disks are more prone to axisymmetric than to bisymmetric disturbances� Finally� we

looked at the self�consistent disk� This admits neutral modes only at very low temperatures� at which

most cut�out disks already admit growing modes�



Chapter �

Global One�armed

Modes


�� Introduction

The stability of the power�law disks to one�armed disturbances di�ers in several important respects from

the bisymmetric stability� It is intuitively clear that one�armed disturbances are capable of moving the

barycentre from the origin towards the overdense spiral arm� This cannot occur with modes for m �� ��
since there are then matching overdense arms to balance the force� For an isolated system� acceleration

of the barycentre is clearly not physical� The possibility occurs here because our analysis holds the

equilibrium disk �xed while imposing a perturbation on it� If a one�armed disturbance were to occur in

a physical system� the equilibrium disk would be displaced in such a way as to balance the perturbation�

so that the barycentre remained �xed� Our analysis thus reproduces a famous �mistake�� Maxwell� in his

celebrated Adams Prize essay �On the stability of motion of Saturn�s rings� 	Maxwell ������ examined

the in�nitesimal disturbances of a ring of small masses rotating in centrifugal equilibrium around a �xed

central mass� A complete investigation of the m � � modes would require our analysis to be modi�ed to

permit the barycentre to move� Instead� let us investigate the stability of the disk to �na�/ve� one�armed

disturbances� and check a posteriori that the barycentre moves only slightly�


�� Global stability of the cut�out disks

Once again� we are concerned to understand the position of the mathematical eigenvalue � in the complex

plane� We �rst investigate how the largest mathematical eigenvalue depends on pattern speed and growth

rate for a particular temperature� We choose Qs � �� i�e� the temperature at which the self�consistent

disk is locally just stable to axisymmetric disturbances� and examine cut�out disks with inner cut�out

index N � �� As in �gs� ��� � ���� in Chapter �� the diamonds indicate the data points actually calculated�

The smooth curves joining the data points were obtained using a spline �tting procedure�

For growing perturbations 	s � ������ these curves are qualitatively similar to those obtained for bisym�

�




Figure ���� The dependence of the largest eigenvalue on growth rate and pattern speed� for inner cut	out disks with
N � � and Qs � �
 In the uppermost plot� � � ���� ���u � ����� and 
 � �����
 In the middle plot� � � ���� ���u � ����
and 
 � �����
 In the lowest plot� � � ����� ���u � ����� and 
 � �����
 The solid lines show curves of constant s at ��
values of s� s � ����� �
����� �
����� �
���� �
���� �
��� �
��� �
�� �
�� �
�� �
�
 The dotted lines show curves of constant
�p at �� values of �p� �p � ������� �
����� �
���� �
���� �
��� �
��� �
��� �
�� �
�� �
� � � � �
�� �
�
 The dashed line in the
top plot indicates the pattern speed of the fastest	growing mode in the � � ���� disk
 �Numerical accuracy parameters�
n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�



metric perturbations 	�gs� ��� � ������ Curves of a given s cross the real axis at higher values of these

m � � plots than for m � �� indicating that the disk is more prone to one�armed than two�armed distur�

bances� For instance� we saw in �g� ��� that Qs � � was already su�cient to stabilise the � � ���� disk

to m � � disturbances� But �g� ��� indicates that this disk remains susceptible to m � � disturbances�

One such mode is indicated by the dashed line in the top plot of �g� ���� The corresponding density

transform A	�� is shown in �g� ����

Figure ���� Density transform A��� of a one	armed mode in an inner cut	out disk with N � �� � � ����
 The mode has
pattern speed �p � ����� and growth rate s � ������
 This is for Qs � �� i
e
 ��u � ����� and 
 � ����
 The solid line
is Re�A����� the dotted is Im�A���� and the dashed line shows the envelope �jA���j
 �Numerical accuracy parameters�
n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �

The density transform peaks at � � �
� Fig� ��� shows a contour plot of the density corresponding to

the mode� and for comparison the log�spiral with � � �
� As for the m � � mode shown in �g� ����� the

log�spiral accurately re�ects the winding of the spiral arms� but not the density distribution within the

arms�

Figure ���� The left	hand plot is the density contour plot for a one	armed mode in an inner cut	out disk with N � ��
� � ����
 The mode has pattern speed �p � ����� and growth rate s � ������
 This is for Qs � �� i
e
 ��u � ����� and

 � ����
 In each plot� the density is calculated between R � ���� and R � ���RCR
 The solid lines plot ���� ���� ����
��� and ��� of the maximum density within this range� in the left	hand plot� the dotted lines show the nodes� where the
density perturbation is zero
 The dashed circle indicates the co	rotation radius� at 
��
 Units of R� � � are used
 The
right	hand plot shows the log	spiral with m � �� � � ���
 Again� contours are plotted at ���� ���� ���� ��� and ��� of
the maximum density
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ����
aacc � ��� bacc � �
 �



However� the most striking di�erence between the present situation and that of Chapter � occurs as

the growth rate is reduced to zero� It appears that in the limit of vanishing growth rate� the marginal

eigenvalue curves never cross the real axis� Eigenvalues for small but non�zero growth rate 	e�g� s �

����� ����� follow the marginal curve for high pattern speeds� As the pattern speed is reduced� one by

one they peel away from the marginal curve and cross the real axis� This has dire consquences for the

stability of the disks to one�armed disturbances� Ordinarily we expect to be able to stabilise disks by

raising their temperature su�ciently� Fig� �� shows the e�ect of increasing temperature� The largest

mathematical eigenvalue curves are plotted for the same values of growth rate and pattern speed as in

�g� ���� for Qs � ���� Qs � ��� and Qs � ���� The high�temperature results look very strange� and it is

probable that the code has been pushed too far in the limits of very low growth rate� very low pattern

speed and very high temperature� so that individual eigenvalues may be signi�cantly in error� But it is

clear that even these very high temperatures are not su�cient to stabilise the disk to modes with very

small growth rates� As the temperature is increased� the curves with higher growth rate shrink towards

the origin� crossing the real axis at successively lower values� But the curves with very low growth rate

continue to stretch out along the real axis� It appears that� no matter how high the temperature� a mode

exists for su�ciently low growth rate and pattern speed� Unlike for m � �� there is no clear critical

temperature distinguishing stable and unstable disks� We can �nd a temperature su�cient to stabilise

the disk down to j�j � ����� ���� or whatever� But the numerical di�culties of calculating eigenvalues

in the limit of vanishing growth rate and pattern speed suggest that there is little point in attempting to

locate a critical temperature necessary for m � � stability�

In the latter two plots of �g� ��� the eigenvalue curves with vanishing or very small growth rate develop

strange kinks in the vicinity of 'p � ��� This behaviour is investigated further in �g� ���� which shows

the marginal curves for the �rst two eigenvalues in the N � �� � � ���� disk� for several di�erent

temperatures�

Figure ���� The dependence of the two largest mathematical eigenvalues on temperature and pattern speed for � � ����

The left	hand plot shows the largest eigenvalue �� and the right	hand plot shows the second	largest eigenvalue �
 Curves
are plotted for an s � ���� perturbation in an inner cut	out disk with N � �
 The temperature used for each curve is
expressed in terms of Qs� ��u � �����Qs
 The solid lines mark curves of constant Qs for eleven values of �p from �
� to
�
�
 The dotted lines mark curves of constant �p for �ve values of Qs from �
� to �
�
 �Numerical accuracy parameters�
n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�



Figure ��� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � ����
 The
top plot is for Qs � ���� the middle for Qs � ��� and the bottom plot for Qs � ���
 The solid lines show curves of constant
s at �� values of s� s � ����� �
����� �
����� �
���� �
���� �
��� �
��� �
�� �
�� �
�� �
�
 The dotted lines show curves of
constant �p at �� values of �p� �p � ������� �
����� �
���� �
���� �
��� �
��� �
��� �
�� �
�� �
� � � � �
�� �
�
 The dashed
lines indicate the growth rate and pattern speed of the fastest	growing mode
 �Numerical accuracy parameters� n � ����
�� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�



At higher temperatures� the marginal eigenvalue curves develop a kink� which in the case of the largest

eigenvalue means that the curve actually crosses that for lower temperatures� 	Of course� the mapping

from Qs and 'p to � is not conformal� and therefore the curves of constant Qs and 'p are allowed to

cross�� In the corresponding diagrams for m � � 	�gs� ���� � ������ the curves never crossed� It was then

obvious that the e�ect of raising temperature� at a given pattern speed� was always to reduce the modulus

of the eigenvalue� thus stabilising the disk� In fact� although this is not clear from �g� ���� the modulus

of the eigenvalue at a given pattern speed always decreases as the temperature is raised� Thus raising

temperature does still have a stabilising e�ect� It is unclear why� at high temperatures� the eigenvalue

should change so abruptly with pattern speed�

We have seen 	�g� ��� that for suitable growth rate and pattern speed� the largest eigenvalue can be

made equal to unity� even at very high temperatures� Thus there is at least one mode� The existence of

secondary� tertiary etc� modes depends on the behaviour of the sub�dominant eigenvalues� We �nd that

the sub�dominant eigenvalues behave in a similar way to the dominant eigenvalue as the growth rate and

pattern speed are varied� That is� for growing disturbances they move in arcs around the origin as the

pattern speed decreases� whereas for disturbances of vanishing growth rate� they do not cross the real

axis� Fig� ��
 shows the dependence of the eight largest mathematical eigenvalues on pattern speed for

s � ����

Figure ��
� The dependence of the eight largest mathematical eigenvalues on pattern speed� for s � ���� N � �
and � � ����
 This is for Qs � �� i
e
 ��u � ����� and 
 � ����
 The solid lines show marginal eigenvalue
curves for the eight largest eigenvalues
 The dotted lines show curves of constant �p
 �� values of �p are plotted�
�p � ������� ������� ������ ������ ����� ����� ����� ����� ����� ���� ���� ��� � � � ���
 �Numerical accuracy parameters� n � ����
�� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�

As in �g� ���
� to a �rst approximation the pattern speed controls the phase of each eigenvalue� At

'p � �� the phase of each eigenvalue �i is roughly ����� As the pattern speed increases� the eigenvalues
move anticlockwise� This plot also illustrates the tendency for m � � eigenvalues to occur in pairs� The

density transforms for pairs of m � � modes 	not shown� are very similar�

The behaviour for vanishing growth rate is very di�erent� Fig� ��� traces the four largest marginal

eigenvalue curves as the pattern speed is brought to zero� At high pattern speeds� the eigenvalues again



occur in pairs� As the pattern speed is reduced� the eigenvalue curves draw together� This accounts for

the ragged appearance of the curves� as eigenvalues swap positions� �rst one and then another becoming

dominant� All four eigenvalues show the same reluctance to cross the real axis�

Figure ���� The dependence of the four largest mathematical eigenvalues on pattern speed� for s � ����� N � � and
� � ����
 This is for Qs � �� i
e
 ��u � ����� and 
 � ����
 The solid lines show marginal eigenvalue curves for the four
largest eigenvalues
 The dotted lines show curves of constant �p� as labelled
 �Numerical accuracy parameters� n � ����
�� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�

Finally� we study the complete eigenvalue spectrum in the limit s � � and 'p � �� Fig� ��� shows

eigenvalue spectra for various growth rates and pattern speeds in an inner cut�out disk with N � ��

� � ����� and Qs � ���� We immediately note that all the eigenvalues have positive real parts� in

contrast to the situation for m � � eigenvalues 	�g� ������ In the limit s � �� the largest eigenvalue

becomes real� As 'p � �� it is joined on the real axis by increasingly many sub�dominant eigenvalues�

The top�left plot� in particular� contains eigenvalues close to 	����� supporting the idea that even a hot

disk will admit modes with su�ciently low growth rates and pattern speeds� The hoop�like structure that

develops in the limit of vanishing growth rate is probably a numerical artefact� A similar hoop develops

for m � � modes in this limit� even though we know analytically that all the eigenvalues are in fact real�

Symmetry arguments certainly suggest that all eigenvalues should be real in the limit s� � and 'p � �

	see sections �� and ����

Having thoroughly investigated the behaviour of the eigenvalues� we now seek to understand it in physical

terms� We have just noted that the real part of the m � � eigenvalues is always positive� Expressing

this physically� the response of the power�law disks to a one�armed perturbation is in phase with the

disturbance� whereas the response to a neutral two�armed perturbation is in antiphase� We can relate

this to the experience of a star on an approximately circular orbit in the perturbation potential 	�g� �����

The star is given a �push� outwards by the potential m times on each orbit� Its angular velocity is

approximately '�� so the frequency with which it is forced by the perturbation is m'�� Its natural radial

frequency is ��� It is well known that harmonic oscillators respond in phase when driven at less than

their natural frequency� and out of phase when driven at greater than their natural frequency�



Figure ���� The eigenvalue spectra for various growth rates and pattern speeds in an inner cut	out disk with N � ��
� � ����� Qs � ���
 The three rows of plots show eigenvalue spectra for increasing growth rates� s � ����� ���	� �����
����
 The four columns show spectra for increasing pattern speeds� �p � ���� � ���
� ����� ���	� ����
 �Numerical
accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
 �

. .

m � � m � �

Figure ���� A star orbiting in a perturbation potential
 The lighter line represents the star�s original� circular orbit� and
the heavier line its modi�ed orbit �exaggerated$� due to the perturbation represented by the shaded region


For the power�law disks� %'� � � and %�� �
p
�� �� For m � �� therefore� the forcing frequency is always

less than the natural frequency� and so the response is in phase� For m � �� the forcing frequency is

greater than the natural frequency� and the response is out of phase�

A further distinguishing feature of one�armed perturbations is that they are the only non�axisymmetric

disturbances to have no inner Lindblad resonance 	see eq� 	������ The inner Lindblad resonance acts as

a damping mechanism by absorbing incident waves 	section ����� In the absence of an inner Lindblad

resonance� incoming trailing waves are re�ected by the inner cut�out as leading waves� which are then

swing�ampli�ed� For m � �� many of the incoming waves are absorbed by the Lindblad resonance and



never return from the central regions� This point is illustrated in �gs� ���� and ����� These show the

density transforms of� respectively� m � � and m � � modes in disks of various temperatures� The disks

are chosen so as to obtain modes of broadly similar growth rates� The top plot in each �gure shows

a quickly�growing mode in a cool disk� Both transforms are dominated by a large trailing component�

Heating the disk reveals di�erences between the m � � and m � � modes� For m � �� the presence of

a large leading component � previously swamped by swing�ampli�ed trailing waves � becomes apparent�

Close to marginal stability� in the bottom plot� the leading and trailing components are of almost equal

amplitude� However� for m � � modes� no such leading component exists� This indicates that few leading

waves are returning from the central region to fuel the ampli�er� This is presumably due to absorption

by the Lindblad resonance� even though it lies within the inner cut�out radius�

Figure ����� Density transforms form � � modes in disks
of various temperatures
 The captions to each plot record
the value of Qs� and the growth rate and pattern speed of
the mode
 In each plot� the solid curve shows Re�A�����
the dotted line Im�A����� and the dashed line the envelope
�jA���j
 The dashed vertical line separates leading from
trailing waves
 �� � ����� N � �
 Numerical accuracy
parameters� lmin � ���� lmax � ���� nGL � �� f� � ����
aacc � ��� bacc � �
 Various di�erent n and �� were used
�

Figure ����� Density transforms for m � � modes in
disks of various temperatures
 The captions to each plot
record the value of Qs� the growth rate and pattern speed
of the mode� and the position of the inner Lindblad radius
in units of R�
 In each plot� the solid curve shows Re�A�����
the dotted line Im�A����� and the dashed line the envelope
�jA���j
 The dashed vertical line separates leading from
trailing waves
 �� � ������ N � �
 Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ����
nGL � �� f� � ���� aacc � ��� bacc � �
�



Growing modes

We are interested in how the rotation curve and inner cut�out a�ect the stability of the disks to m � �

disturbances� We thus need a way of comparing the stability of di�erent disks� For m � � perturbations�

a convenient method was to �nd the critical temperature at which the disk is just stable to bisymmetric

disturbances� The higher the temperature needed� the more unstable the disk� However� in the m � �

case we are unsure whether such a critical temperature exists� Therefore we instead use the growth rate

of the fastest�growing mode in disks with the same temperature as a measure of stability� More unstable

disks admit faster�growing modes�

There is an ambiguity in de�ning what is meant by disks �of the same temperature�� In this thesis� we

have used three measures of temperature� the velocity dispersion %�u� the anisotropy parameter � and

the stability parameter Qs� These are interchangeable for a given disk� but di�er when we compare disks

with di�erent �� To begin with� we examine disks with the same velocity dispersion� Fig� ���� shows the

growth rates and pattern speeds obtained for the four fastest�growing modes in the N � � inner cut�out

disks with %�u � ������ This is the velocity dispersion at which the disk with � � � is just stable to

axisymmetric disturbances�

Figure ����� Growth rates and pattern speeds of the four fastest	growing modes in N � � inner cut	out disks with
��u � ����
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
bacc � ���� �� � ��

��
�

The growth rates rise steeply as � becomes more negative� Thus� as for bisymmetric perturbations� disks

with rising rotation curves are less stable than those with falling curves� We also note that the modes

come in pairs with similar growth rate and pattern speed� 	We saw in �g� ��
 that the m � � eigenvalues

tend to come in pairs��

An alternative way of comparing the stability of di�erent disks is to compare disks with the same Qs�

rather than the same velocity dispersion %�u� In �g� ����� we examined disks with %�u � ������ At this

velocity dispersion� disks with rising rotation curves are still unstable to axisymmetric modes� Thus

although their m � � modes grow faster than in disks with falling rotation curves� they might actually

be less important� relative to m � �� than in disks with falling rotation curves� By examining disks with

Qs � �� we ensure that all the disks are stable to axisymmetric perturbations�



Fig� ���� shows the growth rates obtained for the four fastest�growing modes in four di�erent inner cut�

out disks with Qs � �� Fig� ��� shows the corresponding pattern speeds� The data used in these plots

are recorded in Appendix F�

Figure ����� Growth rates of the four fastest	growing modes for inner cut	out disks with Qs � ���
 The four plots show
results for N � �� �� �� �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� bacc � ���� �� � ��

��
�

Figure ���� Pattern speeds of the four fastest	growing modes for inner cut	out disks with Qs � ���
 The four plots
show results for N � �� �� �� �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� bacc � ���� �� � ��

��
�

Even though the condition Qs � � corresponds to larger velocity dispersions for negative �� modes still

grow faster in disks with rising rotation curves� Thus disks with rising rotation curves are more unstable

to both one�armed and axisymmetric modes than are disks with falling rotation curves� and they are

even more unstable to one�armed modes than to axisymmetric modes�

As for m � � modes� disks with sharper cut�outs are more unstable than those where the cut�out is

gentle� In section ���� we argued that this was because sharper cut�outs are more e�ective at re�ecting

the wave away from the damping inner Lindblad resonance� Where the cut�out was too gentle� as for

N � �� the wave was severely damped by the resonance� and modes were basically impossible� For m � �

modes� there is no inner Lindblad resonance� so even disks with N � � admit growing modes� However�

it appears that a sharper cut�out still destabilises the disk� presumably because the increased re�ection

makes a more e�cient feedback circuit for swing ampli�cation�

Fig� ���� examines the e�ect of lowering the temperature� It shows the growth rates and pattern speeds



for inner cut�out disks with N � �� The dotted lines are the results for Qs � ���� shown in �gs� ����

and ���� The solid lines are for cooler disks� with Qs � ���� As expected� lowering the temperature

destabilises the disk� so its modes grow and rotate more quickly�

Figure ����� Comparison of growth rates and pattern speeds for N � � disks with Qs � ��� �dotted lines� and disks with
Qs � ��� �solid lines�
 The left	hand plot shows the growth rates of the four fastest	growing modes� and the right	hand plot
their pattern speeds
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ����
aacc � ��� bacc � ���
�

Figs� ���
 � ���� show contour plots of the fastest�growing modes in inner cut�out disks with Qs � �� �u

in the caption of each �gure reports the dominant wavenumber of the modes� that is� the wavenumber at

which the magnitude of the density transform is greatest�

Figure ���
� Density contour plot of the fastest	growing Qs � � mode in inner cut	out disks with N � �
 The left	hand
plot is for � � ����� for which the fastest	growing mode has �p � ������ s � ������� �u � ���
 The right	hand plot is
for � � ������ for which the fastest	growing mode has �p � ������ s � ������� �u � ���
 In each plot� the density was
calculated between R � ���� and RCR
 The solid lines mark ���� ���� ���� ��� and ��� of the maximum density in this
range� the dotted lines show the nodes� where the density perturbation is zero
 The dashed circle indicates the co	rotation
radius
 For � � ����� RCR � ���� ROLR � ����� for � � ������ RCR � ��� ROLR � ����� in units where R� � �

�Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �



Figure ����� Density contour plot of the fastest	growing Qs � � mode in inner cut	out disks with N � �
 The left	hand
plot is for � � ����� for which the fastest	growing mode has �p � ������ s � ������� �u � ���
 The right	hand plot is
for � � ������ for which the fastest	growing mode has �p � ������ s � ������� �u � ���
 In each plot� the density was
calculated between R � ���� and ���RCR
 The solid lines mark ���� ���� ���� ��� and ��� of the maximum density
in this range� the dotted lines show the nodes� where the density perturbation is zero
 The dashed circle indicates the
co	rotation radius
 For � � ����� RCR � ����� ROLR � ����� for � � ������ RCR � ����� ROLR � ����� in units where
R� � �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
bacc � �
 �

Figure ����� Density contour plot of the fastest	growing Qs � � mode in inner cut	out disks with N � �
 The left	hand
plot is for � � ����� for which the fastest	growing mode has �p � ������ s � ������ �u � ���
 The right	hand plot is
for � � ������ for which the fastest	growing mode has �p � ������ s � ������ �u � ���
 In each plot� the density was
calculated between R � ���� and ���RCR
 The solid lines mark ���� ���� ���� ��� and ��� of the maximum density
in this range� the dotted lines show the nodes� where the density perturbation is zero
 The dashed circle indicates the
co	rotation radius
 For � � ����� RCR � ����� ROLR � ����� for � � ������ RCR � ����� ROLR � ����� in units where
R� � �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
bacc � �
 �



Figure ����� Density contour plot of the fastest	growing Qs � � mode in inner cut	out disks with N � �
 The left	hand
plot is for � � ����� for which the fastest	growing mode has �p � ������ s � ������ �u � ���
 The right	hand plot is for
� � ������ for which the fastest	growing mode has �p � ���� s � ������ �u � ���
 In each plot� the density was calculated
between R � ���� and ���RCR
 The solid lines mark ���� ���� ���� ��� and ��� of the maximum density in this range�
the dotted lines show the nodes� where the density perturbation is zero
 The dashed circle indicates the co	rotation radius

For � � ����� RCR � ����� ROLR � ����� for � � ������ RCR � ����� ROLR � ����� in units where R� � �
 �Numerical
accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �

As for the marginally stable bisymmetric modes plotted in �gs� ���� � ����� the one�armed spirals shown

here are more tightly wound in disks with falling rotation curves than disks with rising rotation curves�

However� as in �gs� ���� � ����� this re�ects the dependence of winding on velocity dispersion rather than

on rotation curve� The modes shown here are for Qs � �� which corresponds to higher velocity dispersions

for � � ����� 	%�u � ������ than for � � ���� 	%�u � ������� We saw in section ��� that spirals tend to

be more tightly�wound in disks with lower velocity dispersions�

In accordance with the lack of an inner Lindblad radius� these one�armed modes extend right to the

centre of the disk� Modes in disks with rising rotation curves have more density concentrated close to

the centre than those in disks with falling rotation curves� When discussing the distance to which these

modes extend out in the disk� it is useful to distinguish between the distance in physical space� and the

distance in terms of the co�rotation radius� Modes in disks with low velocity dispersions generally extend

further beyond the co�rotation radius than modes in warmer disks� However� modes in cooler disks also

rotate more quickly� so their co�rotation and outer Lindblad radii are smaller� Thus the actual extent

in space of a mode is generally smaller in cool disks than in warm disks� This is illustrated in �g� �����

which shows the fastest�growing modes in two disks with Qs � ���� When we compare this with the

modes shown in �g� ����� we see that the pattern speeds are considerably larger in the cooler disks 	for

� � ����� 'p � ���
 in the disk with Qs � ���� as against 'p � ����� in the disk with Qs � �����



Figure ����� Density contour plot of the fastest	growing Qs � ��� mode in inner cut	out disks with N � �
 The left	hand
plot is for � � ����� for which the fastest	growing mode has �p � ������ s � ������ �u � ��
 The right	hand plot is for
� � ������ for which the fastest	growing mode has �p � ������ s � ������ �u � ���
 In each plot� the density was calculated
between R � ���� and ROLR
 The solid lines mark ���� ���� ���� ��� and ��� of the maximum density in this range�
the dotted lines show the nodes� where the density perturbation is zero
 The dashed circles indicates the co	rotation and
outer Lindblad radius
 For � � ����� RCR � ����� ROLR � ����� for � � ������ RCR � ����� ROLR � ���� in units where
R� � �
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
bacc � �
 �

Bearing these temperature e�ects in mind� there is little di�erence in terms of spatial extent between one�

and two�armed modes� The one�armed modes shown in �gs� ���� � ���� extend further in space� but less

far beyond the co�rotation radius� than the two�armed modes plotted in �gs� ���� � ����� This re�ects

the higher temperature of the disks in which the m � � modes are plotted� The left�hand plot of �g� �����

showing � � ����� may be directly compared with the left�hand plot of �g� ����� since both these have

Qs � ���� The extent of the one�armed and two�armed modes are then very similar� both in actual space

and in terms of their co�rotation radius� The two�armed mode is slightly more tightly�wound 	�u � ���

than the one�armed mode 	�u � ����

The e�ect of velocity dispersion on the form of the mode also explains why �gs� ���� and ���� show

di�erent relationships between pattern speed and growth rate� In �g� ����� faster�growing modes rotate

more rapidly� in �g� ���� the opposite is true� This happens because �g� ���� compares disks with the

same velocity dispersion� whereas �g� ���� compares disks with the same stability parameter Qs� Thus for

disks with rising rotation curve� the velocity dispersion used for the dotted 	Qs � �� curves in �g� ���� is

greater than that in �g� ����� For a given value of �� modes rotate more slowly in disks with larger velocity

dispersions� This means that the pattern speeds of negative�� modes in �g� ���� must be smaller than

their relatives in �g� ����� Conversely� for modes with falling rotation curves� the velocity dispersions of

the modes in �g� ���� are lower than those in �g� ����� The modes therefore rotate more quickly� meaning

that the pattern speeds of positive�� modes in �g� ���� are larger than their relatives in �g� ����� This

explains why the pattern speed can fall with � in �g� ����� yet rise with � in �g� �����



The position of the barycentre

One�armed modes are unique in that they are capable of displacing the barycentre of the disk away from

the origin� However� visual inspection of �gs� ���� � ���� suggests that in these modes the barycentre is

close to the origin� The spiral arm wraps around the origin� with more density in the parts of the arm

closer to the origin� It is di�cult to guess by eye even the direction of any displacement of the barycentre

from the origin� Intriguingly� the density distribution in many cases has two separate peaks� one on either

side of the origin� This further suggests a balancing of the density on either side of the origin�

In general� the coordinates of the barycentre of the part of the disk within a radius L are given by
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where M	L� is the mass contained within the radius L� Our analysis divides the density into two

components� the axisymmetric equilibrium density  eq 	����� and the m�symmetric perturbation density

 imp� From eqs� 	����� and 	���
�� we �nd that the perturbation density is given by
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where we take the real part to obtain the physical density� Each log�spiral component makes equal positive

and negative contributions at every radius� so the mass M	L� contained within a radius L is just the

integral of the equilibrium density� eq� 	����� Conversely� since the equilibrium density is axisymmetric�

it does not shift the barycentre from the origin� Thus the expression 	���� for the x�coordinate of the

barycentre becomes
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where we must take the real part to obtain the physical co�ordinates� For m �� �� the integrals over � are
zero and we obtain 0x � 0y � �� For m � �� the terms with exp i	m" ��� integrate to zero� but the terms

with exp i	m� ��� do not� We then obtain
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Taking the real part� we obtain
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Going through a similar process for the y�coordinate� we obtain
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If the integral over � is non�zero� the barycentre is displaced from the origin� As L is taken to in�nity�

the coordinates of the barycentre tend to in�nity for � � � �
� � If we consider a large but �nite value of L�

eqs� 	��
� and 	���� show that the barycentre starts at a �nite distance from the origin� and gradually

spirals outwards� The distance of the barycentre from the origin is given by

p
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We calculated this quantity for a range of L for the modes shown in �gs� ���� � ����� We used t � �

and  p �  �� The results are shown in �gs� ���� � ���� These consider the part of the disk within a

radius L� For a range of L� they plot the quantity
p
0x� " 0y��RCR� i�e� the distance from the origin of the

barycentre of the part of the disk within a radius L� in units of the co�rotation radius� The co�rotation

radius roughly delimits the edge of the spiral mode� so
p
0x� " 0y��RCR describes how far the barycentre

is displaced from the origin� relative to the overall size of the mode� The dashed vertical lines in �gs� ����

� ��� indicate the positions of the co�rotation and outer Lindblad resonances�

Figure ����� The displacement of the barycentre from the origin� for N � � disks with � � �����
 The displacement of
the barycentre is plotted in units of the co	rotation radius
 The dashed vertical lines mark the position of the co	rotation
and outer Lindblad radii
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� bacc � ���
�



Figure ����� The displacement of the barycentre from the origin� for N � � disks with � � �����
 The displacement of
the barycentre is plotted in units of the co	rotation radius
 The dashed vertical lines mark the position of the co	rotation
and outer Lindblad radii
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� bacc � ���
�

Figure ����� The displacement of the barycentre from the origin� for N � � disks with � � �����
 The displacement of
the barycentre is plotted in units of the co	rotation radius
 The dashed vertical lines mark the position of the co	rotation
and outer Lindblad radii
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� b textacc � ���
�

Figure ���� The displacement of the barycentre from the origin� for N � � disks with � � �����
 The displacement of
the barycentre is plotted in units of the co	rotation radius
 The dashed vertical lines mark the position of the co 	rotation
and outer Lindblad radii
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� bacc � ���
�



For small values of L� the displacement of the barycentre is approximately linear� This is as expected � if

we consider only the very inner region of the disk� the emerging spiral arm is predominantly on one side

of the origin� But as we move to considering larger regions of the disk� the contributions of the spiral

arm from opposite sides of the origin begin to cancel out� For values of L beyond the outer Lindblad

resonance� the part of the disk we are considering is now large enough to include the entire spiral mode�

The forces pulling the barycentre away from the origin in di�erent directions cancel almost exactly� so

that the barycentre of the whole disk remains at the origin� This cancellation is especially remarkable

in view of the factor L����� in eq� 	����� It implies that the integral
R
d�A	��Li� decreases faster than

L�������

One potential problem in evaluating the integral is aliasing� As L becomes very large� exp	i� lnL� varies

very rapidly� The grid�spacing (� must be very small for the integral to be evaluated accurately� As

a rule of thumb� the integration is reliable where (� lnL � 
�� This implies that for (� � ���� the

integration is accurate up to L � ��� Experimentation with di�erent grids of � con�rms that �gs� ���� �
��� accurately re�ect the shape of the curve� The height of the maximum reached is a�ected by narrower

grid spacing� but the main conclusion� that the displacement of the barycentre falls to zero at values of

L beyond the outer Lindblad resonance� is unchanged�

In fact the fast oscillation of the term exp	i� lnL� is probably the reason for the cancellation� For typical

modes� A	�� is a smooth function of � which tends to zero as � � 	�� As L is increased� the term

exp	i� lnL� must eventually vary much faster with � than does A	�� 	unless A	�� is a delta�function or

some other strange entity � see section ����� Thus the integration over wavenumber in eq� 	���� adds up

many positive and negative contributions of equal magnitude� These cancel� ensuring that the integral

vanishes� Thus it appears that self�consistent modes do not shift the barycentre of the disk� at least in

the linear regime�


�� Neutral modes in the self�consistent disk

In this section we brie�y examine the neutral modes admitted by the self�consistent disk� The response

function R for these modes was derived in Chapter � eq� 	����� Fig� ���� shows the dependence of

the response function on the wavenumber � for di�erent temperatures� As discussed in section ��� it is

di�cult to obtain an accurate value for R when both temperature and wavenumber are high� In �g� �����

the curve for each temperature has been truncated when the inaccuracy becomes severe enough to be

visible on the graph� These graphs suggest that� no matter how high the temperature� the disk admits

neutral modes� Raising the temperature reduces the wavenumber of the mode � spirals are looser in

hotter disks � but there is no indication that even very high temperatures will su�ce to abolish neutral

modes� since it appears that for all temperatures R � � at � � �� and falls below unity as ����



Figure ����� The response function for the self	consistent disks with � � �����
 For � � ����� ten values of Qs in steps
of �
� from �
� to �
�
 For � � ������ seven values of Qs in steps of �
� from �
� to �
�
 �Numerical accuracy parameters�
lmin � ���� lmax � ���� nGL � ��� f� � ���� aacc � ��� bacc � ���
�

We have seen that the growing� rotating self�consistent modes in �gs� ���� � ���� do not shift the

barycentre away from the origin� However� if A	�� is a delta�function �	� � ���� eqs� 	��
� and 	����

become
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The direction of the displacement of the barycentre from the origin depends on the wavenumber of the

mode� but its magnitude is independent of wavenumber� For modes where A	�� is non�zero over a range

of wavenumbers� therefore� the di�erent wavenumbers pull the barycentre equally in all directions at

once� Overall� they cancel out� and the barycentre remains at the origin� For a single log�spiral� no such

cancellation occurs�

For these neutral modes� s � 'p � �� The barycentre is therefore stationary� The magnitude of its

displacement from the origin� in terms of the radius L� isp
0x� " 0y�
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Single m � � log�spirals always tend to move the barycentre� However� in disks with � � �
� � as L � �

the displacement of the barycentre becomes insigni�cant compared to the radius of the disk� This is

because the perturbation surface density falls o� as R����� whereas the surface density of the equilibrium

disk falls o� as R���� � For values of � � �
� � therefore� the perturbation density falls o� more rapidly

than the equilibrium disk� As we go to large radii� the axisymmetric equilibrium disk will always �win��

When � � �
� � the neutral mode can actually move the barycentre� in seeming violation of Newton�s Laws�



This happens simply because the perturbation density falls o� more slowly than the equilibrium density�

a situation of course in contradiction with the assumptions of our linear analysis�


�� Summary

In this Chapter� we have studied the stability of the power�law disks to one�armed modes� As Toomre and

Zang 	���
� found for the disk with �at rotation curve� the power�law disks are very prone to one�armed

disturbances� Growing m � � modes remain at Qs � � and beyond� Neutral modes remain possible� in

both the cut�out and the self�consistent disks� up to inde�nitely high temperatures� One possible concern

about our analysis is that single m � � log�spirals can in principle move the barycentre of the disk�

However� we have shown 	analytically and numerically� that modes built of many log�spirals do not move

the barycentre substantially�



Chapter 	

The Other Angular

Harmonics

�� Introduction

In this chapter� we brie�y examine modes with m � � and � We dub these respectively triskele and

tetraskele modes� after the three� and four�legged devices common in early European art� In real galaxies�

three� or four�armed spirals are much less prevalent than spirals with one or two arms� However� Fourier

decomposition of the spiral patterns of real galaxies indicate signi�cant contributions from m � �� m �

 	Elmegreen � Elmegreen ������ Swing ampli�cation also suggests that multi�armed patterns could be

favoured�

�� Numerical di�culties

Modes with m � � present an additional numerical problem� The expressions for the angular momentum
function derived in Appendix C involve division by the term l%�"m%'� They therefore fail when l%�"m%'

vanishes� although the integral still exists in a principal value sense� In the modes we have examined so

far� this problem has not arisen� For m � �� l%� " m%' vanishes at the l � � radial harmonic� but we

have seen that at this harmonic the angular momentum function F�� should be set to zero for both the

self�consistent and cut�out disks� For m � � and m � �� l%�"m%' never vanishes� But for higher angular

harmonics� such as m � � and m � � the term l%�"m%' may vanish at some eccentric velocity�

What does it mean physically when l%� "m%' vanishes� The time the star takes to perform l complete

revolutions� �
jlj�'� is then identical to the time it takes to perform m radial oscillations� �
m��� Thus

the star�s orbit closes in an inertial frame� Two examples are shown in �g� ����

Closed orbits such as these do not occur in all disks� For l%�"m%' to vanish� then in terms of the auxiliary

integral de�ned in 	�����

J�	 %U� � ��
 l

m
�

�
�



Figure ���� Closed orbits in a � � ���� disk
 The left	hand plot shows the orbit of a star with �U � ����� RH � �

The orbit closes after � radial oscillations and � complete revolutions
 The right	hand plot shows the orbit of a star with
�U � ������ RH � �
 The orbit closes after � radial oscillations and � complete revolutions


In section ��� we saw that J�	 %U� declines monotonically from �
�
p
�� � at %U � � to 
 at %U � ��

Thus l%�"m%' will vanish for some %U if there is an integer l which satis�es

�

�
� � l

m
� �p

�� �
� 	����

Whether or not this occurs depends on the values of m and �� For m � �� according to eq� ���� l%�"m%'

vanishes at l � �� for � � ������ while for � � ����� it never vanishes�For m � � l%� "m%' vanishes

at l � �� for � � ���� while for � � ��� it never vanishes� This is illustrated in �gs� ��� and ���� which

show the dependence of l%� "m%' on %U � Curves are shown for �� values of �� The line l%� "m%' � � is

also drawn� In �g� ���� m � � and l � ��� in �g� ���� m �  and l � ���

Figure ���� The dependence of l���m�� on �U and �� for
m � �� l � ��
 Curves of l���m�� against �U are shown for
�� values of �� from � � ���� to � � ��� in steps of �
��

� � ��� is drawn with a bolder line
 The line l���m�� � �
is also shown


Figure ���� The dependence of l���m�� on �U and �� for
m � �� l � ��
 Curves of l���m�� against �U are shown for
�� values of �� from � � ���� to � � ��� in steps of �
��

� � ��� is drawn with a bolder line
 The line l���m�� � �
is also shown




Can we still evaluate the mathematical eigenvalue accurately� even when l%�"m%' vanishes� Fig� �� shows

the integrand IU of the transfer function Sm	�� ��� 	see section ���� plotted against eccentric velocity�
for two di�erent pairs of wavenumbers� This is for � � ����� for which l%�"m%' vanishes at %U � ������

There is no discontinuity at this eccentric velocity� This suggests that our integration technique is likely

to succeed even when l%�"m%' vanishes for one of the radial harmonics�

Figure ��� The integrand IU of the transfer function Sm��� ��� plotted against eccentric velocity for m � �� � � ����

The left	hand plot shows IU for � � �� � ��� the right	hand plot shows IU for � � �� � ��
 The integrand is not
evaluated at the eccentric velocity at which l���m�� vanishes� but is evaluated at points close on either side
 �� � �����
N � �� m � �� �p � ����� s � ����� Qs � ����

As explained in Chapter �� we perform the integration over eccentric velocity using Gauss�Laguerre

quadrature� The transfer function is evaluated at nGL discrete values of the eccentric velocity %U � We

now investigate the e�ect on the mathematical eigenvalue of changing the number and position of these

evaluation points� The following tables show results for three di�erent values of �� for which l%� "m%'

vanishes at di�erent eccentric velocities� In each case� we consider an m � � perturbation with pattern

speed 'p � ��� and growth rate s � ��� in an inner cut�out disk with N � � and Qs � ���� We use

numerical accuracy parameters n � ���� (� � ���� lmin � ���� lmax � "��� aacc � ��� bacc � ���� To

begin with� we consider a disk with � � �����

� � ����� l%�"m%' vanishes at %U � ��
���
Gauss�Laguerre integration� Mathematical

nGL f� Eccentric velocities %U eigenvalue
 ��� ������ ����� ��
��� ����� ��������" ����
��i

 ��� ������ ����� ��������
�� ����� ���� �������" ����
���i
� ��� ������ ����� ����� ��
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�
i
�� ��� ������ ������ ����� ������ ����� ����� ����� ����� ����� ���� ��������" ����
�
�i

When nGL � �� the transfer function is evaluated at eccentric velocities below that at which l%� "

m%' vanishes� When nGL � ��� the uppermost point falls above the critical value� No change in the

mathematical eigenvalue is observed to within � s�f� This suggests that the algorithm is successfully

interpolating across the troublesome eccentric velocity� For lower values of �� the results are similar�
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Gauss�Laguerre integration� Mathematical

nGL f� Eccentric velocities %U eigenvalue
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Similar mathematical eigenvalues are returned no matter how many points fall on either side of the

eccentric velocity for which l%� " m%' vanishes� This is convincing evidence that the vanishing is not

a�ecting the integration� However� the integrand is usually largest at small values of the eccentric

velocity� For the two values of � examined so far� l%�"m%' vanishes at a relatively high value of %U � Thus

it is possible that the good convergence observed so far is because the integrand is disturbed only where

it is already very small� We therefore next test two values of � where l%�"m%' vanishes at a low values

of %U �

� � ������ l%�"m%' vanishes at %U � ������
Gauss�Laguerre integration� Mathematical

nGL f� Eccentric velocities %U eigenvalue
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The convergence is as good as ever� We conclude that the mathematical eigenvalue is still being evaluated

successfully� despite the vanishing of l%�"m%'� Thus reassured� we proceed to examine the behaviour of

the mathematical eigenvalue for m � � and m � �

�� Triskele modes

Global stability of the cut�out disks

Figs� ��� � ��� show the dependence of the largest eigenvalue on growth rate and pattern speed� for

� � ����� ���� and ������ The left�hand plot of each pair shows the results for Qs � ���� Since the

power�law disks are very stable to m � � perturbations� the results for a considerably cooler disk� with

Qs � ���� are shown in the right�hand plot of each pair� As usual in these plots� the diamond symbols mark

eigenvalues actually calculated� The linking curves were drawn using a spline interpolation procedure�



Figure ���� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � ����
 The
left	hand plot is for Qs � ���� i
e
 ��u � ����� and 
 � ����
 The right	hand plot is for Qs � ���� i
e
 ��u � ������ 
 � ����

The solid lines show curves of constant s at intervals of �
� from s � �� �right	most curve� to s � ��� �left	most curve�

The dotted lines show curves of constant �p at intervals of �
� from �p � ��� �lowest curve� to �p � ��� �highest curve�

�Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�

Figure ��
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 ��u � ����� and

 � ���
 The solid lines show curves of constant s at intervals of �
� from s � �� �right	most curve� to s � ��� �left	most
curve�
 The dotted lines show curves of constant �p at intervals of �
� from �p � ��� �lowest curve� to �p � ��� �highest
curve�
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ���
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These plots suggest that disks with � in the range of interest 	principally j�j � ���� are very stable to

m � � perturbations� Even when the temperature is as low as Qs � ���� the eigenvalue curves intersect

the real axis at values considerably less than unity� As for m � �� we �nd that disks with lower � are less

securely stable� in that the eigenvalue curves cross the real axis at higher values� We have found that for

disks with N � �� Qs has to be lower than �� before even the � � ���� disk becomes unstable to m � �

perturbations� For disks with falling rotation curves� still lower temperatures are necessary�

Before we present graphs showing these �ndings� a word of caution� At these very low temperatures� the

convergence is poor� This is mainly because� as we saw in section ���� modes are more tightly wound at

low temperatures� Thus the density transform has a peak at a high wavenumber� The density transforms

also tend to be highly oscillatory 	see �g� ��� below�� Thus very large� very �nely�meshed grids are

required� which are numerically impractical� We cannot claim to locate the eigenvalue to better than �

s�f� As an example� the following tables investigate the convergence of the largest mathematical eigenvalue

for a perturbation with m � �� 'p � ��

� and s � ����� in a disk with � � ����� N � �� Qs � �����

We set lmin � ���� lmax � "��� f� � ���� aacc � �� and bacc � ���� and investigate the e�ect of changing

n� (� and nGL�

To begin with� we choose a grid covering a range of �� in wavenumber�
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The results are insensitive to the number of Gauss�Laguerre points nGL� The size and spacing of the grid

is much more important� We now increase the range of the grid to ��� in ��

Grid�spacing Number of
nGL (� grid points n Largest mathematical eigenvalue
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and �nally to ����
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Even with these high accuracy parameters� the largest mathematical eigenvalue has converged to only

� or � s�f� In general� the convergence was worse for colder disks and for higher �� The N � � disk is

extremely stable to m � � perturbations� marginal modes thus require very low temperatures� so the

convergence is extremely poor� The N � � results presented below are probably not trustworthy to �

s�f�� but are included since they give at least an indication of the very low temperatures required� For

N � � and N � � the critical temperature is higher and hence the convergence is better� For N � �� we

ran the mode��nding programs with two di�erent grids and ranges in l 	n � ���� (� � ���� lmin � ����
lmax � �� and n � 
��� (� � ���� lmin � ���� lmax � ��� The values of Qs obtained agreed to  s�f�

The pattern speed could be obtained less reliably� but was around ��
 throughout� Fig� ��� presents this

information in terms of the velocity dispersion %�u and anisotropy parameter ��

Figure ���� Minimum temperature for triskele stability plotted against �� for disks with various cut	out functions
 The
left	hand plot shows the minimum velocity dispersion ��u� the right	hand one the same data presented in terms of the
stability parameter Qs
 The solid lines indicate the results for inner cut	out disks with N � �� �� �� �
 The broken
line shows the temperature necessary for global axisymmetric stability in the self	consistent disk
 �Numerical accuracy
parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���� �� � ��

��
 �

The rotation curve and inner cut�out a�ect the stability to triskele perturbations in the same way as they

a�ect the m � � stability� Disks where the centre has been cut out more sharply are more unstable than

those where it has been removed relatively gently� Disks with rising rotation curves are more unstable

than those with falling rotation curves� both in terms of %�u�min� the absolute amount of velocity dispersion

required� and in terms of Qs� the ratio of the velocity dispersion needed relative to that necessary for

axisymmetric stability�

Fig� ��� shows the density transforms of the marginal modes in inner cut�out disks with N � � and

� � 	����� Once again� the transforms are strongly peaked at a dominant wavenumber �u� but there is
a considerable contribution from wavenumbers more trailing than �u�



Figure ���� Density transform A��� of the marginal modes in inner cut	out disks with N � �� � � �����
 The solid line
is Re�A����� the dotted is Im�A���� and the dashed line shows the envelope �jA���j
 The left	hand plot is for � � ����� for
which the marginally stable mode has Qs � ������ 
 � ���� ��u � ������ �p � ������ �u � ����
 The right	hand plot is for
� � ������ for which the marginally stable mode has Qs � ������ 
 � ����� ��u � ������ �p � ������ �u � ����
 �Numerical
accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �

Figs� ���� and ���� show the density contour plots of the marginal modes in inner cut�out disks with

� � 	�����

Figure ����� Density contour plot of a marginally stable mode in inner cut	out disks with N � �
 The left	hand plot
is for � � ����� for which the marginally stable mode has Qs � ������ 
 � ���� ��u � ������ �p � ������ �u � ����

The right	hand plot is for � � ������ for which the marginally stable mode has Qs � ������ 
 � ����� ��u � ������
�p � ������ �u � ����
 In each plot� the density is calculated between R � ���RILR and R � ROLR
 The solid lines
mark ���� ���� ���� ��� and ��� of the maximum density within this range� the dotted lines show the nodes� where the
density perturbation is zero
 The dashed circles indicate the Lindblad resonances and the co	rotation radius
 For � � �����
RILR � ������ RCR � ����� ROLR � ���� for � � ������ RILR � ����� RCR � ����� ROLR � ��� � in units where
R� � �
 �Numerical accuracy parameters� for � � ����� n � ���� �� � ���� for � � ����� n � ���� �� � ���� lmin � ����
lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �



Figure ����� Density contour plot of a marginally stable mode in inner cut	out disks with N � �
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density perturbation is zero
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�Numerical accuracy parameters� n � ���� �� � ����� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
 �

As for m � � and m � �� the modes start at the inner Lindblad radius� Once again the pattern speed

is such as to place the inner Lindblad radius safely inside the inner cut�out� They extend signi�cantly

further than the lower�order modes� reaching out to the outer Lindblad radius even though these disks

are fairly warm 	in general� modes extend less far in hotter disks��

Neutral modes

So far� it appears as if the stability of the power�law disks to m � � perturbations is qualitatively exactly

like that to m � � perturbations� the only di�erence being that even lower temperatures are required

before growing modes can be excited� We were initially led to this conclusion by the eigenvalue curves

plotted in �gs� ��� � ���� The very low values at which the eigenvalue curves crossed the real axis suggested

that the disks are very stable to m � � perturbations� However� a very di�erent picture emerges when we

pursue the mathematical eigenvalues down to vanishingly low growth rates and pattern speeds� Figs� ����

� ��� show the dominant eigenvalue curves as s and 'p tend to zero� for Qs � � and � � ����� ���� and

������



Figure ����� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � ����
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is for Qs � �� i
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 � ����
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For � � ���� and � � ����� the behaviour is similar to that observed for m � � perturbations 	e�g�

�g� ���
�� As the pattern speed is decreased� the eigenvalue curves continue to arc clockwise around the

origin� tending to a a constant value 	for given growth rate� in the limit 'p � �� They appear to be

tending towards the negative real axis in the twin limits s � �� 'p � �� However� for � � ����� the
behaviour is strikingly di�erent�
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Fig� ��� is much closer to the m � � eigenvalue curves� �g� ���� It indicates that modes with vanishing

pattern speed and growth rate are possible even at the high temperature of Qs � ���� It appears that

there is a dramatic change in the behaviour of the eigenvalue curves between � � ���� and � � ������
However� before drawing this conclusion we should investigate further� First of all� we have established

that the behaviour is not a numerical artefact due to the very low growth rate and pattern speed� We

tested the convergence of the mathematical eigenvalue with di�erent numbers of Gauss�Laguerre points�

and con�rmed that the Gaussian quadrature copes well with the vanishing of l%�"m%' even in the limit of

vanishing %�� A more subtle explanation of the apparent change in behaviour might be that the underlying

eigenvalue spectra for the three � are in fact similar� with eigenvalues reaching out along the positive and

negative real axes as s and 'p tend to zero� For � � ����� the largest eigenvalue would happen to be in

the branch along the negative real axis� whereas for � � ������ the largest eigenvalue would happen to
lie in the branch reaching along the positive real axis� Thus the very di�erent answers obtained for the

largest eigenvalue would mask a similar underlying eigenvalue spectrum� Figs� ���� and ���
 compare

the complete eigenvalue spectra of disks with � � 	���� as the limits s� �� 'p � � are approached� We

see that in fact the spectra are radically di�erent throughout this range of s and 'p 	note the di�ering

scales�� As s and 'p both approach zero� the � � ����� spectrum develops a long �spur� out along the

positive real axis� The � � ���� spectrum has no such real spur� It shows a spiral�lambda pattern similar

to that observed for m � � eigenvalues 	�g� ������

To track down the � at which this change of behaviour occurs� we calculated the marginal eigenvalue

curves for several �� We saw the form of these curves for bisymmetric disturbances in �g� ����� For

� � ���� the behaviour is similar for m � � perturbations� The marginal eigenvalue curves for � � ���

are drawn in the left�hand plot of �g� ����� The eigenvalues arc clockwise around the origin� ending up

close to the negative real axis� The right�hand plot shows the marginal eigenvalue curves for � � ������
Here the behaviour is strikingly di�erent� As in �g� ���� the eigenvalue curves begin by moving clockwise



around the origin� but around 'p � ��� they change direction� As 'p � �� they end up on the positive

real axis�

Figure ����� Complete eigenvalue spectrum for perturba	
tions in a disk with � � ����� N � �� Qs � �
 The four
rows show spectra for increasing growth rate� s � �����
���
� ���	� ����
 The four columns show spectra for in	
creasing pattern speed� �p � ����� ���	� ����� ����
 In
each case� a line is drawn from the origin to the largest
eigenvalue
 �Numerical accuracy parameters� n � ����
�� � ���� lmin � ���� lmax � ���� nGL � �� f� � ����
aacc � ��� bacc � ���
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Figure ����� Marginal eigenvalue curves for inner cut	out disks with N � �� Qs � ��� and various values of �
 Each
plot shows the largest mathematical eigenvalues for vanishing growth rate� s � ����� and �� values of the pattern speed�
�p � ������� �
����� �
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�
 The left	hand plot shows these marginal
eigenvalue curves for  positive values of �� � � ���� �
��� �
� � � � �
��� �
�
 The right	hand plot shows the curves for
� negative values of �� � � ������ 	�
�� 	�
�� � � � 	�
��� 	�
�
 �Numerical accuracy parameters� n � ���� �� � ����
lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
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For intermediate values of �� ����� � � � ���� the marginal eigenvalue curves are tangled� and are not



shown here� Their behaviour is closer to the curves with � � ��� than to those with � � ������ It
proved numerically easier to investigate the transition at lower temperatures� Fig� ���� shows marginal

eigenvalue curves for � between ����� and "����� for Qs � ���� Here� we have plotted the data on three

sets of axes� due to the very di�erent scales required� The eigenvalue curves are once again rather tangled�

presumably due to swapping between eigenvalues as di�erent eigenvalues attain dominance� However� the

transition between the two di�erent stability regimes appears to occur close to � � ����� � the value of �
distinguishing disks where l%�"m%' vanishes from those where it does not� For � � ������ the eigenvalue
ends up on the positive real axis as s� � and 'p � �� indicating the presence of neutral modes� For this

low temperature� very large positive eigenvalues are obtained� 	For example� for � � ������ s � ����

and 'p � ����� �� � ���� When Qs � �� �� � ��� When � is increased above ������ the behaviour of
the eigenvalue in the limit s � � and 'p � � suddenly changes� The eigenvalue arcs clockwise around

the origin� For the �rst few values of � above ������ the modulus of the eigenvalue is very large� For

higher values of � 	� ����� the modulus of the eigenvalue is smaller� Curves of � � ���� are not shown

here� since they are very tangled� However� their behaviour is qualitatively similar� In all cases with

� � ������ the eigenvalue seems destined to end up on the negative real axis as s� � and 'p � ��

Figure ����� Marginal eigenvalue curves for inner cut	out disks with N � �� Qs � ��� and various values of �
 Each
plot shows the largest mathematical eigenvalues for vanishing growth rate� s � ����� and �� values of the pattern speed�
�p � ������� �
����� �
���� �
���� �
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��� �
��� �
�� �
�� �
�� � � � �
�� �
�
 The left	hand plot shows these marginal
eigenvalue curves for � � ������ 	�
��� 	�
�� 	�
��� 	�
�� and 	�
��
 The middle plot shows curves for � � ������ 	�
��� 	�
���
	�
��� �
�� and �
��
 The right	hand plot shows the curves for � � ����� �
��� �
�� and �
��
 Note the very di�erent scales

�Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � �
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It appears� then� that disks with di�erent � have very di�erent stability to m � � perturbations� For

� � ������ the eigenvalue curves intersect the real axis only once� at pattern speeds of about 'p � ��
�

Marginal stability occurs at the critical temperature for which the marginal eigenvalue curve intersects

the real axis at � � �� This critical temperature is very low 	�g� ����� These disks are extremely stable

to m � � perturbations� However� the behaviour is qualitatively similar to that for m � ��

For � � ������ the eigenvalue curves cross the real axis at moderate pattern speeds of about 'p � ��
�

but then return to it as 'p � �� s � �� If the dominant eigenvalue is large and real� one of the sub�



dominant eigenvalues must have the value 	�� �� 	or could be made to do so with small adjustments in

s and 'p at the same temperature�� Thus for � � ������ the behaviour is qualitatively similar to that
for m � �� We cannot de�ne a critical temperature above which the disk is stable� As the temperature

is raised� the disk continues to admit growing modes� although their growth rate becomes vanishingly

small�

For vanishing pattern speed� the inner Lindblad radius moves to in�nity� Under such circumstances� we

might expect the response of the cut�out disk to resemble that of the self�consistent disk� And indeed� the

two stability regimes we have found for cut�out disks are re�ected in the response of the self�consistent

disk� In Chapter � we derived the response function of the self�consistent disk to neutral modes 	with

zero growth rate and pattern speed�� Fig� ���� shows the response function for self�consistent disks with

� � 	����� Note the di�erent vertical scales in each case�

Figure ����� The response function for the self	consistent disks with � � �����
 For each �� curves are shown for ten
values of Qs in steps of �
� from �
� to �
�
 Note the di�erent vertical scales
 �Numerical accuracy parameters� lmin � ����
lmax � ���� nGL � ��� f� � ���� aacc � ��� bacc � ���
�

For � � "����� the response function is negative for disturbances of zero wavenumber� and remains less

than unity throughout the range of � and Qs investigated� 	For very low Qs� the response function

does actually exceed unity at very large wavenumbers�� For � � ������ the response function is large
and positive throughout most of the wavenumber range shown� On the scale shown� it is not clear that

the response function ever passes through unity� In fact� for all the temperatures shown� the response

function is ���� at � � �� meaning that in every case there is a solution� R � �� for some small value of

�� The � � ����� disk admits loose triskele neutral modes� essentially independently of temperature��

Fig� ���� shows two of these�

�At least� it is apparent from �g
 �
�� that extremely high temperatures would be required to remove these neutral
modes




Figure ����� Neutral modes in Qs � � disks with � � ����� and � � �����
 The left	hand plot shows a log	spiral with
� � ������ this is a neutral mode in the � � ����� disk with Qs � �
 The right	hand plot shows a log	spiral with � � �����
this is a neutral mode in the � � ����� disk with Qs � �
 In each case� the density is calculated between R � ���R� and
R � �R�
 The solid lines mark ���� ���� ���� ��� and ��� of the maximum density within this range� the dotted lines
show the nodes� where the density perturbation is zero


Thus the self�consistent disk� like the cut�out disk� has two distinct stability regimes in its response to

neutral perturbations� We next investigate the value of � at which the switch between the two regimes

occurs� Fig� ���� shows curves of R against wavenumber � for several di�erent values of � between 	����

Figure ����� The response function for self	consistent disks with Qs � ��� �left	hand plot� and Qs � ��� �right	hand plot�

In each case� curves are drawn showing the dependence of the response function on wavenumber for various values of �
from 	�
� to �
�
 In each case� the curves fall into two distinct groups� � � ����� and � � �����
 These are labelled with
an arrow indicating the direction of increasing �
 For Qs � ���� the convergence was very poor when � was slightly greater
than �����
 The curves with � � ����� 	�
�� and 	�
� are therefore omitted
 �Numerical accuracy parameters� lmin � ����
lmax � ���� nGL � ��� f� � ���� aacc � ��� bacc � ���
�

The left�hand plot shows results in disks with Qs � ���� the right�hand plot shows results when Qs � ��
�



In each case� the curves fall into two groups with dramatically di�erent behaviour� When � � ������ the
curve starts with R � � for � � � and rises rapidly to large positive values� thus having a solution R � �

for small �� For more positive �� the response function is negative throughout the range of � examined�

Any solutions which may exist will occur at large wavenumbers� Again� there is a degree of uncertainty

in locating the exact � at which the switch occurs� The convergence was markedly worse for values of �

slightly greater than ������ Indeed� for Qs � ��
� reliable curves could not be obtained for � � ������
������ ������ these three curves are therefore omitted� However� the evidence suggests that� as for the
cut�out disks� � � ����� is the critical value�

The sudden change in the stability appears� then� to be related to the vanishing of l%� "m%'� We have

found two distinct stability regimes� Disks with � � ����� contain no stars whose orbits close in an
inertial frame� and admit neutral modes even at very high temperatures� Disks with � � ����� contain
stars on closed orbits� and possess only modes with �nite pattern speed� becoming stable at relatively

low temperatures� We conclude that the stars on closed orbits act as absorbers and damp the waves� In

the absence of such orbits� the disk is free to respond to a neutral perturbation�

�� Tetraskele modes

Global stability of the cut�out disks

As for m � � modes� we begin our study by examining the eigenvalue curves at moderate pattern speeds�

in the range 'p � ��� to ���� Figs� ���� � ��� show these curves for � � ����� ���� and ������ In

each case� the left�hand plot is for Qs � �� and the right�hand plot for Qs � ���� In the latter case� the

eigenvalue curves are ragged� as di�erent eigenvalues become dominant�

Figure ����� The dependence of the largest eigenvalue on growth rate and pattern speed� for N � � and � � ����
 The
left	hand plot is for Qs � ���� i
e
 ��u � ����� and 
 � ����
 The right	hand plot is for Qs � ���� i
e
 ��u � ������ 
 � ����

The solid lines show curves of constant s at intervals of �
� from s � �� �right	most curve� to s � ��� �left	most curve�

The dotted lines show curves of constant �p at intervals of �
� from �p � ��� �lowest curve� to �p � ��� �highest curve�

�Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � �� f� � ���� aacc � ��� bacc � ���
�
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All three disks are very stable to m �  perturbations� We �nd the by now familiar result that disks

with rising rotation curves are less stable than disks with falling rotation curves� Before presenting

graphs of critical temperature� we investigate the convergence of the largest mathematical eigenvalue�

The following tables show the convergence of the largest mathematical eigenvalue for a perturbation with

m � � 'p � ��� and s � ��
��� in a disk with � � ����� N � �� We set lmin � ���� lmax � "��� f� � ����

aacc � �� and bacc � ���� and investigate the e�ect of changing n� (� and nGL�



For Qs � ���� the convergence is good� A grid covering a range of �� in � is su�cient to obtain � s�f�

accuracy�
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A larger grid� covering a range of ��� in �� is su�cient for 
 s�f� accuracy� The results shown in the

following table are unchanged when the grid is extended to cover ��� in ��
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However� for Qs � ���� the convergence is much poorer�
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Fig� ���� shows how low the temperature must be� in terms of the velocity dispersion %�u and the sta�

bility parameter Qs� before the marginal eigenvalue curve intersects the real axis at unity� Even lower

temperatures are required than for m � � 	�g� ����� As we have just seen� at these low temperatures the

convergence is very poor� The values shown for %�u�min and Qs in �g� ���� are probably accurate to only

� or � s�f�

Figure ����� Minimum temperature plotted against �� for cut	out disks
 The left	hand plot shows the minimum velocity
dispersion ��u� the right	hand one the same data presented in terms of the stability parameter Qs
 The solid lines indicate the
results for inner cut	out disks with N � �� �� �� �
 The broken line shows the temperature necessary for global axisymmetric
stability in the self	consistent disk
 �Numerical accuracy parameters� n � ���� �� � ���� lmin � ���� lmax � ���� nGL � ��
f� � ���� aacc � ��� bacc � ���� �� � ��

��
 �

Once again� disks where the centre has been cut out more sharply are more unstable than those where it

has been removed relatively gently� Disks with rising rotation curves are more unstable than those with

falling rotation curves� both in terms of %�u�min� the absolute amount of velocity dispersion required� and

in terms of Qs� the ratio of the velocity dispersion needed relative to that necessary for axisymmetric

stability�

Neutral modes

Once again� the marginal modes presented here are not the whole story� As for m � �� some of the power�

law disks may admit modes with vanishing growth rate and pattern speeds� even at high temperatures�

Fig� ���
 shows the marginal eigenvalue curves� down to vanishing pattern speeds� for various ��



Figure ���
� Marginal eigenvalue curves for inner cut	out disks with N � �� Qs � � and various values of �
 Each
plot shows the largest mathematical eigenvalues for vanishing growth rate� s � ����� and �� values of the pattern speed�
�p � ������� �
����� �
���� �
���� �
��� �
��� �
��� �
�� �
�� �
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�� �
�
 The left	hand plot shows these marginal
eigenvalue curves for � � ����� �
��� �
��� �
��� �
��� �
��
 The middle plot shows the curves for � � ������ 	�
��� � � � �
���
�
��
 The right	hand plot shows the curves for � � ������ 	�
�� � � � 	�
��� 	�
��
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The left�hand plot shows values of � which are su�ciently large that l%�"m%' vanishes for some eccentric

velocity� In accordance with our results for m � � 	�g� ������ these disks do not admit neutral modes�

The middle plot shows values of � just low enough that the term l%�"m%' never vanishes� The eigenvalue

becomes real and positive as 'p � �� again agreeing with our results for m � �� However� the right�hand

plot shows that for still lower values of �� the eigenvalue becomes real and negative as 'p � �� Even

though there are no stars on closed four�lobed orbits� there are no m �  neutral modes� Once again�

the response of the self�consistent disks to neutral perturbations sheds some light on the issue� Fig� ����

shows the neutral response function for several values of ��

Figure ����� The response function for self	consistent disks with Qs � ��� �left	hand plot� and Qs � ��� �right	hand plot�

In each case� curves are drawn showing the dependence of the response function on wavenumber for �� values of � from
	�
� to �
� �in steps of �
��� omitting � � ��
 In each case� the curves fall into two distinct groups� � � ��� and � � ���

These are labelled with an arrow indicating the direction of increasing �
 Note the di�erent vertical scales in the two plots

�Numerical accuracy parameters� lmin � ���� lmax � ���� nGL � ��� f� � ���� aacc � ��� bacc � ���
�

The curves clearly fall into two groups� Once again� it is hard to obtain accurate results close to the



value of � separating disks where l%�"m%' vanishes from those where it does not� However� the evidence

is certainly consistent with the division�s occurring at � � ����

Comparing the left�hand and right�hand plots in �g� ����� we see that raising the temperature from

Qs � ��� to Qs � ��
 has su�ced to banish neutral modes in many of the disks� At Qs � ���� all the disks

with � � ��� admit neutral modes� At Qs � ��
� the response curves of disks with � � ���� peak below
the line R � �� and it appears unlikely that they will intersect it� As we approach � � ���� however� the

response curves are rising steeply as they pass through R � �� and the evidence seems to be that they

will require considerably higher temperatures before these neutral modes are abolished� Fig� ���� shows

how the response function depends on temperature for three di�erent values of ��

Figure ����� The response function for the self	consistent disks with � � ����� �
�� and 	�
��
 For � � ����� curves are
shown for � values of Qs in steps of �
� from �
� to �
�
 For � � ���� and 	�
��� curves are shown for �� values of Qs in
steps of �
� from �
� to �
�
 Note the di�erent vertical scales
 �Numerical accuracy parameters� lmin � ���� lmax � ����
nGL � ��� f� � ���� aacc � ��� bacc � ���
�

For � � ����� the disk admits no neutral modes at the temperatures and wavenumbers studied� For

� � ����� the disk admits neutral modes at all the temperatures and wavenumbers studied� The disk

with � � ����� is essentially of the same type as � � ����� but admits neutral modes only up to moderate
temperatures 	Qs � �����

We can now understand the di�erent behaviours of the cut�out disks shown in �g� ���
� These curves

were drawn at Qs � �� which is hot enough to prevent neutral modes in disks with � � ����� while disks
with � � ���� do not admit neutral modes even at low temperatures� The marginal eigenvalue curves

for both these ranges of � therefore end up on the negative real axis as s� � and 'p � �� Values of �

only slightly less than the dividing value � � ���� however� require much higher temperatures to prevent

neutral modes� They still admit neutral modes at Qs � �� and so their marginal eigenvalue curves end

up on the positive real axis� So for m � � as for m � �� neutral modes are suppressed by the presence

of closed orbits� Tetraskele neutral modes are also much more easily quelled by temperature than are

triskele neutral modes�



�� Summary

In this Chapter� we have examined the response to perturbations with m � � and m � � The power�law

disks are extremely stable to modes with these symmetries� very low temperatures are required before

growing modes become possible� For values of � above a critical value� closed three� and four�lobed

orbits exist in the inertial frame� The presence of these orbits somehow prevents neutral modes from

occurring� For disks with � below the critical value� there are no closed orbits with the same symmetry

as the perturbing potential� Neutral modes are then possible even when there are no growing modes� For

m � �� such neutral modes persist even at high temperatures�



Chapter �


Summary and

Conclusions

The work in this thesis describes a linear normal mode analysis of a family of self�gravitating� di�erentially

rotating stellar dynamical disks� Our analysis includes both self�consistent disks� in which the surface

density and the potential are related through Poisson�s equation� and cut�out disks� in which the central

core is carved out and the active matter is restricted to an annulus� The analytic and numerical procedures

have exploited the self�similar potential of the models to develop a fast code that �nds the pattern speeds

and growth rates of the normal modes� We now summarise the main new results and bring to a resolution

the question of the mode structure of the self�consistent disks left unsolved at the end of chapter �

The e�ect of the rotation curve

One of the aims of our work was to understand whether disks with falling rotation curves were more

or less stable than those with rising rotation curves� Let us recall that our models have rotation curves

varying like a power of radius� namely vcirc � R����� The numerical work leaves no doubt that the

disks with rising rotation curves 	� � �� are more unstable than the disks with falling rotation curves

	� � ��� For all azimuthal wavenumbers� the unstable modes persist to higher temperatures and grow

more vigorously if � � �� One way of understanding this result is to recall that the disks with � � � are

closer to the limit of solid�body rotation� Obviously� the maintenance of any spiral pattern is helped as

the di�erential rotation or shear is minimised� Increasing the shear leads to a more rapid damping of the

response to any disturbance� Individual stars continue in perturbed orbits� but the di�erential rotation

causes the phase mixing of the disturbance distribution� so the overall response averages to zero within

a few epicyclic periods�

The cut�out disks

The inner cut�out is crucial in allowing growing non�axisymmetric modes� Mathematically� as is evident

from Chapter � this arises because the cut�out function breaks the self�similarity and introduces an

���



additional degree of freedom� thereby permitting solutions of the integral equation� Physically� it is helpful

to picture the instabilities as standing wave patterns caused by the interference of travelling waves� For

m � �� the inner Lindblad resonance absorbs incident waves and damps any disturbance� Growing modes

therefore have pattern speeds which are large enough to push the inner Lindblad resonance within the

shield of the inner cut�out� The inner cut�out is most e�ective as a re�ector of waves when it is abrupt�

Disks with lower cut�out indices allow more of the wave to seep through to the resonance and are thus

more stable� The N � � disk has the mildest cut�out and is the most stable of all�

The self�consistent disks

There are no length�scales and time�scales in the scale�free disks� If any mode is admitted at some

pattern speed and growth rate� then it must be present at all pattern speeds and growth rates� Is a

two�dimensional continuum of non�axisymmetric modes possible� Our mathematical analysis in chapter

 suggested that this was not likely� although it fell short of providing a rigorous proof� In the light of

our analysis of the cut�out disks� there is one further piece of evidence that we now wish to adduce� Non�

axisymmetric modes in disks are principally con�ned to the region between the inner and outer Lindblad

radii� As the pattern speed becomes vanishingly small� the inner Lindblad radius moves well beyond the

inner cut�out radius� Under such circumstances� the response of the inner cut�out disk must approach

that of the self�consistent disk� Evidence that this limit is a reliable guide to the self�consistent disk is

provided by the neutral modes � as the pattern speed and growth rate are made small� the eigenvalues of

the cut�out disk tend to the positive or negative real axis according to whether or not the self�consistent

disk admits neutral modes�

If a continuum of modes exists in the self�consistent disk� its presence should be sensed by the cut�out

disks as the pattern speed is brought to zero� We would expect the eigenvalues to draw together and

become virtually independent of growth rate as the pattern speed approaches zero� There is no evidence

that this happens� Here� the reader is urged to look back at graphs such as �g� ���� 	m � ��� �g� ���

	m � ��� �gs� ���� � ��� 	m � ��� Fig� ���� shows the eigenvalue spectra for m � � modes with four

di�erent growth rates and vanishingly small pattern speed� in a disk with Q � ���� The eigenvalues rise

to the real axis as the growth rate becomes small� picking up the neutral modes� However� they show

no sign of becoming independent of growth rate� Altogether� the weight of the evidence seems to us to

suggest that there is no continuum and that the self�consistent disks admit no growing non�axisymmetric

modes at all� It remains possible that the self�consistent disks admit a continuum of van Kampen modes�

The case of the axisymmetric modes is somewhat di�erent� Our work in chapter  shows that for the

m � � modes� the eigenvalue must be real and positive� The temperature marking the onset of the

neutral modes is accurately given by local theory� On physical grounds� we expect these neutral modes

to be followed by growing modes as the temperature of the disk is lowered below this critical value� But

the self�similar disk cannot distinguish between modes with di�erent growth rates� It appears� then� that

the self�consistent disks must admit a one�dimensional continuum of growing axisymmetric modes�



Figure ����� The eigenvalue spectra for m � � modes with vanishing pattern speed� in a disk with N � �� � � �����
Qs � ���
 Seven di�erent growth rates are shown� s � ����� �
���� �
��� �
�� �
�� �
�� �
�
 In each case� �p � ����


It is surprising that this continuum is not� apparently� sensed by the cut�out disks� On mathematical

and physical grounds� we expect the presence of a cut�out to make little di�erence to the axisymmetric

response� This expectation is borne out by the good agreement between the temperature at which neutral

modes set into the self�consistent and cut�out disks� If the presence of the continuum were re�ected in

the cut�out disks� the mathematical eigenvalue would presumably become less dependent on growth rate

as the temperature was lowered below Qs � �� No such e�ect is seen 	�g� 
��
��

The stability to di�erent harmonics

Fig� ���� shows the minimum velocity dispersion needed for global stability to modes with di�erent

azimuthal wavenumbers� In almost all cases� the disks are considerably more stable to bar�like or bisym�

metric modes than to axisymmetric disturbances� Less surprisingly� modes with m � � and m �  are

very hard to excite� The disks must be made extremely cold before they admit growing modes with more

than two arms�

Figure ����� Minimum temperature for global stability to modes with di�erent azimuthal symmetry




The most serious unstabilities to which all the cut�out disks are susceptible are one�armed instabilities�

At outset� we concede that our analysis permits the m � � modes to shift the barycentre of the galaxy�

This artefact arises from the rigid core which has been carved out of the galaxy� A full treatment should

really allow the core to move in response to the growing mode in such a way as to cancel the shifting of

the barycentre� We do not believe this to be a serious �aw in our approach � �rst� because the barycentre

moves only slightly within the linear r*egime and second� because N�body simulations by Earn 	�����

appear to corroborate the conclusion that one�armed instabilities are the most serious� The prevalence

of the one�armed modes can be easily understood at a simple level� First� there is no inner Lindblad

resonance for m � �� This removes a powerful stabilising mechanism� Second� this is the only harmonic

for which the stars are driven at less than their natural frequency� thus responding in phase with the

perturbation�



Appendix A

Reference Tables

A�� Reference table of dimensional quantities

Quantity For the Toomre�Zang disk For the general power�law disk

 eq

Equilibrium
surface
density

 eq �  �

�
R�

R

�
 eq �  �

�
R�

R

����

�
Self�
consistent
potential

�	R� � v�� ln

�
R�

R

�
�	R� �

v��
�

�
R�

R

��

vcirc
Circular ve�
locity

vcirc � v� vcirc � v�

�
R�

R

����

v�

Circular ve�
locity at the
reference ra�
dius R�

v�� � �
G �R� v�� � �
G �R�

!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

�

Radial equa�
tion of mo�
tion

d�R

dt�
�

L�
z

R�
� v��

R

d�R

dt�
�

L�
z

R�
� v��

R

�
R�

R

��

	
Potential
energy
� ��

		R� � �v�� ln
�
R�

R

�
		R� � �v

�
�

�

�
R�

R

��

E Energy E �
�

�

�
u� " v�

�� v�� ln

�
R�

R

�
E �

�

�

�
u� " v�

�� v��
�

�
R�

R

��

Lz
Angular mo�
mentum

Lz � RHv� Lz � RHv�

�
R�

RH

����

RH Home radius RH �
Lz
v�

RH � R�

�
Lz
v�R�

� �
���

���



Quantity For the Toomre�Zang disk For the general power�law disk

U
Eccentric
velocity U� � �E � v��

�
� ln

Lz
v�R�

" �

�
U� � �E "

�
�

�
� �

�

v��R

�
�

L�z

� �
���

X
Logarithmic
radius

X � lnR X � lnR

�
Complex
frequency

� � m'p " is � � m'p " is

�
Radial
frequency

� �
v�
RH

�


J� � �
v�
RH

�
R�

RH

����
�


J�

'
Angular fre�
quency

' �
v�
RH

J�
J� ' �

v�
RH

�
R�

RH

���� J�
J�

��
Epicyclic
frequency

�� �
p
�� v�

R �� �
p
�� � � v�

R

�
R�

R

����

'�
Circular fre�
quency

'� �
v�
R '� �

v�
R

�
R�

R

����



A�� Reference table of dimensionless quantities

Quantity For the Toomre�Zang disk For the general power�law disk

%R
Radial coor�
dinate

%R �
R

RH

%R �
R

RH

%RH
Home ra�
dius

%RH �
RH

R�

%RH �
RH

R�

%t Time %t �
v�
RH

t %t �
v�
RH

%R
����
H t

Radial
equation of
motion

d� %R

d%t�
�
%L�
z

%R�
%R��H � �

%R

d� %R

d%t�
�
%L�
z

%R�
%R���
H � �

%R���

%u
Radial
velocity

%u �
d %R

d%t
�

u

v�

%u� � %U� " �� %R�� � � ln %R

%u �
d %R

d%t
�

u

v�
%R
���
H

%u� � %U� " �� %R�� "
�

�

�
%R�� � �

	

%v
Tangential
velocity

%v �
%Rd�

d%t
�

v

v�

%v � %R��

%v �
%Rd�

d%t
�

v

v�
%R
���
H

%v � %R��

%E Energy

%E �
E

v��

%E �
�

�

�
%u� " %v�

�� ln R�

R

%E �
E

v��
%R�
H

%E �
�

�

�
%u� " %v�

�� �

� %R�

%Lz
Angular
momentum

%Lz �
Lz
R�v�

%Lz �
Lz
R�v�

%Lz
Angular
momentum

%Lz � %RH
%Lz � %R

�����
H

%Rmin

%Rmax

Extrema

The solutions of�

%U� " �� %R�� � � ln %R � �

The solutions of�

%U� " �� %R�� "
�

�

�
%R�� � �

	
� �



Quantity For the Toomre�Zang disk For the general power�law disk

%U
Eccentric
velocity

%U �
U

v�

%U� � � %E � �� � ln %Lz

%U� � %u� � � " %R�� " � ln %R

%U� � %u� � � " %v� � � ln %v

%U �
U

v�
%R
���
H

%U� � � %E � � " �

�

%U� � %u� � � " %R�� � �

�

�
%R�� � �

	

%U� � %u� � � " %v� � �

�

�
%v� � ��

Jn Auxiliary
integral

Jn	 %U� � ��

Z �Rmax

�Rmin

d %R

%Rn
�
%U� " �� %R�� � � ln %R

	 �
�

Jn	 %U� � ��

Z �Rmax

�Rmin

d %R

%Rn
�
%U� " �� %R�� " �

�

�
%R�� � �

		 �
�

%'p
Pattern
speed

%'p �
R�

v�
'p

%'p �
R�

v�
'p

%s Growth rate %s �
R�

v�
s %s �

R�

v�
s

%�
Complex
frequency

%� �
R�

v�
� � m%'p " i%s %� �

R�

v�
� � m%'p " i%s

%�
Radial
frequency

%� �
RH

v�
� �

�


J� %� �
RH

v�
%R
���
H � �

�


J�

%'
Angular fre�
quency

%' �
RH

v�
' �

J�
J�

%' �
RH

v�
%R
���
H ' �

J�
J�

%��
Epicyclic
frequency

%�� �
p
� %�� �

p
�� �

%'�
Circular fre�
quency

%'� � � %'� � �



Quantity For the Toomre�Zang disk For the general power�law disk

�
Orbital
phase

� � �t � %�%t � � �t � %�%t

%Y
Angular de�
viation

%Y � � �'t � � � %'%t %Y � � �'t � � � %'%t

%x
Logarithmic
radius

%x � ln

�
R

R�

�
%x � ln

�
R

R�

�

%X
Scaled log�
arithmic
radius

%X � ln

�
R

RH

�
� ln %R %X � ln

�
R

RH

�
� ln %R



A�� Reference table of distribution functions and dependent

quantities

Quantity For the Toomre�Zang disk For the general power�law disk

Self�
consistent
equilib�
rium dis�
tribution
function

fs	E�Lz� � %CL� exp

�
�	� " ��E

v��

�

%C �
C�� �
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�v
���
�

C�� �
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�����
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�
�
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energy
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radius R

K	R� � 
 �v
�
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�
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�
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Quantity For the Toomre�Zang disk For the general power�law disk

Potential
energy
within
radius R

W 	R� � ��
 �v
�
�R

�
�

R

R�
W 	R� � ��
 �v

�
�R

�
�

�� ��
�
R

R�

�����

Cut�out
distri�
bution
function

f	E�Lz� � H	L�fs	E�Lz� f	E�Lz� � H	L�fs	E�Lz�

Logarithmic
angular
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tum

h � ln %Lz h �
� " �

�� �
ln %Lz
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function
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LN " 	v�R��
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A�� Reference table of quantities describing the response of the

disk to a perturbation

Symbol Meaning Reference

� The 	dimensionless� wavenumber of a logarithmic spiral� successive peaks of
the density distribution are separated by �
R�� in physical space�

Sec� ����
eqs� 	�����
and 	�����

Aimp	��
The transform of the imposed density perturbation� describes the amplitude of
the imposed perturbation at the wavenumber ��

Sec� ����
eq� 	���
��

Ares	��
The transform of the response density perturbation� describes the amplitude
of the response at the wavenumber ��

Sec� ����
eq� 	�����

�

The mathematical eigenvalue� This is initially de�ned by the relationship � �
Ares	���Aimp	��� i�e� � is the ratio of the response to an imposed perturbation
at a particular wavenumber� The resulting integral equation can be satis�ed
only for certain discrete values of � � the eigenvalues � and the corresponding
eigenvectors A	��� Self�consistent modes require � � ��

Sec� ����
eq� 	��
�

m The azimuthal harmonic number�
Sec� ����
eq� 	������

l
The radial harmonic number� The time�dependence of the potential perturba�
tion is described by a Fourier series of components with frequency l times the
radial frequency ��

Sec� ����
eq� 	������

Qlm	��
The Fourier coe�cient� describes the contribution of a log�spiral with azimuthal
symmetry m and wavenumber � to the lth component of the potential pertur�
bation experienced by a star with a particular eccentric velocity %U �

Sec� ����
eqs� 	�����
and 	������

��
The logarithmic wavenumber of a component of the imposed perturbation� used
as an argument of the transfer function Sm	�� ����

Sec� ���

Sm	�� ��� The transfer function� describes how much the imposed component with
wavenumber �� contributes to the response component with wavenumber ��

Sec� ���
eq� 	�����
sec� ����
eq� 	������

� The di�erence between the response and imposed wavenumbers� � � �� ��� Sec� ����

#� #� � � � �

� " �
App� C�



Symbol Meaning Reference

Flm	��
The angular momentum function� Adds up orbits of similar shape at all possible
scales� and describes how much the imposed component contributes to the
response a distance � away in wavenumber�space�

Sec� ����
eq� 	������
App� C�

�u

Most unstable wavenumber� i�e� the dominant wavenumber of the �rst mode
to set in as the disk is cooled� Neutral modes in the self�consistent disk are
pure log�spirals� �u is then simply the wavenumber of the �rst mode to appear�
Where modes are superpositions of many log�spirals� the dominant wavenum�
ber is de�ned to be the wavenumber at which the density transform has its
maximum amplitude�

Sec� 
���
eq� 	
�����
sec� 
�
�

%�u�min

Minimum velocity dispersion needed for stability� This is the velocity dispersion
at which the disk �rst admits marginal modes 	with vanishing growth rate��
For velocity dispersions less than %�u�min� the disk admits growing modes� For
velocity dispersions greater than %�u�min� the disk is stable�

Sec� 
���
eq� 	
�����

�max
Maximum anisotropy needed for stability� Equivalent to %�u�min� an alternative
way of expressing the temperature of the disk�

Sec� 
���

Qs

Minimum temperature needed for stability� Equivalent to %�u�min� but here the
temperature of the disk is expressed in terms of Toomre�s stability parameter
Q� Qs � %�u�%�u��� where�
%�u is the velocity dispersion necessary to make the disk under examination
globally stable to modes of the particular azimuthal symmetry being studied�
and
%�u�� is the velocity dispersion necessary to make the corresponding self�
consistent disk locally stable to axisymmetric modes�

Sec� 
���
eq� 	
�����

RILR� ROLR
The inner and outer Lindblad resonances� at which the star encounters succes�
sive crests of the potential at the frequency of its own radial oscillations�

Sec� ����
eq� 	�����

RCR
The co�rotation radius� at which a star on a circular orbit co�rotates with the
potential

Sec� ����
eq� 	�����

R
The response function� the ratio of the response to the imposed density� Used
to describe the response of the self�consistent disk to neutral perturbations�
Modes have R � ��

Sec� ���
eq� ����
sec� 
���
eq� 	
����



A�� Reference table of numerical accuracy parameters

Accuracy

Quantity a�ected parameter What it controls

Fourier components

Qlm n�� aacc� bacc
Number of steps in mid�point integration�
n� � aacc exp	bacc %U�

Transfer function

Sm lmin� lmax

Plmax
l�lmin

approximates
P��

l���

Transfer function

Sm nGL Number of Gauss�Laguerre abscissae

Transfer function

Sm f�
Position of Gauss�Laguerre abscissae� Integration is
carried out in V � �

�
%U��	f�%�u�

��

Mathematical eigenvalue

� n Number of points along each side of the grid

Mathematical eigenvalue

� (� Grid�spacing

Mode parameters

'p� s� � �

Accuracy to which unit eigenvalue is sought� Pattern
speed and temperature or growth rate are adjusted
until the eigenvalue is unity to within ��



A�� Reference table of quantities involved in local theory�

�crit

The critical wavenumber� In a cold
disk� axisymmetric disturbances with
wavenumbers greater than �crit are lo�
cally unstable�

�crit �
���R

�
G 

�crit � 	�� ��
!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

�

�crit

The critical wavelength� In a cold disk�
axisymmetric disturbances with wave�
length less than �crit are locally unsta�
ble�

�crit �
�
R

�crit

x Scaled wavenumber x �
�

�crit

y Scaled temperature y �
�crit�u
R��

�
�u��
�
G 

%�u�min

Critical velocity dispersion� Disks with
velocity dispersion corresponding to
%�u � %�u�min are locally just stable to
axisymmetric perturbations�

�u�min � ���������
G 

��

%�u�min �
���������

�

p
�� �

!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

�
!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�

Q

Toomre�s stability parameter� Disks
with velocity dispersion corresponding
to Q � � are locally just stable to ax�
isymmetric perturbations�

Q �
�u

�u�min
�

�

���������

�u��
G 

Q �
!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

� �
p�� �

���������

�u

Most unstable wavenumber� the
wavenumber of the perturbation to
which the disk �rst becomes locally
unstable as it is cooled�

�u � �������
�
���R

�
G 

�u � �������
� 	�� ��
!
�
�
� 	�� ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	� " ��

�
!
�
�
� 	�� ��

�

�
The ratio of the forcing frequency to the
natural radial frequency of the star�

� �
m	'p �'��

��

� �
mp
�� �

�
%'p

�
R

R�

� ���
�

� �
�

F
The reduction factor describing how the
e�ects of the spiral perturbation are
lessened for stars with random motion
in the radial direction�

F �
huiimp

huiimp� cold
� ���	�����

�k�imp
huiimp



Appendix B

Single�Eccentricity Distribution Functions

In this thesis� we have used distribution functions built from powers of energy and angular momentum� We

could equally construct distribution functions using alternative integrals of motion� such as the eccentric

velocity and home radius� Disks with such distribution functions would in general contain orbits of many

shapes 	described by the eccentric velocity U� and sizes 	described by the home radius RH�� In this

Appendix� we consider disks in which all the stars have the same�shaped orbit� characterised by U � Ur�

Mathematically� we look for distribution functions of the form

fs � F 	RH��	U � Ur�� 	B���

The surface density is

 eq �  �

�
R�

R

����

�

ZZ
fs	u� v�du dv� 	B���

We transform this to an integral over U and RH � using the Jacobian given in 	����� and substitute our

assumed distribution function�

 �

�
R�

R

����

�

�
�� �

�

�
v�
R

ZZ �
R�

RH

���� %U F 	RH� �	U � Ur� dU dRHq
%U� " �� %R�� " �

� 	
%R� � ��

� 	B���

We integrate over U � and then transform the integral over RH to one over %R � R�RH �

 �

�
R�

R

������

�

�
�� �

�

�
�v� %Ur

Z �Rmax

�Rmin

%R���F
�
R� %R

	
d %R

%R�
q
%U�
r " �� %R�� " �

� 	
%R� � ��

� 	B��

where %Ur is the value of Ur in dimensionless units�

Looking at the powers of R� we can guess at a solution of this integral equation� namely

F

�
R
%R

�
� k



%R

R

������

� 	B���

��



Substituting this into 	B��� and remembering the de�nition of the auxiliary integral Jn	 %U� 	������ we
can solve for k and obtain

k �
 �R

�����
�

	�� �
� �v�

%UrJ���	 %Ur�
�

 �R
���
��

�� �
�

	
R
���
H UrJ���	 %Ur�

� 	B�
�

The distribution function is then

fs	U�RH� �
 �R

���
��

�� �
�

	
UrJ���	 %Ur�

�	U � Ur�

R���
H

� 	B���

This expression is valid for � � �� but in that case the appropriate form for J� 	����� must be used�

All the stars in this disk have orbits of the same shape� but di�erent home radii� Each star sweeps out

an annulus as it orbits� The relative width of this annulus depends on Ur� but the overall size of the

annulus depends on RH� It is easy to imagine that if we add up annuli with a variety of RH in suitable

proportions� we could recover the surface density of the equilibrium disk� and this is what the distribution

function 	B��� does� It seems intuitively right that the number of annuli needed falls o� with RH at the

same rate 	� " �� as the surface density falls o� with R� Similarly� we can see why the total number of

annuli depends inversely on Ur� for high Ur� the annuli are very wide� and few are needed� for low Ur�

the converse is true� Although the single�eccentricity distribution function is never used in this thesis� it

seemed su�ciently interesting to be worth presenting here�



Appendix C

The Angular Momentum Function

In this Appendix� we perform the integration over angular momentum %Lz to arrive at the angular mo�

mentum function Flm de�ned in Chapter � 	����� as

Flm �
�

�


Z �

�

e�i�
�

���
ln �Lz

l%�"m%'� %� %L
���
���
z

��
	l%�"m%'�

���� � " �� � ��

� %U� " � � �

����� �m

�
%H �m%Lz

d %H

d%Lz

�
d%Lz
%Lz

�

The integration is carried out over the variable h� where

h �
� " �

�� �
ln %Lz� %H	%Lz� � H	h�� 	C���

It is performed for three di�erent cut�out factors� namely

	�� the self�consistent disk�

H	h� � �� dH
dh

� �� 	C���

	�� the inner cut�out disk�

H	h� � eNh

eNh " �
�

dH
dh

�
NeNh

	eNh " ��
� � 	C���

	�� and the doubly cut�out disk�

H	h� � eNh

+eNh " �,
h
%L
�M�
c eMh " �

i � 	C��

dH
dh

�
NeNh

�
%L
�M�
c eMh " �

	
�M %L

�M�
c eNheMh

+eNh " �,
�
h
%L
�M�
c eMh " �

i� � 	C���

We proceed by splitting up the integral into two parts�

Flm	�� �

�
	l%�"m%'�

���� � " �� � ��

� %U� " � � �

����� �m

�
J� �mJ�� 	C�
�

where

J�	�� �� %Lc� �
�

�


�� �

� " �

Z �

��

e�i�
�

���
h

l%�"m%'� %�eh
H	h�dh� 	C���

and

J�	�� �� %Lc� �
�

�


Z �

��

e�i�
�

���
h

l%�"m%'� %�eh
dH
dh

dh� 	C���

��




We need only evaluate these for the case � � �� since the general integrals are related to the � � �

integrals as

J�	�� �� %Lc� �
�� �

� " �
J�

�
�� #�� %L

���
���
c

�
� J�	�� �� %Lc� � J�

�
�� #�� %L

���
���
c

�
� 	C���

where

#� 
 � � �

� " �
� 	C����

%Lc has been included as an argument� although clearly this is only relevant to the doubly cut�out disk�

We suppress the third argument unless needed�

��� The self�consistent disk

Here

J�	�� �� �
�

�


Z �

��

e�i�h

l%�"m%'� %�eh
dh� J�	�� �� � �� 	C����

We �rst consider the case � �� �� J� may be evaluated by contour integration� The integrand has poles

when

hn � ln
l%�"m%'

%�
" �ni
� 	C����

where n is an integer� The poles occur at intervals along a line parallel to the imaginary axis� note that

%� is not in general real 	� � m'p " is�� so that the poles are displaced from the lines h � �ni
�

We evaluate the integral

�

�


I
e�he�i�h

l%�"m%'� %�eh
dh� 	C����

around a rectangular contour as shown in �g� C��� with long sides at h � �� h � �i
� and short edges at

	L� enclosing the pole at h � ln+	l%�"m%'��%�,� Here the logarithm denotes the principal value� i�e� the

imaginary part lies between � and �
�

Then

�

�


Z L

�L

e�he�i�hdh
l%�"m%'� %�eh

� e�i
�e�
�

�


Z L

�L

e�he�i�hdh
l%�"m%'� %�eh

"
�

�


Z �


�

e�Ley�ei�ye�i�Ldh
l%�"m%'� %�eiyeL

� �

�


Z �


�

e��Ley�ei�yei�Ldh

l%�"m%'� %�eiye�L
� � i

l%�"m%'
e� ln

l���m��
�� e�� ln

l���m��
��

	C���



�

�

�


�

Im	h�

Re	h�

.

.

.

.

Figure C��� The contour used for the self	consistent disk� 	 �� �


Taking L��� and then �� �� we obtain the result

J�	�� �� � � ie�i� ln
l���m��

��

	l%�"m%'� 	�� e�
��
� 	C����

Then� generalising this result to all � as described above� we obtain

Flm	�� � ��� �

� " �

����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

�
ie�i� ln

l���m��
��

	�� e�
��
� � �� �� 	C��
�

This expression is singular when � � �� As we now demonstrate� Flm	�� contains a delta�function at

� � �� For the case 'p � �� s � �� we can integrate the expression for Flm	�� directly�

J�	�� �� �
�

l%�"m%'

�

�


Z �

��
e�i�hdh �

�

l%�"m%'
�	��� 	C����

and so for the general power�law disk

Flm	�� �
�� �

� " �

����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

�
�	#��� 	C����

To obtain the expression for general 'p and s� we write

J�	�� �� � J
��	
� 	�� �� " J

��	
� �	��� 	C����

where J
��	
� 	�� �� is equal to our previous expression 	C���� for J�	�� �� when � �� �� and equal to zero

a� � �� We integrate 	C���� over �� thus smoothing out the delta�function�

Z ��

����
d� J�	�� �� �

Z ��

����
d� J

��	
� 	�� �� " J

��	
�

Z ��

����
d� �	��� 	C����



We now let � �� We see from the expression for J
��	
� 	�� already obtained 	C���� that J

��	
� 	�� is odd in

the limit of vanishingly small �� It therefore contributes nothing in 	C����� Using the expression 	C���

for J�	�� ��� we obtain

J
��	
� � lim

���

�

�


Z ��

����
d�

Z �

h���
dh

e�i�h

l%�"m%'� %�eh
	C����

Swapping the order of integration and performing the integration over �� we obtain

J
��	
� � lim

���

�

�
i

Z �

h���

dh

h

ei�h � e�i�h

l%�"m%'� %�eh
	C����

We evaluate this by carrying out two separate contour integrals� For the integral with e�i�h� we close the

contour in the lower half�plane� as shown in �g� C���

�
�

�

Im	h�

Re	h�

.

.

.

.

Figure C��� The contour used for the self	consistent disk� 	 � �


As usual� we take the radius of the inner semi�circle to zero� and the that of the outer semi�circle to

in�nity� The integrand then vanishes on the outer semi�circle� and we obtain

�

�
i

Z �

h���

dh

h

e�i�h

l%�"m%'� %�eh
�

�

l%�"m%'

��X
n���

e�i� ln
l���m��

�� e�n
�

ln l���m��
�� " �in


� �

�

�

l%�"m%'� %�
	C����

The integral with e�i�h is evaluated over an analogous contour in the upper half�plane� We obtain

�

�
i

Z �

h���

dh

h

ei�h

l%�"m%'� %�eh
� � �

l%�"m%'

�X
n��

ei� ln
l���m��

�� e��n
�

ln l���m��
�� " �in


"
�

�

�

l%�"m%'� %�
	C���

Subtracting these two results and taking the limit � �� we obtain

�

�
i

Z �

h���

dh

h

ei�h � e�i�h

l%�"m%'� %�eh
�

�

l%�"m%'� %�
"

i

l%�"m%'

�X
n���

�

�n
 � i ln l���m��
��

	C����



The sum can be explicitly evaluated�

�X
n���

�

�n
 � iz
� � �

iz
"

��X
n���

�

�n
 � iz
"

�X
n��

�

�n
 � iz
�

i

z
" �iz

�X
n��

�

	�n
�� " z�

�
iz


�

�X
n���

�

	n" iz��
�	n� iz��
�
� ��

�
cot

iz

�
� � i

�

e�z " �
e�z � �

	C��
�

where we have used the standard result 	Prudnikov et al� ���
� eq� 	����
���

�X
n���

�

	n" a�	n" b�
�




b� a
	cot
a� cot
b� 	C����

Thus we obtain

J
��	
� �

�

�	l%�"m%'�
	C����

The angular momentum function for the self�consistent disk is then

Flm	�� �
�� �

� " �

����� � " �� � ��

� %U� " � � �

����� �m

l%�"m%'

�

�

�
�	#��� ie�i� ln

l���m��
��

�� e�
�

�
� 	C����

The corresponding result for the Toomre�Zang disk is 	correcting a typographical error in Zang 	���
��

eq� 	Z�����

Flm	�� �

�
� " �� �m

l%�"m%'

�

�

�
�	�� � ie�i� ln

l���m��
��

�� e�
�

�
� 	C����

��� The inner cut�out disk

Here� we must evaluate

J�	�� �� �
�

�


Z �

��

e�i�h

l%�"m%'� %�eh
eNh

eNh " �
dh� 	C����

J�	�� �� �
�

�


Z �

��

e�i�h

l%�"m%'� %�eh
NeNh

	eNh " ��
� dh� 	C����

Again the integrands have poles when h � ln+	l%�"m%'��%�, " �ni
� However� they now also have poles

along the imaginary axis� at

hj �
�j � �
N

i
� 	C����



where j is an integer� We integrate around the same rectangular contour as for the self�consistent disk

	�g� C���� As well as the pole at ln+	l%� "m%'��%�,� we now also enclose N poles lying on the imaginary

axis� Adding up the residues from all these poles� we obtain the result�

J�	�� �� �
�i

�� e�
�

��
�	l%�"m%'�N��e�i� ln

l���m��
��

	l%�"m%'�N " %�N
� �

N

NX
j��

e
�j��
N


�

l%�"m%'� %�e
�j��
N

i


��
� � 	C���

J�	�� �� � � i

�� e�
�
�

���
��
	l%�"m%'�N��N %�Ne�i� ln

l���m��
��h

	l%�"m%'�N " %�N
i�

"
�

N

NX
j��

e
�j��
N


�

l%�"m%'� %�e
�j��
N

i


�
i� � %�e

�j��
N

i


l%�"m%'� %�e
�j��
N

i


���
� �

	C����

For � �� �� we obtain the angular momentum function

Flm	� �� �� � � i

�� e�
�
�
�
	l%�"m%'�N��e�i� ln

l���m��
��

	l%�"m%'�N " %�N

�
�
�� �

� " �

�
	l%�"m%'�

���� � " �� � ��

� %U� " � � �

����� �m

�
� mN %�N

	l%�"m%'�N " %�N



� �

N

NX
j��

e
�j��
N


�

l%�"m%'� %�e
�j��
N

i


�
�

m%�e
�j��
N

i


l%�"m%'� %�e
�j��
N

i

� im#� "

�� �

� " �

�
	l%�"m%'�

���� � " �� � ��

� %U� " � � �

����� �m

���
�

	C��
�

We can use l�H#opital�s rule to obtain the result for � � �� This requires that both the numerator and

denominator of 	C��
� are zero in the limit � � �� The denominator 	�� e�
�� is obviously zero in this

limit� and it can be shown that the numerator is also 	e�g� it is readily apparent for N � ���

Application of l�H#opital�s rule then yields

Flm	� � �� � � i

�

�
�
i	l%�"m%'�N�� ln l���m��

��

	l%�"m%'�N " %�N�
�� �

� " �

�
	l%�"m%'�

���� � " �� � ��

� %U� " � � �
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N�B� For m � �� the term l%�"m%' vanishes at the l � � radial harmonic� In this case� the only poles are

those at hj � 	�j � ��i
�N � for which the residues are zero� Thus F�� � ��



��� The doubly cut�out disk

Here
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The integrand now has additional poles at
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where k is an integer� We thus obtain a second sum� and Flm becomes
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In the limit � � ��
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Numerical calculation of Flm

Before we can begin to implement the equations given above� we need to consider the quantity ln+	l%�"

m%'��%�,� As noted above� our treatment requires the principal value of this logarithm� i�e� that with

imaginary part between � and �
� The version of FORTRAN we used can cope with complex logarithms�

but returns an answer with imaginary part between �
 and 
� We must therefore add on a multiple

of �
 �by hand�� The imaginary part of � is s� which is positive by assumption� so the argument of

� always lies between � and 
� l%� "m%' can be positive or negative according to the value of l� so its

argument may be � or 
� The correction necessary thus di�ers by 
 depending on the sign of l%�"m%'�

ln
l%�"m%'

%�
� ln jl%�"m%'j � ln %� " �i
� l%�"m%' � �� 	C���

ln
l%�"m%'

%�
� ln jl%�"m%'j � ln %� " i
� l%�"m%' � �� 	C��

These corrections hold for both positive and negative pattern speed 'p� but assume that the disturbance

is growing 	Im	%�� � ���



Appendix D

The Reduction Factor

In this Appendix� we derive the reduction factor F describing the local response of the power�law disks

to a tightly�wound spiral perturbation� Increased velocity dispersion tends to stabilise a disk� A hot disk

thus responds less vigorously to a given potential perturbation �imp than a cold disk does� The reduction

factor F describes the amount by which the response is reduced� F therefore lies between � 	for a totally

cold disk� and � 	for an in�nitely hot disk� which is una�ected by the perturbation�� If we de�ne the

response of the disk in terms of the average change in radial velocity caused by the imposed perturbation�

huiimp� then

F �
huiimp

huiimp� cold
� 	D���

We now proceed to derive the reduction factor for a tightly�wound spiral perturbation� following the

procedure of app� 
�A of Binney � Tremaine 	������ First� we write the perturbing potential as

�imp	R� �� � F 	R�eig�R	ei�m	��t	� 	D���

This involves no loss of generality� since a general perturbation can be described by summing many such

components� F 	R� represents the slow change in the amplitude of the potential as we move outwards

through the disk� g	R� represents the rapid oscillations in amplitude as we pass through successive spiral

arms� The arms are separated by (R� where

g	R"(R� � g	R� " �
� 	D���

We can de�ne a dimensional wavenumber k characterising the perturbation�

k	R� �
�


(R
�

g	R"(R�� g	R�

(R
� 	D��

We make the assumption that the perturbation is tightly�wound� i�e� (R is small in comparison to R�

��



In this case� k � dg�dR�� Therefore we rewrite eq� 	D��� as

�imp	R� �� � F 	R�ei
R
R k�R��	dR��

ei�m	��t	� 	D���

If the disk is perfectly cold � that is� all the stars are initially on circular orbits � the resultant average

radial velocity acquired by the stars is 	Binney � Tremaine ����� p� �
��

huiimp� cold �
�k�imp

��	�����
� 	D�
�

where � � m	'p � '������ 'p is the pattern speed and growth rate of the disturbance� and '�� ��

are the circular and epicyclic frequencies 	����� In a hot disk� stars already have a �nite radial velocity�

and so they sample di�erent parts of the spiral potential� both positive and negative� The e�ect of the

perturbing potential is partially cancelled out� leading to a smaller change in radial velocity� According

to the de�nition of the reduction factor given in eq� 	D��� 	substituting for huiimp� cold from eq� 	D�
� and

for �imp from eq� 	D����� we have

F �
��	�����

�k	R�F 	R�
e�i

R
R k�R��	dR��

e�i�m	��t	huiimp� 	D���

To evaluate the reduction factor� we need an expression for the perturbed mean radial velocity huiimp�

By de�nition�

huiimp �

RR
du dv u	f " fimp�RR
du dv 	f " fimp�

� 	D���

In the unperturbed state� the stars are as likely to be travelling outwards as inwards� so we haveRR
fududv � �� Then to �rst order in the perturbation quantities

huiimp �

RR
du dv ufimp

 eq
� 	D���

Substituting this into 	D���� we obtain

F �
��	�����

� eq

e�i
R
R k�R��	dR��

e�i�m	��t	

k	R�F 	R�

ZZ
du dv ufimp� 	D����

We now need to evaluate the perturbed distribution function fimp for this choice of �imp� just as we did

in Chapters � and  when the perturbing potential was a log�spiral�

�For comparison� we saw in eq
 ��
��� that successive maxima of a log	spiral perturbation were separated by �R � ��R��

For a log	spiral� the function corresponding to g�R� in eq
 �D
�� is � lnR
 Clearly k � dg�dR � ��R




The perturbed distribution function fimp is given by eqs� 	����� and 	������ In order to calculate fimp�

we need the derivative of the perturbation potential �imp 	D��� with respect to radius and azimuth� For

a tightly�wound spiral perturbation� by far the most signi�cant change in potential occurs as we move

between spiral arms� We can neglect the slow changes that occur as we move along an arm� or the

gradual fall�o� in amplitude with radius� We can thus neglect ��imp��� entirely� and approximate the

radial derivative by

��imp

�R
� ik	R�F 	R�ei

R
R k�R��	dR��

ei�m	��t	 	D����

Then 	writing k	R��� � k��� eq� 	����� becomes

fimp	t� � � �f

�E

Z t

��
u�ik	R��F 	R��ei�m	���t�	ei

R
R� k��dR�

dt� 	D����

We also make the approximation

ei
R
R� k��dR�� � ei+

R
R k��dR���k�R	�R��R	,� 	D����

Similarly� we approximate F 	R�� � F 	R� and k	R�� � k	R�� and take them outside the integral� Further�

more� we pretend that the star is moving on a circular orbit so that �� � �"'�	t
��t�� Note that we cannot

make a similar approximation and set R� � R in eq� 	D����� since there the small di�erence 	R� � R� is

multiplied by the wavenumber k� which by assumption is large� Then the perturbed distribution function

becomes

fimp	t� � � �f

�E
ik	R�F 	R�ei�m	��t	ei

R
R k��dR��

�
Z t

��
u�ei�m���t

��t	���t��t		eik�R	�R
��R	dt��

	D���

This is analogous to the perturbed distribution functions derived for log�spiral perturbations in Chapters �

and � There� we obtained the unperturbed orbit of the star by numerically solving the equations of

motion 	������ Here� we use epicyclic approximations to the radial position R and the radial velocity u�

The epicyclic orbit equations are 	Binney � Tremaine ����� p� 
����

R� � Rg "X cos��t
� � Y sin��t

�� 	D����

u� � ���X sin��t
� � ��Y cos��t

�� 	D��
�

v� � vcirc	R
�� � �BX cos��t

� � �BY sin��t�� 	D����



where the guiding centre Rg and amplitudes X and Y are determined by the boundary condition that at

time t� � t� we have R� � R and u� � u� B is Oort�s parameter 	Binney � Tremaine ����� eq� 	
������

B � �
�
R

�

d'�

dR
"'�

�
� 	D����

De�ning � � ��	t
� � t�� the epicyclic approximations to R� and u� are

R� �R �
v � vcirc
�B

	cos�� �� " u

��
sin�� 	D����

u� � u cos�� ��	v � vcirc�

�B
sin�� 	D����

Substituting these approximations into the perturbed distribution function� eq� 	D���� and then into the

expression for the reduction factor� eq� 	D����� we obtain

F � � i	�����

� eq

Z �

��
duu

Z �

��
dv

�f

�E

Z �

��
e�i�

�
�
u cos�� ��	v � vcirc�

�B
sin�

�
exp ik

�
	v � vcirc�

�B
	cos�� �� " u

��
sin�

�
d��

	D����

	We delay substituting in the equilibrium density  eq and the derivative of the equilibrium distribution

function �f��E� so as to keep the derivation fully general for as long as possible�� Changing variables

from � to ��� we rewrite eq� 	D���� as

F � � i	�����

� eq

Z �

��
duu

Z �

��
dv

�f

�E

Z �

�

d�ei�

�
�
u cos�"

��	v � vcirc�

�B
sin�

�
exp ik

�
	v � vcirc�

�B
	cos�� ��� u

��
sin�

�
�

	D����

The in�nite integral over � is periodic� and can therefore be split up into a geometric sum of integrals

over an interval of �
� We then make the further adjustment �� �� 
�

F � � 	�����

�� sin
�

�

 eq

Z �

��
duu

Z �

��
dv

�f

�E

Z 


�

d�ei�

�
�
u cos�"

��	v � vcirc�

�B
sin�

�
exp

�
ik

��

�
u sin�� ��	v � vcirc�

�B
	cos�" ��

�
�

	D����

We notice that the �rst term in curly brackets is the derivative with respect to � of the second such term�

We can therefore integrate by parts to obtain

F � � 	�����

�� sin
�

�

 eq

Z �

��
duu

Z �

��
dv

�f

�E

�
�
���
k
sin
� � ���

k
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�

d�ei� exp

�
ik

��

�
u sin�� ��	v � vcirc�

�B
	cos�" ��

��
�

	D���

We now consider the integration over u� Clearly only terms that are even in u will survive the integration�

The derivative �f��E is even in u 	since f is built out of isolating integrals�� so on the second line of

eq� 	D��� we need retain only terms which are odd in u�



F � i
	�����

sin
�

�

 eq

��
k

Z 


�

d�ei�

�
Z �

�

duu sin

�
ku

��
sin�

 Z �

��
dv

�f

�E
exp

�
� ik	v � vcirc�

�B
	cos�" ��


�

	D����

We now carry out a similar procedure� abandoning terms which are odd in ��

F � � 	�����

sin
�

���
k eq

Z 


�

d� sin��

�
Z �

�

duu sin

�
ku

��
sin�

 Z �

��
dv

�f

�E
exp

�
� ik	v � vcirc�

�B
	cos�" ��


�

	D��
�

Our working so far has been completely general in that we have not assumed an equilibrium surface

density or distribution function for our disk� Kalnajs 	��
�� and Lin � Shu 	��

� derived the reduction

factor for the Schwarzschild distribution function

f
H
�

 eq

�
�u�v
exp

�
� u�

���u
� 	v � vcirc�

�

���v


� 	D����

In this case� the integration over u and v can be carried out analytically� There is no dependence on surface

density� so the results are valid for any density pro�le� provided appropriate values are substituted for ���

vcirc and B� In general� the Schwarzschild reduction factor is 	Lin � Shu ��

� Binney � Tremaine �����

app� 
�A�

F
H
�
	�����

sin
�

Z 


�

d�e�����cos	 sin�� sin�� 	D����

where � � 	k�u����
�� For the power�law disks� � � ��%��u�	�� ���

To �nd the form of the reduction factor for our power�law distribution function 	eqs� 	����� 	������� we

return to our general expression 	D��
� and specialise to the case of the power�law disks� We rewrite the

integrals in terms of the dimensionless velocities %u and %v� We are using the epicyclic approximation� in

which the star is roughly at its home radius� Under these circumstances� %u � u�vcirc and %v � v�vcirc 	see

eq� 	������� We also have kvcirc��� � ��
p
�� � and �kvcirc��B � ���	�� ��� Then eq� 	D��
� becomes

F � � 	�����

sin
�

�
p
�� �

�

v��
 �

�
R

R�

���� Z 


�

d� sin��

�
Z �

�

d%u %u sin

�
�%u sin�p
�� �

 Z �

��
d%v exp

�
�i�	%v � ��
�� �

	cos�" ��


�f

�E

	D����

We substitute for �f��E from eq� 	��
��� and for the constant %C from eq� 	������ We then obtain

F �
	�����

sin
�

���� �� " �

�
� �

�

���� C��
p
�� �j�j�� �

�
� �
�
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�
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%u sin�
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d%v exp
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� �
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Numerical methods

To evaluate the reduction factor 	D���� for the power�law disks� the integration over velocities must

be carried out numerically� We use Gauss�Hermite integration over %u� This is suitable for integrands

containing a factor exp	�x���
Z �

��
e�x

�

f	x�dx �

nHX
i��

wif	xi�� 	D����

where the order of Gauss�Hermite integration is nH� If we substitute %u � x%�u
p
� in eq� 	D����� and write

g	%u� � e��u������uf
�

�u
��u
p
�

	
� then we obtain

Z �

��
g	%u�d%u � %�u

p
�

nHX
i��

wie
x�i g	xi%�u

p
��� 	D����

Abscissae on either side of the origin have the same weights� and our integrand g	%u� is even� We therefore

need to use abscissae on one side of the origin only�

We used the midpoint method to integrate over %v and �� When evaluating the Schwarzschild reduction

factor� we again used the midpoint method to integrate over ��

The following table shows the values obtained for the reduction factor using di�erent numbers of Gauss�

Hermite abscissae to integrate over %u� In each case� convergence to � s�f� was demanded from the

midpoint integration over v� and to  s�f� from the �nal midpoint integration over �� The last row shows

the Schwarzschild reduction factor�

� � ����� � � ��

� � ���� � � ���� � � ����

nH Qs � � Qs � ��� Qs � � Qs � ��� Qs � � Qs � ���


 ������� ������ ���
�� ����� ������ ������

� ������ ������ ����
� �����
 ������ ������

� ������ ����� ������ ������ ������� ������

Power�law d�f� � ������ ����� ������� ������ ������� ������

eq� 	���� �� ���
�� ����� ������� ������ ������� ������

�� ���
� ����� �����
� ������ ������� ������

�
 ���
� ����� �����
� ������ ������� ������

Schwarzschild d�f� eq� 	D���� ������ ������ ����� ���� ������� ������

The Schwarzschild and power�law distribution functions give the same value for the reduction factor� to

within � s�f� 	see also �g� ����� Gauss�Hermite quadrature works well in carrying out the integration

over %u� For Qs � �� as many as twelve Gauss�Hermite points are required for convergence to  s�f� The

convergence is faster for colder disks�



Appendix E

Tables of Marginal Modes

In this Appendix� tables of data are presented summarising the marginal modes of the power�law disks�

These are the modes with vanishing growth rate which occur at the minimum temperature necessary for

stability�

E�� Axisymmetric modes

The minimum temperature necessary for stability is given in terms of the anisotropy parameter� �max�

the velocity dispersion %�u�min and Toomre�s stability criterion Qs 	see eq� 	
������ For the singular disk�

the most unstable wavenumber �crit is also given�

The singular disk

This table contains the data used in �gs� 
���� and 
���� Qs gives the ratio of the critical velocity

dispersion obtained by global theory to that obtained by local theory�

�max %�u�min Qs �crit

� Local Global Local Global Local Global
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E�� Bisymmetric modes

The following tables contain the data used in the graphs of minimum temperature presented in Chapter ��

�gs� ���
 and ����� The temperature necessary for stability is given in terms of the anisotropy parameter

�max and the velocity dispersion %�u�min� For these bisymmetric modes� we also need to specify the pattern
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Appendix F

Tables of Fastest�Growing Modes

F�� Introduction

In this Appendix we present some of the modes which exist in a disk of a particular temperature�

concentrating on the fastest�growing modes� Not all disks admit modes at a particular temperature� By

way of illustration� consider the following sketches� which show the dependence of the largest eigenvalue

on s and 'p for the �rst six inner cut�out indices N � The position of the unit eigenvalue is marked by

the dotted line� This set of sketches is for � � ���� disks exposed to an m � � perturbation�

Figure F��� m � �� � � ����� dependence of the largest eigenvalue on growth rate and pattern speed
 This is for Qs � ��
i
e
 ��u � ����� and 
 � ����
 The solid lines show curves of constant s at intervals of �
� from s � �� to s � ���� the
dotted lines show curves of constant �p at intervals of �
� from �p � ��� to �
�


We see immediately that disks with N � �� � or � admit no modes for Qs � �� The disk with N � 

admits a mode at roughly s � ����� 'p � ���� Plots like this were used to obtain estimates of the

position of the unit eigenvalue 	if one existed�� A Newton�Raphson routine was then used to locate it

exactly� as described in section ���� Note that the more unstable disks may admit secondary modes� The

above plots show the largest eigenvalue� if we were to plot the second largest eigenvalue for N � � we

might well �nd that it passed through 	���� for some lower growth rate�

In the Appendix� we consider disks with Qs � �� This is the temperature at which a self�consistent disk

with this potential would be locally just stable to axisymmetric modes�

��




F�� One�armed modes

The power�law disks are highly susceptible to one�armed modes� The following table shows patterns

speed and growth rates of the four fastest�growing modes present at Qs � � in inner cut�out disks with

cut�out indices from N � � to N � � These data are presented graphically in �gs� ���� and ����

+Numerical accuracy parameters� n � ���� (� � ���� lmin � ��� lmax � ��� nGL � �� f� � ���� aacc � ����

bacc � ��� � � � ��
���,

N � � N � � N � � N � 

� 'p s 'p s 'p s 'p s
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F�� Bisymmetric modes

The power�law disks are remarkably stable to bisymmetric modes� For such modes to be possible at

Qs � �� the disk must be sharply cut�out at the centre� Disks with rising rotation curves are less stable

than disks with falling rotation curves� However� even the disk with N �  and � � ���� admits only
three modes at Qs �� Disks with lower cut�out indices or higher � admit even fewer modes� Thus the

following table has many empty cells)

+Numerical accuracy parameters� n � ���� (� � ���� lmin � ��� lmax � ��� nGL � �� f� � ����
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F�� Stability to di�erent azimuthal harmonics

The following sets of tables compare the stability of inner cut�out disks to perturbations of di�erent

azimuthal symmetry m� For each symmetry m and inner cut�out index N � the pattern speed and growth

rate of the fastest�growing mode are recorded� The results for � � ����� � � ���� and � � ����� are
shown in di�erent tables�
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The above data are presented in graphical form in the following plots�



Figure F��� The fastest	growing modes with m � �� Qs � ���
 The solid line marked with diamonds is � � ����� the
dotted line with triangles is � � ����� the dashed line with squares is � � �����
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The pattern speed of the fastest�growing mode depends almost linearly on N � although there is not

a great deal of variation with either N or �� The fastest growth rate increases quite steeply with N �

re�ecting the increased instability of the more sharply cut�out disks�
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