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Abstract

Binocular stereopsis, or stereo vision, is the

ability to derive information about how far

away objects are, based solely on the relative

positions of the object in the two eyes. It

depends on both sensory and motor abilities.

In this review, I briefly outline some of the

neuronal mechanisms supporting stereo

vision, and discuss how these are disrupted

in strabismus. I explain, in some detail,

current methods of assessing stereo vision

and their pros and cons. Finally, I review the

evidence supporting the clinical importance

of such measurements.
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Introduction

Stereo vision is the computation of depth based

on the binocular disparity between the images

of an object in left and right eyes (Figure 1). This

requires matching up features in the two eyes,

that is, identifying features in the left and right

retinas that are both images of the same point in

the visual scene. The matching process begins in

primary visual cortex of the brain, but requires a

series of computations across several distinct

areas of visual cortex before it is fully achieved.1

In principle, if the eyes were free to move

independently, the match for a given feature in

the right image could be located anywhere in

the left retina (Figure 2). Humans, however,

simplify the matching problem by imposing

severe constraints on our eye movements. Most

notably, our binocular vision requires that the

optic axes intersect, that is, both eyes fixate the

same point in space. This, together with the

other laws governing eye movements,2,3 means

that matches generally lie at essentially the

same vertical position in both eyes.4 The visual

system simplifies further by considering only

potential matches that are at very similar

horizontal locations in the two eyes, within a

degree or so (Figure 2). The effect of this is to

limit the search to objects at or near the fixation

distance.

Together, these simplifications greatly reduce

the number of brain cells required for binocular

vision. The primary visual cortex of the brain

contains neurons receiving information from

both eyes. Each such neuron corresponds to a

pair of ‘tiles’ in Figure 2, with the size of the tile

corresponding to the size of the retinal receptive

field (o11 near the fovea). Experimentally, such

neurons are found to view very similar visual

directions in space, with a wider range of

horizontal than vertical disparity.5–7 That is, the

brain contains only those neurons representing

the most likely disparities. This represents a

great reduction in the number of neurons

required (from 64 down to 3 in the cartoon

shown in Figure 2).

The cost is that objects that are too far from

the fixation distance, such as the second object

in Figure 1, are not fused, but are seen double.

This physiological diplopia can be noticed in

everyday life, but is not generally problematic.

Natural scenes tend to vary relatively smoothly

in depth, so that points near fixation are

generally at similar depth. Where this is not the

case, for example where we fixate the edge of a

surface, more distant objects will be blurred as

we are accommodating on the fixated surface.

A more minor side effect is that stereopsis fails

for sufficiently extreme eye postures.3 We

typically avoid such eye postures by moving

our heads to point at what we want to look at.

Thus, this strategy works well in practice.

However, this strategy clearly depends

critically on the ability of the oculomotor system

to direct both foveas at the object of interest—

precisely the ability that fails in strabismus. The

normal visual system contains several

mechanisms to support this. Neuronal

crosslinks between accommodation and

vergence help the eyes to fixate at the correct

distance.8,9 Images with non-zero disparity

trigger vergence reflexes, intended to null out
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disparity at the fovea and thus ensure that both foveas

are directed at the same object in space.10 Many people

show phorias, misalignments of the eyes that occur when

normal visual input is removed (eg, by occluding one

eye’s view), demonstrating the importance of sensory

feedback in maintaining normal binocular alignment.

Strabismic patients exhibit tropias: binocular

misalignments that persist even with normal viewing.

Normal stereo vision is not possible when the eyes are

misaligned, because an object’s images on the two retinas

are too far apart; they do not fall within the range of

matches that the brain can consider. Some strabismic

patients show abnormal retinal correspondence; that is,

their brain learns to perceive objects as lying in the same

visual direction, even though they fall at what would

normally be noncorresponding locations in the retina.11,12

If a tropia is constant and present from an early age, one

might have expected stereopsis to be present but

similarly shifted, with the receptive fields of binocular

visual neurons offset on the retina by the amount of the

deviation. However, apparently the normal retinotopic

projection is not plastic enough to allow this to occur,

perhaps because this would involve matching up

physically very different parts of the retina, for example,

the fovea in one eye with peripheral retina of the other.

Wong et al11 have suggested that anomalous retinal

correspondence may be achieved by using chains of

neurons across abnormally large areas of visual cortex.

Apparently, this mechanism cannot support the

binocular neurons necessary to support stereopsis. In

addition, eye position in strabismus may be not only

misaligned, but also more variable. As noted, receptive

fields in early visual cortex are well under 11, and

respond to disparities typically over a range of under

0.51. Thus, vergence fluctuations of ±0.251, although not

clinically noticeable, could damage the development of

stereopsis.

Because stereo vision depends upon good vision in

both eyes, excellent oculomotor control and cortical

mechanisms for sensory fusion, it is regarded as the

gold standard for binocular visual function.13

Where strabismus therapy succeeds in restoring

stereo vision, this proves that the patient has

excellent and stable binocular alignment, and that the

necessary sensory cortical mechanisms have been

preserved.

L 

R 

Figure 1 The optic axes of each eye are shown with solid lines.
The fixated object, by definition, projects to the fovea in each eye.
The retinal projections of another object are shown with dashed
lines. Because this object is not at the fixation distance, its images
in the two eyes fall at different locations relative to the fovea, as
indicated by the angles L and R. Absolute binocular disparity is
defined as the difference between the angles to the fovea in each
eye: D¼R� L. Note that in this figure, angles are exaggerated
for clarity. In reality, the second object would be seen double as
its disparity is too large to be fused.

right retinaleft retina

Figure 2 Cartoon of the two retinas, imagining them tiled by 8� 8 receptive fields. Consider searching for the location in the right
retina viewing the same object as the black-shaded location in the left retina. In principle, there are 64 possible locations. However, the
horizontal offset of the eyes together with the laws governing eye movements means that the geometrically possible matches are
largely confined to the row at the same vertical position (shaded light grey). The visual system then further restricts its search to
matches at a similar horizontal position (shaded dark grey).
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How to measure stereo vision

Several commercial stereoacuity tests are available for

use in the clinic.14,15 Some of these are listed in Table 1

along with some of their properties. At its most basic, a

stereotest can aim simply to determine whether a patient

has any stereo vision at all, without quantifying their

stereoacuity. The ‘gross stereo’ component of the Randot

test is one example. For many clinical applications it is

also desirable to quantify a patient’s stereo vision. This

requires a measurement of stereoacuity. Stereoacuity is

defined as the reciprocal of stereo threshold, the smallest

binocular disparity that can reliably be distinguished by

a patient.

There are two problems with this definition. First, just

as in other areas of sensation, there is no abrupt cutoff

between visible and nonvisible disparities. If subjects are

given some task that depends on the perception of the

disparity, performance will rise smoothly from chance to

perfect over some finite range. ‘Threshold’ must then be

defined as a given level of performance, for example,

when the subject has a 50–50 chance of detecting the

disparity. On clinical tests, the reported threshold is

taken to be the smallest tested disparity on which the

subject was correct on at least M out of N presentations

(where N and M are small integers). Second, the

threshold depends on the particular task, on the viewing

distance, and on the details of the stimulus. These issues

will all be discussed in detail below.

Monocular cues

It is clearly essential that the patient should not be able to

pass a stereotest using monocular cues. Where the test

images have monocularly visible contours (see below), as

in the FD2 or the graded-circles component of the Randot

stereotest, large disparities may be visible monocularly

as a shift in the contour. Fawcett16 states that this

‘frequently’ gives rise to false-positive results in patients.

Using a test image with no monocular contours, as in a

random-dot pattern, avoids this. The Frisby and Lang

stereotests avoid monocular contours, but because of the

way in which they introduce disparity, they still offer

monocular cues if the patient does not remain perfectly

stationary relative to the test image,17 and this is hard to

ensure in children. Fawcett et al18 state that steroacuity

scores above 160 seconds of arc in such tests should be

interpreted with caution, as they may represent a

response to monocular cues. To avoid such artefacts, the

test should be repeated with monocular viewing.

If the same score is obtained as with binocular, the

binocular score is not a measure of stereoacuity.

Unfortunately, the only way of avoiding monocular

cues in currently available stereotests requires the use of

3D glasses. These are an additional barrier to using a test

in young children; the child may be distracted by the

glasses or unwilling to wear them, or the glasses may not

fit. The TNO test and the anaglyph version of the Test

Chart Xpert 3Di test use red/blue glasses, in which each

eye sees a different colour. This is undesirable as it tends

to promote rivalry and dissociation, and may promote

suppression of one eye by the other. The Randot family of

tests uses polarised vectographs to present different

images to each eye. As humans are not sensitive to the

polarisation of light, both images appear the same apart

from the disparity.

Number of alternatives

Clinical stereotests typically ask patients to use disparity

cues to choose between a number of alternatives. The

number of alternatives varies. For example, the FD2 test

and the graded components of the Randot test all ask

subjects to identify which of several shapes is closer than

the others. The Randot ‘circles’ task asks subjects to

choose between three circles, the FD2 test asks them to

choose between four shapes, and the Randot ‘animals’

task between five pictures. At first sight, the advantage of

offering more alternatives is that patients are less likely

to succeed by guessing. Thus, four-alternative tests

generally require fewer correct responses to pass a level:

two out of three19 or two out of two20 correct responses,

as compared with four out of five21 for a two-alternative

test. However, the logic behind this seems debatable. If

patients are willing to guess, all stereotests are in trouble.

On a 2-alternative test, scoring 4 out of 5 is not

significantly different from the chance performance of

50%. In fact, if subjects answered at random with both

eyes closed, 20% of them would score 4/5 or better. On a

4-alternative test, answering correctly on 2 consecutive

trials does not enable us to reject the null hypothesis of

stereoblindness at the conventional 5% significance level,

as a sightless subject stands a 6% chance of obtaining this

score by guessing. Thus, stereotests depend on patients

not guessing; for this reason, test protocols often stress

that patients should be instructed not to guess but only to

report clear depth percepts. If we dismiss the possibility

of guessing, the two-alternative tests may actually be

preferable, as they reduce task complexity and are more

accessible to small children.22

Precision and reliability of stereoacuity measurements

Very few clinical stereo tests are capable of measuring the

stereo threshold of healthy controls. Subjects with good

binocular vision can have stereoacuity thresholds as low

as 2 seconds of arc, and 80% have thresholds 30 arcsec

(sec 19.3.1 of Howard and Rogers23). As Table 1 shows,
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most commercial tests are not designed to measure such

low thresholds, with a threshold of 20 arcsec often being

considered ‘normal’. In principle, commercial tests can

be used to present arbitrarily low disparities by

increasing the viewing distance. This is not an ideal

solution, as it also changes the size and spatial frequency

content of the image.24 Clinical stereotests are designed

to quantify the degree of impairment rather than

measuring the abilities of healthy subjects.

Several studies have examined the test–retest

variability of stereotests. These have generally quantified

agreement by the 95% limits of agreement, that is, ±2s,

where s is the SD of the difference between two

measurements in the same subject using the same test.25

The ‘measurement’ here refers to log10 (threshold in

arcsec), as the uncertainty on stereo threshold is roughly

constant when expressed as a fractional error. In clinical

practice, one is often interested in the change in the

measured value: if a stereo threshold is lower now than

on the last visit, does this represent a real improvement?

In order to be confident that a stereo threshold has really

changed, the log10-thresholds must differ by 2s. That is,

the two thresholds must differ by a factor of at least

F¼ 102s.

Fawcett and Birch26 found F¼ 2.1 for the Randot

Preschool stereotest. Adler et al,27 using the Randot

graded circles test, report s as 1.57 Randot plates rather

than in log10 arcsec, but on average each Randot plate

increases disparity by a factor of 1.4. Thus, this

corresponds to F¼ 2.8. Adams et al28 examined reliability

for several stereotests and found F¼ 3.9 for preschool

Randot, F¼ 1.7 for the near Frisby, F¼ 4.8 for the FD2,

and F¼ 2.9 for the distance Randot. They concluded that

changes in stereoacuity of less than a factor of four are

not clinically meaningful, as they cannot be

distinguished from measurement error. This is fairly

poor, especially as stereotests only offer a few possible

scores, often differing by a factor of two, which would

tend to increase the reported reliability compared with

the same test with a finer range of possible scores. The

poor reliability makes it hard for clinicians to monitor the

effect of therapy on stereoacuity.

One reason for this poor reliability must be the low

number of trials required by protocols: as we have seen,

if the ‘pass’ level is set on just three trials of a four-

alternative test, it is possible to pass by chance. It is

difficult to obtain many trials in small children, but

current protocols ‘waste’ trials, for example by

conducting three repeats of the early, easy levels. It

would be more efficient to use a staircase procedure,

where one or two correct answers moves the subject onto

the next level, but a wrong answer sends them back.

These are statistically a more efficient way of obtaining

information about the patient’s abilities, but are hard for

the tester to implement. In addition, current tests offer a

limited range of trials; for example, the Randot graded-

circles test offers only one trial at each level. Disparities

can be presented only at a limited number of preset

levels.

Many of these problems could be avoided by using

computerised tests. These are routine in vision science

laboratories, but are not usual in the clinic because of the

cost and space required and the lack of suitable software.

A few recent papers have explored the use of

computerised stereotests in clinical populations,29–32 but

none of these are currently commercially available. The

only commercial computerised stereotest of which I am

aware is the Test Chart Xpert 3Di from Thomson

Software Solutions, available with either anaglyph (red/

blue) or polarising 3D display. It enables the user to

present unlimited trials at a range of available disparities,

but does not implement the mathematical techniques

used to improve the precision of threshold estimates in

the lab. As yet, no published studies have used the

stereotest aspect of the Test Chart Xpert.

Effect of viewing distance

In healthy controls, stereo thresholds in arcsec are

independent of viewing distances over a very wide range

(30 cm–10 m).33–36 That is, the threshold depends only on

the retinal disparity, and not on the vergence angle.

(Bradshaw and Glennerster33 found a small increase in

stereo threshold when the viewing distance was halved

from 60 to 30 cm, but at o2 arcsec this is not clinically

measurable.) This would suggest that the viewing

distance of a clinical stereotest should be immaterial.

Accordingly, most stereotests are designed for arm’s

length viewing. This is convenient in the clinic, as it

requires less space and makes it easier to maintain the

attention of young patients.

However, this independence on viewing distance is

true only for the sensory component of stereopsis. The

binocular neurons in visual cortex that detect disparity

are sensitive almost exclusively to retinal information,

regardless of how this is presented.37 In normal subjects,

the oculomotor system ensures that subjects fixate

correctly upon stimuli of all viewing distances, ensuring

that the fixated object has zero retinal disparity

regardless of its distance. In strabismus, this system is

impaired. Even a misalignment of just 0.251 (900 arcsec,

0.44 prism dioptres) would have a profoundly damaging

on stereoacuity, as it would add a disparity of 900 arcsec

to all parts of the stimulus. A subject who can easily see

the disparity boundary between 0 and 20 arcsec might

well be completely blind to the difference between 900

and 920 arcsec.38 This effect probably explains why

distance stereotests such as the FD2 or Distance Randot
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have been found to be more sensitive than near tests in

intermittent exotropia, and to be a more valuable tool in

management and predicting surgery.39–43 Patients with

intermittent exotropia generally find it easier to maintain

correct fixation at near distances. When tested at

distance, even if they do not show a measurable

deviation, they may fixate less accurately or precisely

(meaning that there may be a mean misalignment, or

simply greater fluctuations). This will reduce their

measured stereoacuity. Thus, near stereotests are more

practical for assessing sensory mechanisms of stereopsis,

but distance stereotests are probably more useful in

assessing oculomotor function.

Contour vs cyclopean stereograms

Stereotest stimuli can be divided into two classes. In the

first, disparity is applied to monocularly visible contours,

as in a line drawing of a circle or fly, that are defined by

their luminance in the usual way. In the second, the

object to be detected is defined only by its disparity.

Monocularly, the image appears as a pattern of dots or

the ‘static’ of an untuned television, without any

contours that define the edges of the object (Figure 3).

The object is revealed only when the two eyes’ images

are compared. These are sometimes known as

‘cyclopean’ stimuli, a term introduced by Julesz.44 In

Table 1, the column headed ‘Monocular contours?’

distinguishes these two types of test image. Examples of

‘cyclopean’ stereotests include the Lang and Randot

Preschool tests; examples of ‘contour’ stereotests include

the Randot Circles and FD2. Several lines of evidence

suggest that neuronal processing may be different for

contour and cyclopean stereograms. Disparity-tuned

neurons in primary visual cortex respond to disparity in

both types of image, but additional mechanisms may be

available to extract disparity in contour images. Contour

and cyclopean stereograms are affected differently when

one eye’s image is replaced with its photographic

negative, as in Figure 4. In dense random-dot patterns

like those in Figure 3, this manipulation either destroys

depth perception completely or leaves a weak perception

of reversed depth.44–46 However, when the image is

sufficiently sparse, for example, the line drawing shown

in Figure 4, depth is seen in the direction consistent with

the disparity of the contours.45,47 As a second example,

sparse line stimuli presented with large disparities,

outside Panum’s fusional range, are seen double, but

subjects nevertheless show appropriate vergence

movements and can report the sign of the disparity.48,49

For random-dot stereograms with similarly large

disparities, subjects are at chance.50 Several workers have

suggested that human stereo vision consists of at least

two distinct components, sometimes dubbed ‘coarse’ and

‘fine’ stereopsis, supported by different neural

mechanisms.51–53 Contour and cyclopean test images

probably activate these components to differing

amounts.

Surprisingly, little seems to have been done in

comparing contour vs cyclopean stereoacuity in healthy

controls. Fawcett16 reports that, in 54 controls, there were

no significant differences in stereoacuity measured with

the Titmus circles, Randot circles, or Preschool Randot,

but this may reflect the floor effect noted above, that is,

all available disparities were above threshold for subjects

with good stereoacuity. Wong et al36 report that, in 12

controls, stereoacuity was better with Contour Circles

than with a Random Dot E stimulus; the median stereo

threshold was B40 arcsec lower with the Circles than

with the E.

Conversely, in strabismus patients, it is well

established that patients will generally show better

stereoacuity (ie, lower thresholds) when measured

on a monocular-contour test such as the Randot graded-

circles, as compared with a cyclopean pattern such as

the Randot Preschool test.15,16,54–59 Fu et al55 suggest

that the better performance on contour stereograms

may be because these ‘provide cues to fusion that allow

some patients with strabismus to better control their

deviations than random dot targets’. This motor

explanation may well contribute,58 but sensory

mechanisms probably contribute as well. Giaschi et al56

have reported that amblyopic children with poor or no

stereopsis on the Randot Preschool test nevertheless

perform as well as controls when the stimulus was a

monocularly visible cartoon character with a large

disparity. They conclude that although the ‘fine stereo’

sensory system is impaired in these children, ‘coarse

stereo’ is spared.

The clinical importance of stereoacuity measurements

As we have seen, stereopsis in humans requires good

vision in each eye individually, precise oculomotor

control in order to direct the two eyes at a common

target, and a population of binocular sensory neurons in

visual cortex in order to detect the disparity between the

two eyes’ images. Stereopsis with cyclopean stimuli

probably requires additional neuronal mechanisms over

and above contour stimuli. Thus, good stereoacuity with

cyclopean stimuli is the most demanding achievement of

binocular vision. For this reason, as the Cochrane review

on ‘Interventions for infantile esotropia’ states,13 a

measurement of stereoacuity is regarded as the gold

standard for diagnosing the presence and quality of

binocular vision. It is a key component of outcome

measures in most studies of interventions for strabismus

and amblyopia. For example, the Cochrane review on
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botulinum treatment for strabismus60 classifies outcomes

based on angle of deviation, simultaneous perception,

motor vergence, and stereoacuity.

Strabismus in early life prevents the normal

development of binocular sensory neurons in visual

cortex.61 Accordingly, early strabismus has a profoundly

damaging effect on stereoacuity, particularly on the ‘fine’

stereoacuity that works with cyclopean images and

depends on these binocular neurons. Studies in non-

human primates suggest that the sensitive period for

binocular vision may be substantially longer than for

other aspects of vision such as spectral sensitivity.62 In

healthy controls, although cyclopean stereo vision can be

demonstrated in infants at B3 months,63,64 stereoacuity

continues to improve up to the age of B10 years.65–70

This long period of plasticity implies that binocular

vision remains vulnerable to disruption until later

in development, for example, by the onset of

accommodative esotropia in toddlerhood.71 Conversely,

the window for recovery remains open for longer.

Indeed, there are occasional reports of strabismus

patients recovering stereopsis as adults, many years

after treatment.72 Thus, although early strabismus is

extremely damaging to stereo vision, it is also clear that

sufficiently early intervention can go some way to

restoring it.

Infantile esotropia, defined as a large-angle inwards

deviation that becomes constant before 6 months of age,

unsurprisingly has a particularly disruptive effect on

stereo vision. Among children whose eyes are surgically

aligned after the age of 24 months, only 12% achieve any

stereo vision,73 although this rises to 74% among children

aligned before 6 months of age.73 Birch et al73 suggest that

the poorer outcome of surgery after 6 months does not

reflect the closure of a sensitive period, but simply the

brain’s longer exposure to misaligned visual input.

Figure 3 An example of a cyclopean stereogram. If the eyes are crossed or diverged such that each eye fixates the centre of one of the
patterns, a square region will be seen standing out in depth. This square is not defined in either of the monocular images.

Figure 4 A stereogram where one eye’s image is replaced with its photographic negative, redrawn from Helmholtz47 (Plate IV, Figure
Q). When these images are fused divergently, the central pentagon should appear in front, in accordance with the disparity of the lines,
whereas the contrast mismatch produces the impression of a ‘crystal y of some dark shining substance like graphite’.47
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However, although early surgery does restore some

stereo vision, stereoacuity is by no means normal.73–75

One possibility is that infantile esotropia reflects a pre-

existing sensory deficit. However, Birch et al73–75 argue

that the available evidence does not support this, and

argue that the sensory deficit is secondary to the motor

deficit. They suggest that stereoacuity remains

subnormal because surgery was not carried out soon

enough, and did not align the eyes precisely enough.

Normal stereoacuity may require alignment within 0.6

prism dioptres, yet ocular alignment can only be

measured clinically to around ±3 prism dioptres.76 Birch

et al75 suggest that very early (o2–3 months of age)

treatment may be necessary, with botulinum treatment

preferable to surgery.77 These conclusions are supported

in other forms of strabismus such as accommodative

esotropia and intermittent exotropia. In all cases, early

intervention is associated with better stereo vision,13,78

and the critical factor is the duration of the misalignment.

Fawcett et al78 conclude that fine stereoacuity is likely to

be permanently impaired by a constant misalignment

that persists for longer than 4 months. Prompt treatment

is therefore important if normal stereoacuity is to be

achieved.

Achieving good stereo vision is a valuable goal.

Binocular disparity cues help us guide our hand

movements precisely79–82 and both children and adults

with impaired stereo vision perform worse on a range of

visuomotor tasks than their peers with normal

stereoacuity.83–90 Stereoacuity has also been linked to

better reading ability,91,92 perhaps because both

stereopsis and reading require precise control of eye

movements.93 Untreated children with infantile esotropia

lag behind on developmental milestones but catch up

following early alignment surgery (in the first year of

life),94 an outcome that the authors attribute to better

binocular vision and stereopsis. However, it remains

unclear whether this motor improvement reflects

stereopsis specifically or some other aspect of binocular

vision.95

As well as enabling better visual and motor

performance, stereoacuity is also linked to long-term

stability of alignment.96,97 Birch et al96,97 studied children

who underwent surgery for infantile esotropia, resulting

in stable alignment within 4 prism dioptres by 2 years of

age. Children who had no stereo vision postoperatively

were 3.6 times more likely to need repeat surgery later in

childhood. Out of 60 children with accommodative

esotropia who received successful optical correction to

within 4 prism dioptres by age 4, those who had no stereo

vision following alignment were 17 times more likely to

need surgery later. These are very striking differences.

Several mechanisms may contribute to these differential

risk factors. For example, it may be that perfect

orthotropia is more stable than less perfect alignment,

and also allows better stereoacuity. The children with

stereopsis may simply have been those whose

misalignment was corrected most accurately. The low

precision of clinical measurement of misalignment makes

it hard to test this hypothesis; after treatment, all these

children were equally well aligned to within the

precision possible with clinical measurements.76

Alternatively, the differences may have been sensory:

perhaps the children who were stereoblind after

alignment had lost the sensory neurons that normally

support stereopsis. As these neurons help maintain

correct alignment by triggering vergence reflexes, it is not

surprising that children in whom these mechanisms are

spared are better able to maintain long-term alignment.

What is clear is that stereoacuity is the most sensitive

outcome measure currently available; stereoacuity

measures immediately after treatment predict the long-

term success.

Conclusion

Human stereo vision is capable of remarkably precise

judgments, discriminating binocular disparities as

small as 2 seconds of arc. Such performance requires

good vision in both eyes, very precise oculomotor

coordination and specialised sensory neurons in visual

cortex. A measurement of stereoacuity is therefore a very

sensitive test of binocular function at both the ocular and

cortical levels. As well as enabling the clinician to assess

the short-term success of surgery, it can also predict long-

term outcomes. However, current measures of

stereoacuity are plagued by low reliability that limits

their usefulness in practice. Making the measurement of

stereoacuity more precise and reliable, especially in

young children, should improve its value as a tool to

manage strabismus.
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