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Shape and motion are two dominant cues for object recognition, but it can be difficult to investigate their relative quantitative
contribution to the recognition process. In the present study, we combined shape and non-rigid motion morphing to
investigate the relative contributions of both types of cues to the discrimination of dynamic objects. In Experiment 1, we
validated a novel parameter-based motion morphing technique using a single-part three-dimensional object. We then
combined shape morphing with the novel motion morphing technique to pairs of multipart objects to create a joint shape and
motion similarity space. In Experiment 2, participants were shown pairs of morphed objects from this space and responded
“same” on the basis of motion-only, shape-only, or both cues. Both cue types influenced judgments: When responding to
only one cue, the other cue could be ignored, although shape cues were more difficult to ignore. When responding on the
basis of both cues, there was an overall bias to weight shape cues more than motion cues. Overall, our results suggest that
shape influences discrimination more than motion even when both cue types have been made quantitatively equivalent in
terms of their individual discriminability.
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Introduction

Motion is important for visual perception and object
recognition in both human and non-human animals (Gibson,
1979; Johansson, 1973; Lettvin, Maturana, McCulloch, &
Pitts, 1959; Tinbergen, 1951; Vernon, 1952). For instance,
the “slithering of a snake” conjures up an image of the
bending, twisting, and stretching of a serpentine body; the
“flittering of a butterfly” conjures up a very different
image. Clearly, there are different types of motion in the
environment (see Aggarwal, Ciao, Liao, & Sabata, 1998,
for a discussion of different types of motion), but only
some types of motion have been systematically inves-
tigated with respect to object recognition. Moreover, few
studies to date have systematically examined the relative
contribution of shape and motion cues to recognition
and how these cues interact (e.g., Lander & Bruce, 2000;
Newell, Wallraven, & Huber, 2004; Pilz, Thornton, &
Bulthoff, 2006; Stone, 1998; Vuong & Tarr, 2006). The
evidence from these studies further suggests that observers
rely predominantly on shape cues for everyday recog-
nition. Thus, how motion is represented more generally in
the service of object recognition remains unclear. To test
the relative contribution of shape and motion cues to

recognition, we created novel “dancing” objects for which
we could independently morph their shape and their
motion, creating a two-dimensional shape/motion space.
Morphing thus allowed us to tightly control the motion
and shape similarity between two objects. We then tested
observers’ ability to discriminate morphed objects on the
basis of shape and motion cues either singly or in
combination and modeled their performance. In this way,
we measured how motion and shape interacted with each
other to contribute to the recognition process.
Most studies of the role of motion in object recog-

nition in human (e.g., Liu & Cooper, 2003; Newell et al.,
2004; Schultz, Chuang, & Vuong, 2008; Stone, 1998;
Vuong & Tarr, 2006) and non-human animals (e.g., Cook
& Katz, 1999; Friedman, Vuong, & Spetch, 2009; Spetch,
Friedman, & Vuong, 2006) investigated rigid motion of
novel three-dimensional (3D) objects, such as translations
and rotations. Some studies have also investigated semi-
rigid, articulatory motion (e.g., Bassili, 1978; Jastorff,
Kourtzi, & Giese, 2006; Johansson, 1973; Kellman, 1993;
Pyles, Garcia, Hoffman, & Grossman, 2007; Setti &
Newell, 2010; Vuong, Friedman, & Plante, 2009). This
is the type of motion produced by humans and other
animals whose “parts” move at their joints (e.g., walking
or galloping). Other studies have focused on highly
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familiar facial motions (e.g., expressions, speech; Hill &
Johnston, 2001; Knappmeyer, Thornton, & Bülthoff,
2003; Lander & Bruce, 2000; Pilz, Bülthoff, & Vuong,
2009; Pilz et al., 2006; Watson, Hill, Johnston, & Troje,
2005).
Aggarwal et al. (1998) classified articulations (e.g., body

movements) and deformations (e.g., facial motions) as non-
rigid motion. It is important to study non-rigid motion for
at least three reasons. First and most critically, non-rigid
motion changes the 3D shape of an object. This change
poses a strong challenge to existing theories of object
recognition that are based on shape, irrespective of their
assumptions about the underlying representation of shape
(i.e., as image-dependent views or as structural descriptions;
Biederman, 1987; Tarr, 1995). Second, non-rigid motion
may provide a source of information about object identity,
as in the snake vs. butterfly example given above. Thus,
both shape and motion may contribute to object identity
independently or interactively. Third, studies of facial
and body motion suggest that observers are highly
sensitive to non-rigid and semi-rigid motion even in the
absence of shape cues (Bassili, 1978; Johansson, 1973).
However, both faces and bodies are highly familiar
stimuli, so the extent to which non-rigid motion may be
used more generally to recognize unfamiliar stimuli is
unclear. Furthermore, because we ourselves make facial
and body movements, there may be implicit motor
influences on the visual perception of facial and body
movements (e.g., Casile & Giese, 2006). Although articu-
lations of unfamiliar objects have been studied (e.g.,
Jastorff et al., 2006; Pyles et al., 2007; Setti & Newell,
2010; Vuong et al., 2009), few studies to date have looked
at non-rigid deformations of novel objects (e.g., Chuang,
Vuong, Thornton, & Bülthoff, 2006; Mayer & Vuong,
2012). Thus, in the present study, we focus on this type of
non-rigid motion.
However, it is important to bear in mind that in most

situations, there is a shape bias in object recognition because
shape is typically the most diagnostic cue for many everyday
situations (Biederman, 1987). The contribution of motion
to the recognition process becomes evident in performance
when shapes are visually similar, somehow degraded, or
ambiguous (e.g., Johansson, 1973; Knappmeyer et al.,
2003; Lander & Bruce, 2000; Liu & Cooper, 2003; Spetch
et al., 2006; Stone, 1998; Vuong & Tarr, 2006). Thus,
having a means to quantify the relative contribution of
shape and motion cues across changes in shape and motion
similarity is important for understanding both the shape
bias and how both cues interact. We therefore modeled
observers’ performance when they discriminated objects
that underwent both shape and motion changes and
quantified the relative weight that observers assigned to
each cue. In addition, we used the model fits to generate
discrimination contours through a joint shape and motion
space to visualize the relative contribution of both types of
cues to the task.

Combining shape and motion cues

The physical structure of an object can provide
biomechanical constraints on the type of motion that is
possible for it to make. For example, the bending of a
snake is linked to its cylindrical structure and muscu-
lature. Similarly, the extent of facial deformations is
constrained by the underlying skull and facial muscles.
These constraints further highlight the importance of
shape and motion interactions for recognition. In previous
studies, several groups have contrasted how shape and
motion interacted for both novel articulated motion and
for familiar biological motion. The differences between
the results of these studies illustrate how shape and
motion can interact. For example, Jastorff et al. (2006; see
also Kellman, 1993) used simple sinusoidal motion of
points that were attached or not attached to an “invisible”
underlying novel skeleton to test the extent to which
global shape could constrain motion recognition. When
the points were attached to a skeleton, these artificial
point-light movements mimicked point-light displays of
human actions (Johansson, 1973). Jastorff et al. found that
observers’ performance on a categorization task with the
skeleton version of the novel motion was comparable to
their performance with point-light human motion. In
contrast, observers performed poorly on the task when
the novel motion had no underlying skeleton.
In another study, Pyles et al. (2007) used “creatures”

built from connected rod-like parts and endowed them
with a nervous system. They simulated the motion of these
creatures through an environment to generate animal-like
biological motion and, unlike Jastorff et al. (2006),
embedded both the creatures and the human point-light
displays in noise points. The creatures had different shapes
than human bodies. Pyles et al. found that observers were
much better able to segregate point-light human actions
compared to point-light creature actions when each was
embedded in noise. The authors suggested that observers
could use the highly familiar human shape to group signal
points together (i.e., those points that form part of the
global human shape) and use the grouped display to
detect the human point-light displays. They could not
group the points together for the novel shapes, even
though the actions of the grouped points were coherent.
The studies by Jastorff et al. (2006) and Pyles et al.

(2007) highlight a strong interaction between shape and
motion. These studies focused on articulated motion; other
studies have examined how global object motion and local
articulatory part motion may influence object recognition
(Setti & Newell, 2010) or how local articulatory part
motion could facilitate generalization to novel viewpoints
(Vuong et al., 2009). As mentioned in the Introduction
section, however, few studies have tested the role of
deformation in object recognition more generally (Chuang
et al., 2006). More critically, to date, no studies have
parametrically manipulated both shape and motion. As we

Journal of Vision (2012) 12(3):16, 1–20 Vuong, Friedman, & Read 2



and others have found (e.g., Cutzu & Edelman, 1996;
Giese, Thornton, & Edelman, 2008; Jastorff et al., 2006;
Lawson & Bülthoff, 2008; Pyles et al., 2007; Schultz
et al., 2008; Vuong et al., 2009), perceptual similarity in
the shape or motion domain can affect how well observers
recognize objects.

Parameter-based morphing in the shape
and motion domain

The main challenge in examining dynamic object
recognition is to find a means to systematically manipulate
both shape and motion to create a joint parametric space
in both dimensions. One efficient way to both represent
and synthesize complex classes of static 3D objects is by
the linear combination of prototypes (Giese & Poggio,
2000; see Ullman, 1998, for a linear combination of 2D
views to represent a 3D object). The prototypes serve as
stored examples of an object class for which a 3D
description is available. In the simple case, this descrip-
tion is the 3D position (i.e., x-, y-, and z-coordinates) of
the set of vertices that define the 3D object model. New
object models are synthesized by taking a linear combi-
nation of the prototypes, that is, by taking a weighted
average of the 3D position at each corresponding vertex
between prototypes. This linear combination is also
referred to as morphing. On this view, given a set of
prototypes (P1 I Pn), a morph, M, can be created by the
linear combination: M = c1P1 + I + cn Pn, where the
weight, c, represents the contribution of each prototype to
the morph and with the constraint that c1 + I + cn = 1.
Giese and Poggio (2000) extended the linear combination
of prototypes to human actions (e.g., walking, running,
marching), which added a temporal dimension to shape.
In their spatiotemporal motion morphing technique,
prototype actions were represented by trajectories of key
parts and joints of the human body (e.g., forehead,
shoulders, elbows, wrists, hips, pelvis, knees, and feet).
Prototypes can be used to define a multidimensional

space to represent objects, which has been a useful concept
to test different aspects of object recognition (Edelman,
1999). Any object can be represented by its weight vector
(c1, I, cn) within the space spanned by the prototypes.
That is, the prototypes define the physical dimensions of
the space and a weight vector defines a point (i.e., object)
within it. The similarity between any two objects can then
be defined as the Euclidean distance between their weight
vectors on the specific dimensions that are represented.
Using such morphing techniques, behavioral experiments
have shown that similarity in the parametric space maps to
perceived similarity and is important for behavior in both
the shape and motion domains (e.g., Cutzu & Edelman,
1996; Giese et al., 2008; Jastorff et al., 2006; Lawson &
Bülthoff, 2008; Schultz et al., 2008; Troje, 2002). Thus,
the linear combination framework allows researchers to

create perceptually meaningful spaces, that is, observers
are sensitive to systematic variations in this type of space.

Modeling the weighting of shape
and motion cues

The parameter-based morphing technique we used
allowed us to systematically manipulate both shape and
motion cues in a similar way. We next modeled how these
types of cues were combined when observers discrimi-
nated pairs of dynamic objects under the different task
constraints (i.e., discrimination based on motion alone,
shape alone, or motion and shape). In line with Bayesian
cue combination models (e.g., Landy, Maloney, Johnston,
& Young, 1995), our general assumption is that observers
independently estimate the motion and shape of each object
presented, take a weighted combination of these estimates,
and then use this sum to discriminate between the objects
(i.e., determine whether they are the same or different).
We quantify this according to the equation below:

C2 ¼ w2S2 þ ð1j w2ÞM2; ð1Þ

where C is the combined difference estimate between two
shapes and motions, S is the shape difference estimate,
M is the motion difference estimate, and w is the relative
weighting of shape and motion differences. The objects
are considered different if the sum is greater than some
decision threshold E. The relative weight, w, ranges from
0 to 1: As observers rely more and more on the shape cue,
w2 approaches 1; conversely, as they rely progressively
more on the motion cue, w2 approaches 0; and if they
use both cues equally, w2 = 0.5. For convenience, we also

define ws =
ffiffiffiffiffiffi
w2

p
= w (the relative weight assigned to

shape differences) and wm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1j w2Þp

(the relative
weight assigned to motion differences).
To derive this model, each object can be characterized

by a motion and a shape signal. We assume that an
observer can extract these signals but that the signals are
subject to some noise. We further assume that this noise is
Gaussian and applies independently to the motion and
shape signals, with different standard deviations affecting
each signal. On a given trial, observers are shown two
objects. Therefore, we can collapse the two motion signals
from each object into a single “motion difference” signal.
Similarly, we can collapse the two shape signals into a
single “shape difference” signal. Ideally, we can model an
observer’s proportion of “different” responses as a
function of the motion and shape (difference) signals with
the following parameters: E that determines the amount of
difference required for the observer to give a “different”
response (i.e., the observer’s decision threshold), Am and As

that determine the reliability of the motion and shape
signals (i.e., the variance or noise in the estimatesM and S),
respectively, and w that determines the relative weight
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assigned to the motion and shape signals. Thus, our full
model has four parameters (E, Am, As, and w). The
Deriving a model of shape and motion discrimination
section in Appendix A provides a derivation of our model
(Equations A4 to A9).
To summarize, we used a novel parameter-based

morphing technique described more fully in the Stimuli
section, which allowed us to parametrically manipulate
both motion and shape information. We then tested and
modeled observers’ ability to discriminate the motion of a
single-part brick-like object (Experiment 1) and their
ability to discriminate the motion, the shape, or the shape
motion of different multipart objects (Experiment 2).

Experiment 1

The purpose of Experiment 1 was to validate the
parameter-based morphing technique for motion dis-
crimination described in the Stimuli section. Following
previous work (e.g., Cutzu & Edelman, 1996; Giese et al.,
2008; Schultz et al., 2008), we used a same–different
discrimination task. We expected that if participants were
sensitive to the parametric motion space spanned by the
three prototype motions we used, their ability to discrim-
inate morphs within this space would be monotonically
related to the motion distance between two prototypes
(Giese et al., 2008). Furthermore, we designed the experi-
ment to reduce reliance on image changes per se by
changing the viewpoint at which each of the two objects
was presented.

Participants

Twenty volunteers from the University of Alberta
undergraduate pool (11 females) participated in this study
for course credit. All participants provided informed
consent and were naive to the purpose of the experiment.

Stimuli

We started with three readily recognizable non-rigid
motions: bending, twisting, and stretching (recall the
snake). To relate these motions to the linear combination
framework, we refer to them as the “prototype” non-rigid
motions (see below). These different motions can be
considered to be global deformation fields that smoothly
warp the 3D position of all the vertices on the surface of a
3D model (Barr, 1984; Watt & Watt, 1992). By smooth
deformations, we mean that there are no sharp changes
or discontinuities to the resulting 3D geometry. These
deformations are illustrated in Figure 1. For example,

a single- or multipart object (Figure 1, left and right panels,
top row) can be bent, twisted, or stretched (Figure 1, left
and right panels, middle row). In Experiment 1, we used
the single-part object illustrated in the left panel, and in
Experiment 2, we used the multipart object shown in the
right panel; however, their creation and morphing were
identical so we describe the stimulus creation for both
experiments together. Prototype motions can be combined
and the resulting deformation field mapped to the object.
Thus, the technique of using deformation fields to morph
motions on any shape offers tremendous freedom because
it is not necessary to find either corresponding points on
the surfaces of two different 3D shapes or corresponding
points in time.
In our study, non-rigid motions are defined by five time-

varying parameters; these temporal profiles are illustrated in
Figure 2. The five parameters are: bend angle (0- [straight]
to 180- [fully bent]), bend direction (arbitrary range in
degrees, 0- to 270- used in the present study), twist angle
(j90- to +90-), twist bias (arbitrary range in degrees,
7- to 15- used in the present study), and stretch amount
(j1 to 1, in arbitrary units). The bend direction and
twist bias affect the initial direction of bending or
twisting relative to some arbitrary starting position (0-),
respectively. For the stretch amount, positive values
stretch the shape longer (see Figure 1) and negative
values compress the shape shorter (not illustrated).
From these five parameters, we first created the

deformation field for each prototype motion. For example,
a prototype bending is characterized by temporal profiles
in which bend angle and direction vary over time, while
the temporal profiles for the remaining parameters are
“flat” and thus do not vary over time (left column in
Figure 2). There were 101 time points (frames) in each
profile. The initial temporal profiles for the prototype
motions were based on stimuli used by Mayer and Vuong
(2012). These profiles were created by adding “key
frames” at different arbitrary time points and setting the
values for each of the five parameters within each key
frame. For example, to create a prototype bending motion,
key frames could be added on frames 1, 30, 67, and 101,
and then setting the bend angle and bend direction at each
key frame. The software then smoothly interpolates the
parameter values between the key frames to provide
values at all 101 frames, as illustrated in Figure 2. The
only constraint we made was that the parameter value for
the first and last frames was the same so that the motion
was cyclic and could be played in an endless loop without
any temporal discontinuities (see open circles in Figure 2).
Thus, the 3D shape of an object underwent smooth
deformations over time based on these parameters.
We then morphed the deformation fields between two

prototype motions by taking a weighted average at each
time point separately for each temporal profile (which
defined the deformation field), as shown in Figure 3. Note
that the only difference between the prototype motions

Journal of Vision (2012) 12(3):16, 1–20 Vuong, Friedman, & Read 4



(i.e., bending, twisting, and stretching) and the morphed
motions (e.g., some linear combination of two prototypes)
is that prototypes only have varying temporal profiles for
the parameters that define the pure motion (see Figure 2).
In contrast, morphs have varying temporal profiles for the
parameters that define different proportions of two of the
pure motions. For the current study, we created morphs
between all pairwise combinations of the three prototype
motions (bending–twisting, bending–stretching, and
twisting–stretching, with 0% representing the first proto-
type in the pair). For each pair, we created morphs from one
prototype in the pair to the other prototype in 5% steps.
Thus, for example, a 20% morph between bending and
twisting would contain 80% of the bending parameters and
20% of the twisting parameters. There were 19 morphs
between the two prototypes for each morph pair.
In Experiment 1, we mapped the 60 (=19 morphs �

3 morph pairs + 3 prototypes) unique non-rigid motions to

a slightly bulging box (see Figure 1, left panel), thereby
smoothly deforming its geometry over time. The animated
object was rendered with a pinkish, bumpy texture and
centered on a black background. In its initial starting
position, the object subtended 6.4- (width) � 9.1- (height)
of visual angle. In Experiment 2, these motion morphs
were mapped to different multipart shapes. All animations
were rendered as AVI videos for three animation cycles
(25 frames/s). Each video was approximately 9 s in length
(3 s/cycle).

Design and procedure

Participants performed a same–different motion dis-
crimination task on two simultaneously presented videos
of non-rigidly moving objects. They were given the
following instructions, which emphasized accurate motion

Figure 1. We conceptualize a non-rigid motion as a deformation field that smoothly deforms the 3D geometry of an object (i.e., the 3D
position of each point on its surface). The underlying object geometry is illustrated as a rectangular mesh so that the effect of the
deformation field can be visualized. The same deformation fields can be mapped to (left) single-part or (right) multipart objects. The
bottom row shows a fully rendered “snapshot” of the prototype deformations. In Experiment 1, we used the single-part object, and in
Experiment 2, we used multipart objects.
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discrimination: “In this experiment, your task is to decide
as accurately as possible whether two objects have the
same movements. Both objects have the same shape, but
they may differ in how they move around. This difference
in motion may be subtle so try your best to make this
judgment. There is no time pressure.” Participants were
tested with three different morph pairs as described above.
For each morph pair, there were six motion differences
between the morphs of the two videos (0% [same], 10%,

20%, 30%, 40%, and 50%). There were 12 trials in each
of the 3 � 6 conditions for a total of 216 trials. All the
trials were run in a random order for each participant.
For each motion difference, we first randomly selected a

morph for one of the videos. For the second video, we
selected the morph that provided the corresponding motion
difference. For example, suppose we randomly select a
video that was a 35% morph between prototypes A and B.
In this case, for a 10% motion difference, we would then

Figure 2. The five temporal profiles (rows: Bend Angle, Bend Direction, Twist Angle, Twist Bias, and Stretch Amount) for the three
prototype motions (columns: Bending, Twisting, and Stretching) are illustrated. Each plot illustrates the variation of the parameter value
(y-axis) over time (x-axis; frame). Note that the Bend Angle and Bend Direction vary over time for the prototype bending; the Twist Angle
and Twist Bias vary over time for the prototype twisting; and the Stretch Amount varies over time for the prototype stretching. The circles
indicate that the first and last frames of temporal profile have the same value so that the animation can be looped.
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select a 25% morph between A and B (or equally possible,
a 45% morph between A and B). For a 0% motion
difference (i.e., same object), we would select the same
35% morph between A and B. We randomly selected the
stimuli with the constraint that each participant saw the
entire morph continuum for each morph pair (from 0% to
100% in 5% increments). That is, each participant saw
the entire motion morph space.
To avoid low-level image matching, we presented the

objects from slightly different viewpoints in each rendered
video. The virtual camera was positioned at approximately
19- elevation and 120- azimuth (camera distance = 160
arbitrary units) on the viewing sphere for one viewpoint
and approximately at 30- elevation and 150- azimuth for
the second viewpoint (camera distance = 165 arbitrary
units). Thus, even when the motions were identical, there
were still image differences between the two videos. In this
way, observers could not use image differences per se to
perform the task. The location (left or right of fixation)
and viewpoint of the two selected videos were randomly
determined on each trial.
Each trial began with a white fixation cross shown for

500 ms at the center of the screen. After the fixation cross
disappeared, two stimuli appeared simultaneously side by
side. One video was shifted 9.3- to the left of fixation, and
the other video was shifted by the same amount to the
right. The videos were shown for three complete cycles
(9 s). Both videos always began at the beginning of a cycle.
Participants could respond at any time following the
presentation of the stimuli. If they did not respond within
9 s, the stimuli were removed from the screen. However,
participants still had to respond before advancing to the
next trial.
Participants pressed one button on a response box if they

thought the two stimuli had the same movement and a
different button if they thought the two stimuli had different
movements. No feedback was provided. The response
mapping was counterbalanced across participants.
Prior to beginning the experiment, participants were

given 18 practice trials in which feedback was provided
(a brief tone for incorrect responses). Each of the 18
conditions was presented once on practice trials. The

experiment lasted approximately 30–40 min. The experi-
ment used E-Prime (PST Software 2002) to present the
videos and control the experiment. Participants sat
approximately 68 cm from a Samsung SyncMaster
940BF monitor (1024 � 768 pixel resolution; 60-Hz
refresh rate; 2-ms gray-to-gray time).

Results and discussion

We were mainly interested in how likely participants
responded “different” as a function of the monotonic
objective motion difference between two videos. We
therefore tested for significant linear trends in an analysis
of variance (ANOVA). We also fitted psychometric
functions to the data to estimate participants’ 75% motion
discrimination thresholds (see Psychometric functions
section).

Proportion “different” responses

Figure 4 (symbols) shows the mean proportion of
“different” responses, averaged across participants in each
group. We submitted these data to a 3 (morph pair
types) � 6 (motion difference) repeated measures design.
As expected, there was a significant linear trend in the
data (F(1,19) = 461.1, )p

2 = 0.60), which suggests that
participants’ responses were increasing as a function of
motion difference. There was also a main effect of morph
pair (F(2,38) = 16.1, )p

2 = 0.45). Lastly, there was a
significant interaction between the two factors (F(10,190) =
3.65, )p

2 = 0.16). Post-hoc comparison using Tukey’s
Honestly Significant Difference (with the within-subjects
error term from the significant interaction) showed that the

Figure 3. A 50% morph (middle column) between the prototype
bending motion (left column) and prototype twisting motion (right
column). The prototype motions are the same as in Figure 2. For
each parameter, we take the average at each time point to create
the morph (solid lines). The parameter values of the two
prototypes are superimposed as dotted lines in the plots of the
middle column. The bottom part of the figure represents the three
different deformations mapped to a multipart object. We used the
multipart objects from Experiment 2 to clearly illustrate the effects
of the morphing technique (although Experiment 1 used the
single-part object). Examples of the dancing multipart objects can
be found at www.staff.ncl.ac.uk/q.c.vuong/VuongFriedmanRead.
html.

Figure 4. The proportion of “different” responses as a function of
the morph pair and motion difference in Experiment 1. The
symbols represent the data for each morph pair averaged across
participants. The curves show the average fit of the model to the
data for each morph pair.
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twisting–stretching pair was different from both the
bending–twisting and bending–stretching pairs (ps G 0.05).
However, qualitatively, the curves are the same.

Psychometric functions

We next fitted the model described in the Modeling the
weighting of shape and motion cues section to each
participant’s data for each morph pair. Participants in
Experiment 1 only discriminated motion so we could set
ws = 0 (i.e., all the weight is assigned to motion
differences), making the value of As immaterial. We could
then fit the two remaining parameters (E and Am) with
Equation A9 using maximum likelihood fitting. The
Maximum likelihood fitting section in Appendix A
describes the maximum likelihood procedure we used.
We assessed the relative fit for each participant’s data
across the different morph pairs using the root mean square
error (RMSE) between the actual data and the predicted
data (from the participant’s individual fitted parameters).
The RMSE was similar across the three morph pairs
(bending–twisting: M = 7.6%, SE = 0.6%; bending–
stretching: M = 6.5%, SE = 0.8%; and twisting–stretching:
= 7.6%, SE = 0.6%). We then averaged the parameters
across participants to compute a population psychometric
function for each morph pair. These functions are illustrated
in Figure 4 (see Figure A2 in Appendix A for fits for each
participant).
From the psychometric functions, we computed a 75%

motion threshold to qualitatively compare the current
results with our work on shape discrimination using a
similar parameter-based approach (Schultz et al., 2008). To
make this comparison, we collapsed across the three
morph pairs to yield 36 trials for each motion difference
per participant. We found that the mean motion threshold
was 35.1% (SEM = 1.8%). This threshold for motion
discrimination was similar to the threshold obtained in our
previous study using shape morphs of multipart objects
(Schultz et al., 2008). In that study, we found that the 75%
shape threshold was 41.3% (SEM = 2.0%; N = 15).

Experiment 2

Having established the validity of a linear combination
approach to morphing between non-rigid motion proto-
types that used deformation fields, in Experiment 2 we
used multipart objects and simultaneously combined
motion and shape morphing. This allowed us to compare
performance on three possible tasks. One group of
observers were required to discriminate shape, another
motion, and a third group had to discriminate both shape
and motion. Different groups of observers were tested in
each task to avoid practice effects. We then used predic-
tions from the model to determine the relative weightings

of shape and motion cues when they were judged either
alone or together, as well as to determine whether one type
of cue influenced discriminations made on the other type
of cue when the first cue was irrelevant.

Participants

Sixty volunteers from the University of Alberta under-
graduate pool (36 females; 21 males; missing sex
information for 3 volunteers) participated in this study
for course credit. All participants provided informed
consent and were naive to the purpose of the experiment.
An equal number of participants were randomly assigned
to the three discrimination tasks (shape only, motion only,
and shape + motion).

Stimuli

The stimuli consisted of multipart objects similar to the
ones we have used previously (Schultz et al., 2008). Briefly,
each object was defined by a large body, a small central
part (defining the front of the object), and two small
lateral parts (see Figures 1 and 3). Each part was defined
by three shape parameters: the shape of its cross section
(from circle to square), the amount of bending, and the
amount of tapering. There were four shape prototypes
defined based on fixed values of these 12 parameters
(3 shape parameters � 4 parts). We arbitrarily paired two
of the shape prototypes forming two morph pairs. For each
pair, we then morphed between all parameters along an
“identity vector” (see Schultz et al., 2008, for more
details). For the motion of these multipart objects, we
only used the bending and twisting prototype motions
from Experiment 1. The multipart objects were rendered
with a matte gray surface (see Figures 1 and 3) and
subtended approximately 10.1- (width) � 9.0- (height) of
visual angle.

Design and procedure

The design and procedure used in Experiment 2 was
similar to those used in the Design and procedure section
of Experiment 1. Participants performed a same–different
discrimination task on two simultaneously presented
videos of non-rigidly moving multipart objects. Partici-
pants in the shape-only group discriminated only the shape
of the objects while ignoring the motion (which could be
the same or different), those in the motion-only group
discriminated the motion while ignoring the shape of the
objects (which also could be same or different), and those
in the shape + motion group made their discriminations
based on both the shape and motion of the objects. That is,
participants in the last group responded same if and only if
both stimuli had the same shape and same motion
(disregarding changes in viewpoint).
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All participants were given instructions appropriate for
their task condition, which emphasized accurate discrim-
ination. For example, in the shape + motion condition:
“Your task is to decide as accurately as possible whether
the two objects have the same three-dimensional shape
and motion.” In addition, all three groups were informed
that: “Because of the motion, the objects’ shape will
become distorted but the objects will maintain their
identity. Imagine your face making different exaggerated
expressions. Although the shape changes, it’s still you
making the change. The differences in the shape/motion/
shape and motion may be subtle so try your best to make
this judgment. There is no time pressure.” There were five
shape differences and five motion differences between
morphs of the two videos. Based on the results of
Experiment 1 and from the results of Schultz et al.
(2008), we used the same range of shape/motion differ-
ences (0% [same], 10%, 20%, 30%, and 40%). Within
each group, there were 10 trials in each of the 5 � 5
conditions for a total of 250 trials. All the trials were run
in a random order for each participant. For each shape and
motion difference, we used a similar procedure as in the
Design and procedure section to select the two stimuli.
Lastly, we presented the two dynamic objects from two
different viewpoints to avoid low-level image matching.

Prior to beginning the experiment, participants were given
25 practice trials (one per condition) in which feedback
was provided (a brief tone for incorrect responses). Each
of the 25 conditions was presented once on practice trials.
Other than these changes, all other procedural aspects
were the same as in the Design and procedure section.

Results and discussion

For each group, we first submitted the proportion
“different” responses to a 5 shape differences � 5 motion
differences ANOVA to investigate the overall pattern of
effects. As in Experiment 1, we focused on linear trends
for the shape and motion differences.

Proportion “different” responses

Figure 5 shows the mean proportion “different”
responses for the three groups. For the shape-only
(Figure 5a) and motion-only (Figure 5b) groups, the x-axis
represents the task-relevant cue. There was a signifi-
cant linear effect of the task-relevant cue (shape only:
F(1,19) = 405.4, )p

2 = 0.96; motion only: F(1,19) = 92.2,
)p
2 = 0.83). From the point of view of interference from

Figure 5. The proportion of “different” responses as a function of the shape and motion difference in Experiment 2, averaged across
participants in each group. (a) Results for the shape-only group. (b) Results for the motion-only group. (c) Results for the shape + motion
group. In this plot, the shape difference is plotted on the x-axis. (d) Results for the shape + motion group. The plot shows the same data as
(c) but with motion difference on the x-axis.
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the task-irrelevant cue, for the motion-only group there
was a small but significant linear effect of the task-
irrelevant shape (F(1,19) = 5.0, )p

2 = 0.21). Otherwise,
there was generally no effect of the task-irrelevant cue or
interactions with it for either group. In other words,
participants were generally able to make their discrim-
inations based on only the shape or motion cue and
could ignore the task-irrelevant cue, although participants
in the motion-only group were slightly affected by shape
differences.
Figures 5c and 5d show the mean proportion “different”

responses for the shape + motion group. The responses are
plotted with respect to the shape difference (Figure 5c) or
the motion difference (Figure 5d) on the x-axis; otherwise,
the data are identical in the two panels. In contrast to the
previous results, there were significant and large effects
of shape and motion. For the main effects of shape and of
motion, the linear effects were significant (shape: F(1,19) =
117.1, )p

2 = 0.86; motion: F(1,19) = 31.4, )p
2 = 0.62).

There was also a significant interaction between shape
and motion (F(16,304) = 8.32, )p

2 = 0.31). In Figure 5c, it
can be seen that when shapes were similar, the motion
cues facilitated responses, but when shapes were very
dissimilar at the largest shape difference (40%), the

motion cues had little effect. By comparison, it is easy
to see in Figure 5d that shape still has an effect on
discrimination even at the largest motion difference
tested (40%).

Quantifying the weights assigned to shape
and motion cues

The results of the ANOVAs in the Proportion “different”
responses section suggest that participants could generally
attend to the task-relevant cues and that shape differences
contributed more than the motion differences to the
recognition process. Based on previous findings (e.g.,
Spetch et al., 2006; Vuong & Tarr, 2006), we further
predicted relatively independent processing of shape and
motion differences for the shape-only and motion-only
groups. We also predicted a larger weighting and/or more
reliable estimation of shape than motion cues in the
shape + motion group.
To examine how participants behaved, we plotted their

“iso-probability contours,” along which the proportion of
“different” responses remains constant, on the axes of
motion and shape difference (Figure 6). The solid iso-
probability contours mark Pdiff = 50%. In the area below

Figure 6. Model predictions of the (a–c) iso-probability contours for the three different discrimination tasks and the (d–f) fitted iso-probability
contours averaged across participants in each task. In all plots, the solid lines mark Pdiff = 50%, dashed lines mark Pdiff = 25% and 75%,
and dotted lines mark Pdiff = 10% and 90%. For the model observer, we used the same decision threshold and level of stimulus noise for
all three tasks (E = 20%, As = 8%, and Am = 18%) and varied only the relative weights that the model observer assigned to the shape and
motion cues for each task. We also assumed that motion cues are less reliable than shape cues (Am 9 As). In (a), ws = 0.0 and wm = 1.0,
i.e., shape differences are entirely discounted. In (b), ws = 1.0 and wm = 0.0, i.e., motion differences are entirely discounted. In (c), ws ò 1/As

and wm ò 1/Am, i.e., the weights reflect the reliability of each cue. The fitted iso-probability contours from the data are similar to the model
predictions for participants in the (d) shape-only group, (e) motion-only group, and (f) shape + motion group.
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or to the left of this contour, stimuli are more likely to be
judged “same”; in the area above or to its right, they are
more likely to be judged “different.” The dashed contours
mark Pdiff = 25% and Pdiff = 75%, and the dotted contours
mark Pdiff = 10% and Pdiff = 90%.
It is helpful to examine the behavior of an idealized

model (Figures 6a–6c) before we turn to the behavior of
the human participants (Figures 6d–6f). For this model
observer, we assume that the parameters Am and As are
independent of the task, since they reflect a constant
internal encoding noise. In Figures 6a–6c, we arbitrarily
set Am = 18% and As = 8%. We further assumed that the
decision boundary E remained constant (at 20%). Differ-
ences in the model observer’s performance between tasks
therefore solely reflect changes in the weights it assigns to
the different cues. In the shape-only and motion-only
tasks, participants were instructed to completely discount
the irrelevant cue. We therefore assumed that our
idealized model observer achieves this perfectly, that is,
the model observer sets ws = 0.0 and wm = 1.0 on the
motion-only task (Figure 6a) and sets ws = 1.0 and wm =
0.0 on the shape-only task (Figure 6b). In each case, the
iso-probability contours are straight lines parallel to the
task-irrelevant axis. This is the signature of an observer
who weights one cue to the total exclusion of the other.
In the shape + motion task, participants were instructed

to use both cues. We assumed that our idealized model
observer then weights each cue according to its reliability
because this is the statistically optimal way to combine
independent estimates (Landy et al., 1995). It is important
to note that this statistical assumption is used to make
model predictions and fit the model’s behavior to
participants’ results. However, there is evidence from a
range of different tasks that human observers weight cues
according to their reliability (e.g., Ernst & Banks, 2002;
Landy et al., 1995). In this example, motion is less reliable
than shape (Am 9 As), so the model gives more weight to
the more reliable shape cue. The resulting iso-probability
contours are shown in Figure 6c. They are ellipses
centered on zero difference, with the semi-major axis of
the ellipse parallel to the less reliable dimension (here
motion). This is the signature of an observer who is using
both cues but weighting one more than the other. The
signature of an observer who is weighting both cues
equally would be circular iso-probability contours (not
shown).
In these plots, the intersection of a given iso-probability

contour with the motion or shape axis is also meaningful.
For instance, if we use the 75% iso-probability contour
(i.e., the rightmost or topmost dashed lines in Figure 6),
the intersection with the x-axis can be considered the 75%
motion threshold (holding shape constant) and the
intersection with the y-axis can be considered the 75%
shape threshold (holding motion constant). For example,
when both motion and shape cues are task-relevant, the
model observer’s 75% shape threshold is about half of its
motion threshold (È25% vs. È60%). That is, the model is

better at discriminating shape than motion (not surpris-
ingly, since motion is the less reliable cue by design).
Armed with this understanding of how the relative

contribution of motion and shape cues can be quantified
and visualized, we next examined how human perform-
ance compared to the idealized model. We fitted each
participant’s 2D data with a reduced version of our full
model using the maximum likelihood method. That is, to
avoid over-fitting our data, we constrained the full model
by assuming that shape and motion cues were weighted by
their reliability (Landy et al., 1995). This means that we
only need to fit the decision threshold and reliabilities in
the three conditions, not the weights as well. The Deriving
a model of shape and motion discrimination section of
Appendix A provides the derivation of this reduced model
from the full model (Equation A6). This assumption may
be conceptually flawed because it implies that the
reliability of the motion and shape estimates for identical
stimuli varies between tasks. This may or may not be the
case, but our between-subjects design did not allow us to
address this issue directly, given that changes in reliability
and changes in weight can produce very similar predic-
tions. However, Equation A6 provided reasonable fits so
that we could meaningfully compare the relative weight-
ing of shape and motion cues between the different groups
(see Testing the assumption that wm and ws are inversely
proportional to Am and As section of Appendix A). We
therefore fitted Equation A6 to each participant’s data to
estimate E, Am, and As and then averaged these parameters
across participants in each group. As in Experiment 1 (see
Psychometric functions section), the RMSE was similar
for the three tasks (motion only: M = 11.2%, SE = 0.9%;
shape only: M = 10.3%, SE = 0.6%; and shape + motion:
M = 10.2%, SE = 0.6%). The parameter means were used
to generate the iso-probability contours for each group
shown in Figures 6d–6f.
Importantly, we could calculate ws and wm for each

participant from his or her individually fitted parameters.
Table 1 provides the means and standard error of the
means (SEM) for these relative weights. In the shape +
motion group, participants were able to use both shape
and motion cues to discriminate pairs of objects (compare
Figures 6c and 6f). However, they weighted the shape cue
more than the motion cue to perform the task (paired-
sample t(19) = 3.07, p = 0.006). This finding suggests that
participants could detect differences in shape more
reliably than differences in motion because the weight

Motion only Shape only Shape + motion

ws 0.34 (0.08) 0.99 (0.004) 0.80 (0.04)
wm 0.84 (0.07) 0.13 (0.02) 0.50 (0.06)

Table 1. The mean (SEM) of the relative weights. Note that ws and
wm are calculated from the fitted parameters Am and As separately
for each participant and then averaged.
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given to each cue reflects its reliability (Landy et al.,
1995). This is consistent with our expectation of a
stronger weighting/more reliable estimation of shape cues
(e.g., Spetch et al., 2006; Vuong & Tarr, 2006).
When participants were instructed to use a single cue

to discriminate pairs of objects, they were generally able
to do so (shape only: compare Figures 6a and 6d; motion
only: compare Figures 6b and 6e). In both single-cue
groups, participants weighted the respective task-relevant
cue more than the task-irrelevant one (shape only: t-value
approached infinity as p G 10j18; motion only: t(19) =
3.77, p = 0.001). However, participants in the motion-only
group had relatively more difficulty basing their decisions
solely on motion differences and relied also on shape
differences to some extent whereas those in the shape-only
group were relatively better at ignoring the task-irrelevant
cue. The weight assigned to the task-irrelevant cue between
these two groups was significant (2-sample t(19) = 2.93,
p = 0.009). Consistent with this, Figure 7 shows the 75%
iso-probability contours individually for all 20 partic-
ipants in each task. The colored thin contours (blue or red)
represent a single participant; the black thick contour
represents the group-averaged contour. The red (horizon-
tal) contours represent those participants who assigned a
very large relative weight to shape cues (which we chose
to be ws 9 0.9). Not surprisingly, all participants in the
shape-only group weighted shape cues relatively more
than motion cues. However as evident in Figure 7, six of
the 20 participants in the shape + motion group assigned a
relatively large weight to shape cues and three of the
20 participants in the motion-only group also assigned a
relatively large weight to shape cues. These individuals
have likely set their own relative weights, despite the
explicit task instructions (perhaps due to the difficulty of
the task).
Because of the asymmetry in the use of the shape and

motion cues, it is interesting to consider how much
difference is needed in one cue to produce a “different”
judgment when the other cue is identical in the two stimuli
across the three groups of participants (i.e., by looking at
the intersection of the 75% iso-probability contour with

the x- and y-axes in Figures 6d–6f). We found that the
shape thresholds were similar for the shape-only (27.2%)
and shape + motion groups (24.6%). In contrast, the
motion threshold for the motion-only group (32.4%) was
almost 2.4 times smaller than the motion threshold for
the shape + motion group (76.6%). Lastly, we found that
the shape threshold for the shape-only group was similar
to the motion threshold for the motion-only group (27.2%
versus 32.4%, respectively). This finding suggests that
participants were equally sensitive to linear changes along
our shape or motion morph continuum, even though
motion cues were generally less reliable and weighted
less than shape cues when both shape and motion were
task-relevant. Furthermore, it suggests that the viewpoint
changes we used to avoid image matching did not
drastically bias shape or motion processing.
It is important to stress that the higher motion discrim-

ination threshold for participants in the shape + motion
group relative to those in the motion-only group did not
necessarily occur because participants in the former group
attended to both cues rather than one per se. If this was
the case, we would also expect to see an increase in the
shape discrimination threshold for the shape + motion
group relative to participants in the shape-only group, and
there was none. In fact, our model can explain this
increase in the motion threshold for the shape + motion
group; exactly the same effect is seen in the simulated
example plotted in Figures 6b and 6c. In these simu-
lations, the noise affecting each cue was held constant in the
motion-only and shape + motion tasks, and only w varied.
When only the motion cue was task-relevant, the model
observer assigned all the weight to that cue (i.e., wm =
1.0). However when both shape and motion cues were
task-relevant, the model observer weighted each cue
proportionally to its noise (which is larger for motion
than shape information for these simulations); therefore;
much less weight was given to the less reliable motion
cue. In this case, small motion differences are, in effect,
further reduced because of the small weight assigned to
the motion cue (i.e., wm G 1.0). Consequently, the model
observer’s sensitivity to motion differences decreased in

Figure 7. Individual discrimination contours for the motion-only, shape-only, and shape + motion groups. The colored thin contours are
75% iso-probability contours for each participant in each group. Participants who had ws 9 0.9 are highlighted by the red thin contours
(horizontal lines). The thick black contour is the 75% iso-probability contour averaged across participants in each group.
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the shape + motion task relative to the motion-only task.
Thus, the model successfully captures this aspect of
participants’ discrimination performance.
Interestingly, the motion threshold for multipart objects

from participants in the motion-only group was similar
to the motion threshold of the single-part object from
participants in Experiment 1 (32.4% versus 35.1%,
respectively). This finding suggests, first, that the shape
complexity per se may not influence motion discrimina-
tion and, second, helps further validate our parameter-
based morphing technique for dynamic objects. Thus,
overall, using a parametric manipulation of both shape
and motion differences allowed us to model and visualize
the relative contribution of shape and motion cues under
different task demands.

General discussion

In the current study, we created a 2D parametric shape
and motion space to investigate the joint contribution of
these two cues for object perception and recognition.
In Experiment 1, we validated a novel morphing technique
when only motion differences were present in the stimuli.
In Experiment 2, both shape and motion differences were
present in the stimuli, but we manipulated which of these
cues was relevant for the discrimination task. We found
that observers were generally able to discriminate objects
on the basis of their motion, shape, or both shape and
motion. Importantly, however, there was a clear shape
bias in our discrimination task: participants in the motion-
only group weighted motion cues 2.5 times more than
shape cues; those in the shape-only group weighted shape
cues almost exclusivelyV7.6 times more than motion cues;
and, critically, those in the shape + motion group weighted
shape cues 1.6 times more than motion cues (see Table 1).
We and others have found a similar bias for shape (e.g.,
Lander & Bruce, 2000; Spetch et al., 2006; Vuong & Tarr,
2006), but here we have quantified the relative weighting
of shape and motion cues across different tasks.
It is of theoretical importance that non-rigid motions can

be discriminated with the simple objects in Experiment 1
and the more complex multipart objects in Experiment 2
because it provides further evidence that dynamic features
are independent of shape complexity. It is also of interest
that the 75% threshold for discrimination was very similar
for the two types of cues when they were responded to
alone in Experiment 2 because this indicates that, to a
certain extent, the cues require similar amounts of change
in the shape and motion continuum (i.e., percentage of
shape or motion changes) to be discriminated at the same
level of accuracy. It would be important in future studies
to investigate how changes along a morph continuum
maps to “physical changes” (e.g., changes to the 3D

position of object vertices) and the perceptual discrim-
inability of these changes. In addition, we found evidence
that when observers had to discriminate objects on the
basis of both cues, motion cues helped discriminate
between them when their shape was similar; contrariwise,
motion cues played a relatively minor role when their
shape was distinctive (Figure 5c). The type of non-rigid
motion we tested here is typically associated with animate
objects such as humans and non-human animals. How-
ever, the focus of this study is not about animacy per se
but how non-rigid motion (articulations and deformations)
can be used generally in the service of object recognition.
We note that different groups of participants were tested

across the different discrimination tasks (shape only,
motion only, and shape + motion). This design was used
partly for practical reasons as our initial goal was to derive
a complete psychometric function using the method of
constant stimuli and to avoid practice effects. In future
work, we hope to use adaptive methods to more quickly and
more efficiently estimate discrimination contours for the
different tasks for each participant (i.e., a within-subjects
design for the task). In this way, we can directly estimate
all four parameters without necessarily assuming that the
relative weights assigned to motion and shape cues are
proportional to the reliability of the individual cue.
A second contribution of the current study is that it

provides a parameter-based motion morphing technique to
create novel non-rigid motions using time-varying defor-
mation fields. Importantly, these fields can be easily and
meaningfully morphed to control the degree of physical
(and perceived) similarity between motions and it is not
necessary for the objects to have spatiotemporal corre-
spondence (Giese & Poggio, 2000). We found that
observers were sensitive to the parameters that defined the
deformation fields, that is, their discrimination perform-
ance was an increasing function of the motion difference
between two dynamic objects rather than a function of
strictly low-level differences in the image sequences.
Overall, our results with parametric motion discrimina-

tion are similar to previous results with parametric shape
discrimination (Cutzu & Edelman, 1996; Lawson &
Bülthoff, 2008; Schultz et al., 2008). Thus, we argue that
this motion morphing technique can yield interpretable
perceptual results (Giese et al., 2008; Jastorff et al., 2006;
Troje, 2002). Moreover, we believe that this technique
can, in the future, be used to design hypothesis-driven
experiments to generalize results from studies of the
recognition of facial motion (e.g., Knappmeyer et al.,
2003) and biological motion (see also Jastorff et al., 2006;
Pyles et al., 2007). As shown here, the technique allowed
us to apply the same set of motions to different objects
and test how motion and shape cues combine.
The set of parameters defining the deformation fields

was chosen partly for comparability to our earlier work in
the shape domain (Schultz et al., 2008). More generally,
however, any parameter (e.g., velocity) may have a
temporal profile. Thus, parameters can be chosen to test
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specific hypotheses. For example, in the shape domain,
several groups, including us, have tested parameters
thought to be important for recovering structural descrip-
tions of objects, such as shape of cross section, amount
of bending, amount of tapering, and so on (Biederman,
1987; Kayaert, Biederman, Op de Beeck, & Vogels, 2005;
Schultz et al., 2008). With familiar biological motion, for
example, Hill and Pollick (2000) showed that observers
were sensitive to the temporal profile of wrist velocity in
point-light displays of arm movements (i.e., how velocity
varies over time).
Beyond testing specific parameters that might be critical

to understand how motion may be more generally used in
the service of object recognition and how motion may
interact with shape, it is also important to understand the
role of learning motions to acquire expertise. Observers
can rapidly detect and extract information such as gender,
emotion, and identity from highly shape-impoverished
point-light displays (e.g., Bassili, 1978; Cutting &
Kozlowski, 1977; Johansson, 1973). However, the extent
to which this rapid processing is “innate” or develops
through extensive learning and experience is unclear.
Studies of perceptual expertise using static novel shapes
have found that even discrimination training can alter
neural responses to the trained shapes (e.g., Op de Beeck,
Baker, DiCarlo, & Kanwisher, 2006). Relatively fewer
studies have focused on learning motion (e.g., Chuang
et al., 2006; Jastorff et al., 2006; Mayer & Vuong, 2012;
Pilz et al., 2009). The results from studies with static
objects suggest that perceptual expertise can lead to
qualitative changes in how the objects of expertise are
processed. For instance, observers may initially use
individual parts to identify objects from an unfamiliar
category but eventually shift to processing the objects
more holistically (i.e., they may integrate the parts) as
they acquire expertise with that object category.
Perceptual expertise with particular motions could be
valuableVfor example, given our experiences with the
information that can be derived from facial and body
motions, it is likely that being able to understand what
dynamic cues are learned for non-rigid motion is ecolog-
ically important (Jastorff et al., 2006; Pilz et al., 2009;
Pyles et al., 2007).
The technique used here for creating a combined motion

and shape parameter space allows for: (1) the tight control
of the physical similarity of different shapes and motions;
(2) the creation of a potentially large number of stimuli;
(3) and the capacity to map the motion to arbitrary 3D
objects. Thus, it is of interest to train observers to learn
motion cues to object identity and then explore what
happens once they acquire this expertise, for instance,
how they generalize the motion to other objects and how
the relative weighting of shape and motion cues might
change with learning.
The parametric combination of both shape and motion

allows an examination of how people extract a stable
identity from changing shape. For instance, facial

expressions deform a face’s 3D shape. However, people
can still extract a stable identity of a person. Similarly,
animals (like a snake or shark) may have characteristic
motions, like bending and slithering. Again, however,
people can generalize over these shape changes to
recognize the snake or shark. Computer vision algorithms
have been developed to extract stable shape from non-rigid
deformations (e.g., Torresani, Hertzman, & Bregler,
2003). We believe that the psychophysical results
obtained in experiments like those conducted in the
present study can help improve these algorithms. For
instance, our results suggest that successful recognition
requires a high-level representation of motion rather than
low-level motion cues (e.g., simple leftward motion).
Several researchers have proposed neurally inspired
models in which high-level shape and motion detectors
can be used to recognize dynamic objects (e.g., Cavanagh,
LaBianca, & Thornton, 2001; Giese & Poggio, 2003).
These complex dynamic feature detectors (e.g., “sprites,”
Cavanagh et al., 2001) can be derived from simpler shape
and motion detectors. At present, we do not know what
specific spatiotemporal information such a high-level
representation might contain but that is clearly an
important topic for further investigation.

Appendix A

Deriving a model of shape and motion
discrimination

We assume that observers can extract a single “motion
difference” and “shape difference” signal from a pair of
objects simultaneously presented on a given trial. We
further assume that each signal is separately subject to
Gaussian noise. Using the notation where x È N(2, A)
means that x is a random deviate drawn from a normal
(Gaussian) distribution with mean 2 and standard devia-
tion A, the motion (difference) signal, m, and shape
(difference) signal, s, estimated by the observer on any
given trial are

MÈ Nðm;AmÞ and SÈNðs;AsÞ: ðA1Þ

In Experiment 1, s = 0 (i.e., the shape signal is zero as
both objects on a given trial always had the same shape);
in Experiment 2, both m and s were generally non-zero.
Our general model is that observers take a weighted

combination of the estimated motion and shape signals
and respond “different” if the sum of this combination
exceeds some decision threshold. Thus, they judge “same”
when C G E, where

C2 ¼ w2S2 þ ð1j w2ÞM2; ðA2Þ
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and w is in the range [0 1]. The parameter w is the relative
weight assigned to the motion and shape signals. It is
included because observers may explicitly choose to
weight one cue relatively more than the other (e.g., because
of task instructions) independently of how well they can
estimate the motion or shape signals. This model therefore
formally captures the different discrimination tasks that
were implemented in Experiments 1 and 2 (motion only,
shape only, and shape + motion tasks). For notational
convenience, we define the relative weight assigned to the
shape cue as ws =

ffiffiffiffiffiffi
w2

p
= w and the relative weight

assigned to the motion cue as wm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1jw2Þp

. Thus, we
have C2 = ws

2S2 + wm
2M2 and ws

2 + wm
2 = 1.

Figure A1 illustrates the discrimination behavior of the
model. The thick red ellipse shows the decision boundary
in the space (M, S). This boundary is dependent on the
decision threshold (E) and relative weighting of the two
cues (w). The thin blue and green colored contours
illustrate the distribution of (M, S) for two different
sample stimulus differences (m, s). These signal distribu-
tions are dependent on the noise in the motion and shape
estimation (Am and As). The decision boundary and
stimulus distributions extend into the negative range
because we model a difference signal in the motion or

shape dimension. We therefore based our fits on the sum
of two cumulative Gaussian distributions. The use of two
cumulative Gaussians allows us to ignore the sign of the
motion/shape difference, e.g., if stimulus 1 was a 35%
motion morph, then morphs of 25% and 45% for
stimulus 2 would both be counted as a 10% motion
difference.
The green contours in Figure A1 show the distribution

of (M, S) under the null hypothesis that there is no
difference in the stimulus (m, s). The blue contours show
the distribution of (M, S) for a given non-zero pair of
stimulus differences (m, s), marked by the blue dot. The
aspect ratio of these contours depends on the relative
standard deviations along the two axes, specifically, Am/As.
To maximize performance on a same–different task, we
assume that the decision contour should also have an
aspect ratio of Am/As. We consider this case below. By
definition, our model observer will judge the stimuli to be
the same when (M, S) falls within the red ellipse.
In this general model, the probability of answering

“same” when the true motion and shape difference is
(m, s) is the volume of the stimulus distribution that falls
within the red ellipse:

Psame M; Skm; sð Þ ¼ 1

2:AmAs

Z þE=wm

jE=wm

dM

Z þ 1
ws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2jM2w2

m

p

j 1
ws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2jM2w2

m

p dS

� exp j
ðMjmÞ2

2A2
m

j
ðSj sÞ2
2A2

s

" #
: ðA3Þ

To evaluate this integral, we change to polar coordinates r
and !, defined by

Mwm ¼ rcos! Sws ¼ r sin! dMdS ¼ rdrd!

wmws

Psame M; Skm; sð Þ ¼ 1

2:AmAswmws

Z E

0

rdr

Z 2:

0

d!

� exp j
ðrcos! j wmmÞ2

2w2
mA

2
m

j
ðr sin! j wssÞ2

2w2
sA

2
s

" #
:

ðA4Þ

To fit this function to the data, we would need to fit the
four parameters E, Am, As, and w to 25 data points (5 levels
of shape differences � 5 levels of motion differences).
We were reluctant to do this as the data did not allow all
parameters to be well constrained; there is a trade-off
between changes in relative weighting and changes in
noise. We therefore limited our fits to the special case in
which w is inversely proportional to stimulus noise.
Because w provides a relative weighting of motion and
shape cues, we can set the (relative) weight assigned to

Figure A1. Behavior of the model of shape and motion discrim-
ination. We assume that observers make noisy estimates (M, S)
of the true stimulus differences (m, s). The thin green ellipses
show iso-probability contours for (M, S) when (m, s) = (0, 0), i.e.,
there is no motion or shape difference. The thin blue ellipses
show contours for (M, S) when (m, s) = (50%, 40%), marked with
the blue dot. The contours are drawn such that the additional
volume enclosed by each new contour represents 10% of the total
volume under the distribution. The thick red ellipse shows the
decision boundary: Combinations of (M, S) that fall inside the red
ellipse are judged “same,” while those falling outside are judged
“different.”
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each cue to be proportional to the inverse of its variance
(Landy et al., 1995) so that the aspect ratio of the red
decision boundary in Figure A1 matches the stimulus
distributions shown in blue or green. That is, we set

wm ¼ Asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ A2

s

p and ws ¼ Amffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ A2

s

p : ðA5Þ

Equation A5 satisfies ws
2 + wm

2 = 1. In this case, we can do
the integration over ! analytically. Equation A4 now
becomes

Psame M; Skm; sð Þ ¼ A2 exp j
B2

2

� � Z E

0

rdr

� exp j
A2r2

2

� �
I0 rABð Þ; ðA6Þ

where A2 = 1
A2
m
+ 1

A2
s
and B2 = m2

A2
m
+ s2

A2
s
, and I0 is the modified

Bessel function of the first kind. We used this function
to fit the shape + motion data with three free parameters.
We evaluated the integral numerically using the Matlab
function QUAD, with the Matlab function BESSELI to
evaluate the Bessel function.
In this 3-parameter model, iso-probability contoursVi.e.,

values (m, s) along which the observer has a fixed
probability of making a “same” judgment for a given set
of parameters E, Am, and AsVare constant values of B. That
is, the contours are ellipses in (m, s) space whose semi-radii
are BAm and BAs and where the value of B depends on the
value of Psame along the contour. For example, to find the
contour where the observer is equally likely to respond
“same” or “different,” we solve Equation A6 for B with
Psame = 0.5. We used the Matlab function FZERO to solve
this numerically.
Furthermore, we can evaluate Psame analytically when

all the weight is assigned to one cue. For example, if
ws = 0.0 and wm = 1.0, the probability of a “same”
judgment becomes

Psame M; Skm; sð Þ ¼ 1

2:AmAs

Z þE

jE

dM

Z þV

jV
dS

� exp j
ðM j mÞ2

2A2
m

j
ðS j sÞ2

2A2
s

" #
; ðA7Þ

and so the value of As is immaterial:

Psame M; Skm; sð Þ ¼ 1

2
erf

mþ Effiffiffi
2

p
Am

� �
j erf

mj Effiffiffi
2

p
Am

� �� �
;

ðA8Þ

and

Pdiff M; Skm; sð Þ ¼ 1j
1

2
erf

mþ Effiffiffi
2

p
Am

� �
jerf

mjEffiffiffi
2

p
Am

� �� �
:

ðA9Þ

Maximum likelihood fitting

If the probability of answering “same” for some
stimulus values (m, s) is Psame, then the probability of
observing k “same” responses out of n trials is

n!

k!ðn j kÞ!P
k
sameð1 j PsameÞnjk: ðA10Þ

To maximize the likelihood of obtaining the observed
data, we maximize

X ¼ ~N

j¼1kj logPsame
j þ ðnj j kjÞ logð1jPsame

j Þ; ðA11Þ

where the sum is over all different sets of stimulus values
(mj, sj), nj is the total number of trials performed with
those stimulus values, and kj is the number of trials on
which the observer judged “same.” Psame

j is the proba-
bility of getting a “same” response given the stimulus
values (mj, sj) used on that trial and the particular fit
parameters being tested. The fit parameters were adjusted
using Matlab’s FMINSEARCH function until the quantity
X was maximized.

Testing the assumption that wm and ws

are inversely proportional to Am and As

Ideally, a full model of the discrimination task would
have four parameters (Equation A4). By making an
additional assumption, we reduced this to three parameters
to avoid over-fitting our data sets. This 3-parameter model
is appropriate for the shape + motion data but has a
potential conceptual flaw when applied to the shape-only
and motion-only data. The differently shaped contours in
Figures 6d–6f reflect different fitted values of Am and As

(albeit from different groups of participants in our study).
However, it seems unlikely that an observer would
generally encode shape and motion cues with differing
reliability across the three tasks because the stimuli are
identical. We therefore assumed that the reliability of the
motion and shape estimates was the same across tasks, but
the weights given to each cue changed as a result of the
task instruction. This is what we modeled in the
simulations in Figures 6a–6c. The values of E, Am, and
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As are kept constant in these three panels, and the different
predicted performance is achieved by altering the relative
weights wm and ws. However, despite its conceptual
limitations, Equation A6 is adequate to describe our data.
To check this, we fitted the shape-only data with a
2-parameter model that assumes that the observer uses
only shape differences for the task (Equation A9). In this
case, ws = 1.0 and wm = 0.0. The value of Am is then
immaterial, leaving only two parameters to fit: E and As.
We also fitted the two parameters, E and Am, to the
motion-only data in which wm = 1.0 and ws = 0.0. In each
case, although the fits were slightly lower quality, the
values of Am and As were similar to those obtained with
the 3-parameter model. This confirms that, in the shape-
only task, the value of wm, which is under-constrained by
the data, does not greatly affect As, which is much more
constrained by the data. Similarly in the motion-only task,
the precise value of ws does not greatly affect Am.

Therefore, in the main text, we report the results of fitting
the same 3-parameter model to all three data sets, and then
we estimated wm and ws based on Am and As.

Individual data for Experiment 1

Figure A2.
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