
Stereo Vision, Models of 

Synonyms 
Models of stereopsis, models of 3D vision. 

Definition 
Stereo vision refers to the perception of depth based on slight disparities between the images 

seen by the two eyes, due to their different location in space. This article reviews models of stereo 

vision based on real nervous systems. Stereo vision algorithms have also been developed 

independently within the machine vision literature, sometimes biologically inspired. 

Detailed description 
Stereo vision has two main steps: (1) Extracting disparity from the retinal images, and (2) 

Perceiving depth structure from disparity. Although psychophysics experiments have probed both 

aspects, much more is known about the neuronal mechanisms supporting the extraction of 

disparity, whereas little is known about how and where in the brain disparity is converted into a 

perception of depth. 

Extracting disparity from the retinal images 
In primates, the first step is believed to begin in primary visual cortex (V1). V1 is the first visual 

area to contain neurons which receive inputs from both eyes, many of which are tuned to 

binocular disparity (Poggio, Motter et al. 1985). The most influential model of disparity tuning in 

V1 is the stereo energy model, put forward by Izumi Ohzawa, Greg DeAngelis and Ralph Freeman 

(1990), and based in turn on similar models in the motion literature (Adelson and Bergen 1985). 

Stereo energy model: basic unit 
The basic idea behind the stereo energy model is that  of a binocular neuron with a receptive field 

in each eye (Figure 1). The input from each eye depends on the inner product of each eye’s image 

with the corresponding receptive field. For example, the input from the left eye is  

 

The function IL(x,y) represents the retinal image in the left retina, with luminance expressed 

relative to the mean, e.g. +1 = white, -1 = black, 0=gray. The function L(x,y) represents the 

classical receptive field in the left retina, with 0=no response (i.e. areas of the retina that are 

outside the receptive field), positive values corresponding to ON regions (areas where light 

stimulation tends to increase the cell’s firing rate, and dark suppresses it) and negative values to 

OFF regions (where dark features tend to increase the cell’s firing and light suppresses it).  



The energy model assumes that inputs from each eye are summed linearly. If the result is negative, 

the neuron is inhibited and does not fire. If positive, the neuron fires at a rate proportional to the 

square of the inputs: 

  

Equation 1 

This model neuron is tuned to disparity both in monocularly visible features, e.g. the  bar stimuli 

used in Ohzawa et al. (1990), and also in “cyclopean” stimuli such as dynamic random-dot patterns 

(Julesz 1971). A detailed analysis shows that the cyclopean disparity tuning is due to the output 

non-linearity (Read 2005). A unit which simply summed left and right inputs linearly (L+R) would be 

tuned to the disparity of a bar stimulus, but only as a side-effect of its tuning to the position of 

monocular features. It would respond equally well, on average, to broadband noise images with 

any disparity. random-dot but not to cyclopean disparity. Thus, a non-linearity is essential to 

produce cyclopean disparity tuning, i.e. to ensure that the cell responds more on average to 

broadband noise images with its preferred disparity. The threshold-and-squaring non-linearity in 

Equation 1 is used in many models of V1 neurons because it describes their responses well. 

However, from a mathematical point of view, almost any non-linearity would suffice to produce 

cyclopean disparity tuning. 

The receptive fields are often represented by Gabor functions. Empirically, the spatial frequency 

and orientation tuning is similar between eyes (Bridge and Cumming 2001; Read and Cumming 

2003), and is usually modeled as being identical. 

 

 

 

Position and phase disparity 
The spatial location and phase (i.e. the location of ON and OFF subregions) of the two receptive 

fields may vary. These determine the preferred disparity of the unit. Position disparity shifts the 

disparity curve without altering its shape; phase disparity alters the shape. A phase disparity of 0 

produces a curve which is symmetrical about a central peak, known as tuned-excitatory. A phase 

disparity of  inverts this to give a curve with a central trough (tuned-inhibitory). A phase disparity 

Figure 1. Basic unit of the stereo energy model, after Ohzawa (1998). The graph on the right 
represents the squaring output non-linearity. ON and OFF subregions of the receptive fields are 
shown in red and blue respectively. The receptive fields have the same orientation and spatial 
frequency but different phase. This cell would therefore be tuned to non-zero disparity. 

left receptive field    right receptive field 

 

[Pos(L + R )] 
2 

 

R
 

L
 

S 

 



of /2 produces odd-symmetric curves with equally large peaks and troughs.  Several models 

have been built using pure phase disparity (Sanger 1988; Fleet, Jepson et al. 1991; Qian 1994; Qian 

and Mikaelian 2000). However, V1 contains cells with both position and phase disparity (Anzai, 

Ohzawa et al. 1997; Prince, Cumming et al. 2002). Several models therefore incorporate both 

position and phase (Chen and Qian 2004; Read and Cumming 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex cells 
The unit in Equation 1 is a simple cell, in that it is tuned to the phase of a grating stimulus 

(Movshon, Thompson et al. 1978). To build a complex cell, which is insensitive to grating phase 

(Hubel and Wiesel 1962; Movshon, Thompson et al. 1978), we can sum many such units with 

Figure 2. Stereo energy model complex cell, after Ohzawa (1998). The complex cell C represents the 

summed output of 4 of the basic units shown in Figure 1, with different phases  as labelled. The top 

two units have receptive fields which are the opposites of one another ( out of phase). This has the 

effect of removing the threshold before the squaring: if the output of the top S-cell is L+R
2
, that of 

the second one is -L-R
2
, so their sum is (L+R)

2
. The bottom pair of cells are /2 out of phase with the 

top pair, an arrangement known as in quadrature. This makes the complex cell independent of 
stimulus phase, essentially due to the trigonometric identity cos

2
+sin

2
=1. 
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different receptive-field phases (Qian and Zhu 1997). A common computational short-cut is to sum 

just four such units, whose receptive fields differ in phase by multiples of /2 (Figure 2). This 

produces a complex cell whose response is perfectly independent of grating phase. Note that this 

difference in phase must not be confused with the phase disparity discussed above. Phase 

disparity refers to a difference between the left and right-eye receptive fields of a given energy 

model unit (R-L for each unit in Figure 2). Here, we are talking about a difference in phase 

between receptive fields of different units, in the same eye (the 4 different L in Figure 2).  

Modifications of the energy model 
Several modifications have been proposed to the original energy model outlined above. One 

problem with the original energy model is that it responds equally strongly to disparity in anti-

correlated random-dot patterns. These are non-physical stimuli in which one eye’s image is the 

photographic negative of the other (Figure 3). This manipulation all but destroys depth perception 

(Cogan, Lomakin et al. 1993; Cumming, Shapiro et al. 1998; Read and Eagle 2000). Since this 

corresponds to changing the sign of IR relative to IL, it simply inverts the disparity tuning of an 

energy model unit (Equation 1). However, the response of real V1 neurons is attenuated as well as 

inverted (Cumming and Parker 1997). To capture the attenuation, Read et al. (2002) proposed 

thresholding the inner products L and R before summing them in Equation 1. A similar approach 

was also proposed by Tanaka et al. (2006) to explain second-order stereopsis. Lippert and Wagner 

(2001) proposed changing the squaring non-linearity. Adding an expansive non-linearity to tuned-

excitatory cells, or a compressive non-linearity to tuned-inhibitory cells, can produce the desired 

effect. Haefner & Cumming (2008) showed that a similar approach captures the response of V1 

cells to a wide range of non-physical stimuli. Samonds et al. (2013) incorporated recurrent 

connections within V1 to account for the temporal dynamics of disparity tuning, as well as the 

attenuated response to anti-correlated images. 

A second problem is that all these versions of the energy model predict a strong relationship 

between a cell’s preferred orientation with grating stimuli and its tuning to 2D disparity. Binocular 

disparity is in principle 2D since the two eyes’ images can be offset both horizontally and vertically, 

although in normal viewing the horizontal component is much larger (Read, Phillipson et al. 2009). 

The energy model predicts that cells should be much more sensitive to disparities perpendicular to 

their preferred orientation than to those parallel to it. This prediction is not borne out: Regardless 

of preferred orientation, V1 neurons are much more sensitive to vertical than to horizontal 

disparity (Cumming 2002). One way to modify the energy model to account for this property is to 

include multiple subunits scattered more widely horizontally than vertically (Read and Cumming 

2004). 

The energy model and time 
The original energy model included no dependence on time. A more realistic model would include 

receptive fields whose response depends on time as well as spatial location. The first such model 

was proposed by Qian & Andersen (1997). Real V1 neurons generally have temporally band-pass 

tuning, i.e. they respond better to flickering than to constant stimuli. It is difficult to reconcile this 

with the tuning of real V1 neurons to noise stimuli with interocular delay. In real neurons, 

interocular delay tends to simply reduce the amplitude of disparity tuning (Read and Cumming 



2005). Yet if one simply adds temporally band-pass receptive fields to the energy model, the 

model predicts that disparity tuning will invert for certain interocular delays.  

 

 

Solving the correspondence problem 
V1 cells are local, seeing only a small region of each retina. They respond to “false matches”, image 

features which look similar but were caused by different objects in space, as well as to 

corresponding views of the same object. To disambiguate these, it is necessary to solve the 

“correspondence problem”, correctly matching up image features in both eyes’ images (Ohzawa 

1998). This process is not completed in V1. Anti-correlated stereograms are one piece of evidence 

for this. As noted, V1 cells continue to respond to these non-physical stimuli, albeit with 

attenuation, whereas cortical areas further down the processing pathway, for example IT, do not 

(Janssen, Vogels et al. 2003).  

Models of stereo correspondence predate detailed knowledge of disparity encoding in V1 (Marr 

and Poggio 1979; Pollard, Mayhew et al. 1985). More recently, modelers have sought to 

understand how the correspondence problem could be solved by appropriately combining 

populations of V1-like neurons (Qian 1994; Qian 1997).  

One approach is to consider a population of cells which differ only in their tuning to disparity, and 

take the stimulus disparity to be the preferred disparity of the maximally-responding V1 cell (Qian 

1994). However, often this will not be the correct answer, for two main reasons. First, the energy 

model is not sensitive to the precise arrangement of luminance within the receptive field; this 

information is lost when the inner product is computed (Equation 1), and its response depends on 

image contrast. Therefore, an energy-model unit will respond well to a false match which happens 

to stimulate left and right receptive fields strongly, even if the image within each receptive field is 

quite different. To overcome these problems, it helps first to normalise out the cell’s response to 

contrast (Sanger 1988; Read and Cumming 2006; Read 2010), e.g. 

   

left eye’s image right eye’s image 

Figure 3. Anti-correlated random-dot stereogram. Note that black dots in the left eye are white in 
the right, and vice versa. 



Equation 2 

Such divisive normalisation has been found in many brain areas, and is so widespread that it has 

been proposed as a canonical computation of cortex (Carandini and Heeger 2012). In the present 

case, the division transforms unnormalised energy, similar to a cross-correlation function (Qian 

and Zhu 1997), to a normalised correlation, bounded between -1 and +1. Now, the preferred 

disparity of the maximally-responding C-unit is guaranteed to be the correct stimulus disparity, if 

the stimulus disparity is exactly constant over the cells’ receptive fields (Read and Cumming 2007). 

However, for more realistic situations, where disparity varies across the image, this approach too 

can fail.  

Greater robustness is obtained by expanding the population under consideration to include cells 

tuned to a range of orientations and spatial frequencies / spatial scales, as well as to a range of 

disparities. Fleet and colleagues (Fleet 1994; Fleet, Wagner et al. 1996) proposed a linear pooling 

of neuronal responses across orientations and scales. Allenmark & Read (2011) showed that by 

pooling across orientations and spatial frequencies and then normalising as in Equation 2, one 

effectively computes the cross-correlation of left and right retinal image-patches. This linked the 

physiologically-based stereo energy model to a class of more abstract models based on windowed 

cross-correlation of the retinal images, which had successfully captured several aspects of human 

vision (Tyler 1974; Tyler 1975; Tyler 1978; Banks, Gepshtein et al. 2004; Nienborg, Bridge et al. 

2004; Nienborg, Bridge et al. 2005; Filippini and Banks 2009).  

Tsai & Victor (2003) used a template-matching approach pioneered in this area by Lehky & 

Sejnowski (1990). Their population includes neurons tuned to a range of spatial frequency and 

phase disparities. They compute the mean response of this population to “template” noise stimuli 

with uniform disparity. The disparity in any given stimulus is taken to be that of the template 

which best matches the population response. Their model also allows for the perception of 

transparency (multiple planes at different depths) when multiple templates match similarly well, 

capturing several aspects of human perception (McKee and Verghese 2002). Other aspects of 

transparency appear to require excitatory and inhibitory interactions between disparity-tuned 

neurons  (Tsirlin, Allison et al. 2012) 

Monocular occlusions 
A feature of binocular vision first studied by Leonardo da Vinci is that some image features may be 

visible to only one eye. These monocular occlusions present a special challenge for establishing 

correspondence. A few biologically-inspired models suggest how these regions may be handled in 

the brain (Watanabe and Fukushima 1999; Hayashi, Maeda et al. 2004; Assee and Qian 2007).  

Perceiving depth structure from disparity 
Once the stereo correspondence problem has been solved, we have a “disparity map” specifying 

image disparity at every point in the visual field. This must then be converted into a perception of 

depth. Relative depth (i.e. “object A is in front of object B”) can be deduced immediately from the 

relative disparity between them. Humans are much more sensitive to the relative disparity 

between objects or surfaces than to the absolute disparity of an isolated object (Westheimer 1979; 

Parker 2007). 



Further evidence that neurons in primary visual cortex (V1) do not directly support depth 

perception is provided by the fact that their response is determined by the absolute disparity of 

the stimulus within their receptive field, not by the disparity relative to other objects in the scene 

(Cumming and Parker 2000). The extraction of relative disparity appears to begin in cortical area 

V2, where neurons are found that are sensitive to relative disparity and are specifically tuned for 

disparity edges (von der Heydt, Zhou et al. 2000; Thomas, Cumming et al. 2002; Bredfeldt and 

Cumming 2006). These neurons’ responses can be modeled by combining the output of different 

energy model units (Bredfeldt, Read et al. 2009). 

For metric depth (i.e. “object A is 10cm in front of object B”), disparity must be calibrated by a 

knowledge of eye position. In theory, this can be obtained from extra-retinal signals 

(proprioception, efference copy), or from purely retinal signals if 2D disparity is available. As noted 

above, disparity in natural viewing is overwhelmingly horizontal, but vertical disparities also occur, 

in a pattern which is dependent on eye position and largely independent of the scene viewed. In 

theory, therefore, eye position can be  recovered from the 2D disparity map (Longuet-Higgins 

1982). There is psychophysical evidence that vertical disparity is indeed detected by the human 

visual system and used to guide perception (Rogers and Bradshaw 1993; Garding, Porrill et al. 

1995; Rogers and Bradshaw 1995; Backus, Banks et al. 1999). However, little is known about the 

underlying neuronal mechanisms or the cortical areas involved. Detailed neuronally-based models 

have therefore not been constructed. 
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