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Abstract

Disparity-tuned cells in primary visual cortex (V1) are thought to play a significant role in the processing of
stereoscopic depth. The disparity-specific responses of these neurons have been previously described by an energy
model based on local, feedforward interactions. This model fails to predict the response to binocularly anticorrelated
stimuli, in which images presented to left and right eyes have opposite contrasts. The original energy model predicts
that anticorrelation should invert the disparity tuning curve (phase differencwith no change in the amplitude

of the response. Experimentally, the amplitude tends to be reduced with anticorrelated stimuli and a spread of phase
differences is observed, although phase differences fneae the most common. These experimental observations
could potentially reflect a modulation of the V1 signals by feedback from higher visual areas (because anticorrelated
stimuli create a weaker or nonexistent stereoscopic depth sensation). This hypothesis could explain the effects on
amplitude, but the spread of phase differences is harder to understand. Here, we demonstrate that changes in both
amplitude and phase can be explained by a straightforward modification of the energy model that involves only

local processing. Input from each eye is passed through a monocular simple cell, incorporating a threshold, before
being combined at a binocular simple cell that feeds into the energy computation. Since this local feedforward
model can explain the responses of complex cells to both correlated and anticorrelated stimuli, there is no need to
invoke any influence of global stereoscopic matching.
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Introduction the other (black pixels are replaced with white amck versasee

Many aspects of the behavior of disparity-tuned neurons in VlFlg' 1). With the energy model, the disparity-modulated term

(Barlow et al., 1967; Nikara et al., 1968; Poggio & Fischer, 1977)S|mply changes sign when the stimuli are binocularly anticorre-

are captured by the “energy model” proposed by Adelson anAated. Thus, disparity tuning curves obtained with anticorrelated

. . random-dot stimuli (RDS) should always have the same amplitude
Bergen (1985) for motion, and adapted for stereopsis by thawgs those obtained with correlated stimuli, and differsbyn their

et al. (1990, 1997). In this model, the responses of complex cells L . .

. ) hase. This is not observed experimentally. The amplitude of the
can be separated into two terms: one that depends only on the . . A
modulation is usually smaller for anticorrelated stimuli (in extreme
contrast energy presented to each eye and another that depends gn

. ) . . cases, there is no modulation, e.g. Fig. 5) and there are phase
the.relatllonshlp bgtween Images in the two eyes. T.he 'a“ef telrnaifferences significantly different f?omrg(Cu)mming & Parkerp
varies with the stimulus disparity. This model describes satlsfac-1997) Equivalent phenomena can be identified in earlier stl;dies
torily both the binocular response profile obtained with disparate :

bar stimuli and the disparity tuning curve obtained by averagin With bar stimuli (Ohzawa et al., 1990, 1997). The purpose of this
panty g y 9 gpaper is to examine whether a straightforward modification of the

the response to many different random-dot stimuli with a glvenenergy model can be developed to account for these phenomena.

disparity (reviewed by Cumming & DeAngelis, 2001). . ) R
Cumming and Parker (1997) showed that the energy model The experimental observations also have implications for the

fails when V1 neurons are probed with binocularly anti(:orrelatedr0|e of V1 complgx cells in sterepscoplc dgpth perpeptlon. To
L . . L . extract stereoscopic depth from retinal disparity, the visual system
stimuli, in which the contrast in one eye is inverted with respect to

must correctly match each point on the left retina with its partner
in the right. Thiscorrespondence problers especially apparent in

RDS, where there are many false targets to confound a local
Address correspondence and reprint requests to: Jenny C.A. Reag)atchlng algorithm. The interesting feature of binocular anticor-

Laboratory of Sensorimotor Research, National Eye Institute, Nationaf€lation is that it completely prevents the achievement of a global
Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4435, USA.solution with dense random-dot stimuli (Julesz, 1971; Cogan et al.,
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Fig. 1. Anticorrelated random-dot pattern. The figure shows a pair of disparate images. The contrast in the right eye’s image is inverted
relative to the left eye, so that white dots in the left eye are black in the right eyejieamdersaThe disparity between this pair of

images is 6 pixels; the dot-size is 5 pixels.

1995; Cumming et al., 1998; Read & Eagle, 2000). Yet V1 neuronsResults

modulate their response as a function of disparity with the same

stimuli that fail to provide a consistent perception of depth (Cum-Overview

ming & Parker, 1997; Cumming et al., 1998). Arguably, then,
disparity-tuned V1 neurons must be a stage some way removed 1.
from the perception of stereoscopic depth.

On the other hand, the weaker amplitude of the response to
anticorrelation might suggest that V1 neurons are sensitive to the
global solution of the correspondence problem (Ohzawa, 1998). 2.
This could be the result of feedback from higher visual areas
encoding the global solution, which suppress responses in V1 to
stimuli for which no solution is found. In this paper, we search for
a satisfactory local model that can account for the observed 3.
behavior of V1 complex cells to bar and random-dot stereograms.
Such a model would repair this deficiency of the energy model,
and obviate the need to invoke higher level feedback to V1 to
explain these phenomena.

Materials and methods

Numerical simulations were written in MATLAB. In each case, the 5.
model retina was 128 128 pixels. The random-dot patterns (e.g.
Fig. 1) had dot size 5 pixels and dot density 25%, meaning that if
none of the dots overlapped, they would occupy 25% of the image.
In numerical simulations using random-dot patterns (Figs. 2, 4, 8,
10, & 13), the results shown are the mean response to 5000 stimuli
at each disparity (500,000 for Fig. 12). The curves joining the dots
are obtained by spline interpolation. For comparison, the mean
response to uncorrelated images is indicated with horizontal lines
(marked “U”).

When the model was used with Gabor receptive fields (Figs. 2,
4, 8, & 12), the spatial period of the Gabor was 64 pixels, the
spatial-frequency bandwidth 2.5 octaves, and the orientation band-
width 30 deg (both defined as the full width at half-maximum of
the tuning curve obtained with monocular sine-grating stimuli).
This implies a Gaussian envelope with standard deviations of 12
and 32 pixels, respectively, orthogonal and parallel to the carrier 7.
sinusoid. The same size of envelope was used when the model was
tested with Gaussian receptive fields (Fig. 10).

6.

We first describe the energy model of Ohzawa et al. (1990),
and show why it predicts response modulations of equal
amplitude for correlated and anti-correlated stereograms.

An output nonlinearity can produce amplitude ratios less
than one for cells with even-symmetric disparity tuning
curves, but this requires different nonlinearities for tuned
excitatory (TE) cells and tuned inhibitory (TI) cells.

Half-wave rectification of the monocular inputs, prior to
binocular combination, produces amplitude ratios less than
one for TE-type even-symmetric tuning curves. This could
be implemented by binocular simple (BS) cells receiving
excitatory input from monocular simple cells.

. Neither of these methods can produce odd-symmetric re-

sponses with amplitude ratios less than one.

We show two sources of odd-symmetry in the energy model.
First, when an even-symmetric receptive field (RF) in one
eye is paired with an odd-symmetric RF in the other, the
disparity tuning curve will be odd symmetric. Second, if the
response is inverted by exchanging the left and right images
(LR interchange antisymmetry), the disparity tuning curve
must be odd symmetric. Both of these factors independently
guarantee odd symmetry in the implementation of Ohzawa
et al. (1990).

Our modified BS cells can be used to implemeRtinter-
change antisymmetry by combining excitatory inputs from
one eye (after rectification) with suppressive input from the
other (passed through an inhibitory synapse after rectifica-
tion). This produces Tl and odd-symmetric disparity tuning
curves with amplitude ratios less than one.

When tested with drifting gratings of different disparities,
the temporal modulation in the response of modified BS cells
receiving purely excitatory input from each eye shows a
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distinctive pattern. At some disparities, they show strong We therefore begin by looking again at the energy model,
modulation at the second harmonic of the stimulus fre-which we develop in more general terms than usual, in order to
quency. This feature could be eliminated by an output threshbring out those features of the model that cause it to show an
old at the final stage. Nonetheless, we report several examplemmplitude ratio of 1 and to see how these features might be
of simple cells from primate V1 that show exactly this modified.

pattern of modulation.

. . Model simpl lls
Properties of binocular complex cells odel simple ce

Many disparity tuning curves of V1 neurons are well fitted by The energy model is based on simple cells that exhibit linear

: . spatial summation followed by an output nonlinearity (Hubel &
Gabor functions of the general form (Ohzawa et al., 1997; Anzay, . ) ) )
et al., 199@,b; Prince et al., 2008) Wlesel, 1962; Movshon et al., 1978; Anzai et al., 18R9The

response of simple cells can be characterized with a RF function

p(X,y), which represents the level of excitation caused by a spot

of light at position(x, y) in the retina. Positive values @f(x, y)

correspond to an ON region of the RF, in which bright stimuli

cause the cell to increase its firing, and negative values to an OFF

A, w, and¢ are, respectively, the amplitude, spatial frequency, ano[egion, in_ which bright stimuli suppress firing and dark stimuli

phase of the carrier sinusoid, is the standard deviation of the mc_reas_e it. We represent the retinal lmage by the fun_dt(txny), .

Gaussian envelopél is the firing rate to binocularly uncorrelated which is the contrast bgtween the luminance at retinal pQS|t|on

stimuli, anddy is a disparity offset (the disparit§ at which the (x.y) and.t_he mean luminance averaged across the whole image.

Gaussian envelope is largest). Thus _posmve values of (x,y) represent bright features, while
Cumming and Parker (1997) quantified the effect of binocularr_'egat've values represent dgrk featur(_es. The response of_a purely

anticorrelation by using nonlinear regression to fit a linked pair“r?ealr simple cell ,WOUld be simply the inner product of the image

of Gabor functions to both the correlated and the anticorrelateﬁf"Ith the RF function:

data [eqn. (1)]. The disparity offset, baseline firing rate, spatial

frequency, and bandwidth of the two Gabor functions were con-

strained to be the same for both sets of data, but different values v= J dxdy 1(x,y)p(X,Y). (2

of the amplitudeA and phaseb were permitted. They then calcu-

lated the ratio of the amplitudes fitted to the correlated and

anticorrelated dataA,/A.. According to the energy model, this An array of such simple cells, with identical RFs situated at

amplitude ratio should be unity (Fig. 2). Cumming and Parkerdifferent positions across the retina, would encode the convolution

found that, in the majority of cases, it was less than 1 andof the image with the RF function. An individual simple cell

sometimes as small as 0.01. signals the value of the convolutienat a single point.

£(8) = Aexp— (8 — 80)%/(202)] cos[27e (8 — 8o) + ¢] + U.
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Fig. 2. Disparity tuning curves obtained with ODF model complex cells. The left-hand plot is for a “tuned excitatory”-type cell; the
right-hand for a “near” cell. The filled dots and solid lines represent the response to correlated stereograms, while the empty dots and

dotted lines that to anticorrelated stimuli; the horizontal line U shows the response to binocularly uncorrelated stimuli (these
conventions are used in subsequent figures). Other details are as described in the Methods.
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Notation opposite sign. Since [P68)]2 + [Pos(x)]? = x?, the effect of

Many simple cells are binocular, with RFs in both eyes. In generalComblnlng pairs Of. OMOFF cells in this way'Is to. rem_ov? the
half-wave rectification but leave the squaring nonlinearity:

the images incident upon the two retinas are different. We distin-
guish left and right images with the lab&landR. Similarly, a BS

cell has, in general, different RFs in each retina. Later notation Will S, + Sore = [0/ + 012 = [0/12 + [0{8 12 + 20¥ .
be streamlined if we use different labels to distinguish left and
right RFs from thoséL /R) used for images. We therefore use the
labelss/d (sinisteydextel) to label the RFs in left and right retinas.
Thus, the monocular convolutions are

(5)

Thus the total output of the pair of BS cells consists of left and
right monocular terms, each depending only on one eye’s image,
oS = ffdxdy (X, y)p®(X,y), and a cross-term, in which the left- and right-eye convolutions are
multiplied together.

(d) _ (d)
= || dxdy Ir(x X, Y). 3 .
R .U /IR y)p T (x) 3) Responses to dynamic RDS and flashed bars
In this paper, we are mainly concerned with the results of exper-
Linear binocular combination iments using dynamic RDS, such as those of Cumming and Parker
. 1997) or Poggio et al. (1985), in which the cell's response is
The energy model assumes that contributions from the left an veraged over many different image pairs that have the same
right retinas, as well as contributions from different regions of thedisparity and degree of correlation. For images such as dynamic
same retina, are Su”.‘meo' linearly. Thus,_the firing rate Of_ thq?DS, in which on average over time every point in the RF is
energy-model BS cell is ngt a general function of the ConV°|Ut_'°nsexposed to the same luminance distribution, the average value of
in left and rlgf;t eyed(v2,vR), but actually a function only of their the monocular terms does not depend either on the disparity of the
. S H H H
sum:f(v2 + vR). We refer to models with this property as showing images or on their degree of correlation or anticorrelation. They

linear binocular combination. Simple cells usually have low SPON-¢.- 1 the constant component of the disparity tuning curve, repre-
taneous firing rate so they cannot signal negative values. Theiéenting the cell’s response to binocularly uncorrelated imédes,
output is therefore the half-wave rectified sum of their inputs. o disparity-modulated component is given by the cross-term in
Ohzawa et al. (1990, 1997) proposed that a BS cell incorporates a&m' (5). This cross-term makes no contribution to the average
additional squaring_nonlinearity, so that its O_UtpUt is$lqe|areof_ response to uncorrelated images, since it averages to zero over
the half-wave rectified sum of left-eye and right-eye convolutlonsmany uncorrelated image presentations. The squaring nonlinearity
vL andug: has effectively multiplied the left eye’s input with the right eye’s

input, endowing the BS cell with its disparity tuning, which is then

S= [Pogv +vr)]2 (4)  exploited by the complex neurons.
The Ohzawa-DeAngelis-Freeman (ODF) energy model (Ohzawa

The energy model postulates that BS cells are combined in pairgt al., 1990, 1997) combines input from two pairs of BS cells, with
which we refer to as an ON cell and an OFF cell. Within each pair different RFs (Fig. 3):
the RFs in one simple cell are the inverses of those in the other
simple cell, that is, an ON region of one cell corresponds to an
OFF region in the other (Fig. 3), so that the convolutions have theC = G+ SSEe + SON + SORe = [ 12 + [k V12 + [0 ]2
+[oR V12 + 2[o " o + o2V 03], (6)

Left Right Binocular Complex where, as before, the subscripts indicate whether the(lefor
right (R) image was used in the convolution, and the superscripts
indicate which of four potentially different receptive fielgs'®,
pAd, p@s) », D The disparity-modulated component is given by
the cross-terms:

D(8) = 2[v{™ vg® + v V7. @)

The detailed behavior of this component depends on the choice
of the four RF functions. In the original papers, Ohzawa et al.
(1990, 1997) make various restrictions. They consider only RFs
which are Gabor functions. They require the center, orientation,
spatial period, and spatial extent of the Gabor to be the same in all

Fig. 3. Schematic diagram of the binocular energy model, based on thd0U" RFS, “to produce a sufficiently smooth binocular profile”
diagram in Fig. 3 of Ohzawa et al. (1990). The graphs show a cross sectiofPhzawa et al., 1997), and for each eye, they require a quadrature
through the monocular RFs in left and right eyes. These feed into binoculafelationship between the RFs of the subunits (thapi$? and
simple cells (‘BS’), which in turn feed into a complex cell (‘Cx’). p @ differ by /2 in phase, as dp®® andp®d).
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The energy model fails because it is too linear 10). Cells with¢ = 0 or 7 have even symmetry about the

. . . central disparitydy, whereas cells withp = +#7/2 have odd
Regardless of these details, we can note certain properties an mmetry (cf. Fig. 2). That is (witid, = 0), even tuning curves

model of this form must possess. First, inverting the contrast o ave the symmetnD(s) = D(—5) while odd curves have

both eyes’ images does not affect the cell’s response, consiste (8) = —D(~8). Restricting our attention to tuning curves that

with the experimentally measured behavior of examples of com- .

. are purely odd or purely even does not involve a loss of
plex cells (Ohzawa et al,, 1990, 1997). Second, eqn. (7) Irldlc"’ueseneralit since any function can be expressed as a sum of an
that the disparity-modulated componéhts inverted by anticor- gdd andy;in even c)(/)m onent. Thus. if vf/)e can construct model
relation. Each convolution is a linear function of the image, so thecom lex cells which igld dis. arit iunin curves with = 0
product of left and right convolutions changes sign without changeands) — /2, then by suitablp coymbining the inouts to these
of amplitude when the images become anticorrelated (Fig. 2), e n by sultably ¢ g the np

ells, we can obtain disparity tuning curves with any valuebof

Thus, no madel of this form can account for the attenuate t is helpful to make this restriction, because odd and even

response to anticorrelated stimuli. To achieve this, we need t?uning curves present different problems. In particular, as we
introduce some sort of nonlinearity into the disparity-modulated e ) !
now demonstrate, modifications to the energy model that pro-

term D(). . . . duce even disparity tuning curves with amplitude ratios of less
To understand what sort of nonlinearity might be necessary, Wean 1 do not necessarily have the same effect for odd tuning

need to consider the range of disparity tuning curves displayed b¥ ;
real complex cells. As already discussed, these are generally we prves.
described by Gabor functions [eqn. (1)]. In our modeling work, it
is convenient to begin by considering only tuning curves with zer
disparity offset (i.edo = 0). This involves no loss of generality—it
is trivial to obtain any desired, by shifting the monocular RFs.
Similarly, we shall not be concerned with matching the baselineAn unsophisticated way of creating an even-symmetric disparity
firing rate U to experimental data. In the results we present, thetuning curve (TE neuron) that shows an amplitude ratio less than
baseline firing rate may be larger, relative to the amplitude of thel under anticorrelation is to superimpose an output nonlinearity on
modulation, than typically observed. This could easily be adjustedhe standard ODF complex cell. Fig. 4 shows two examples. In the
by adding a final-stage output nonlinearity to the model complexleft-hand plot, the output nonlinearity is a threshold (Lippert &
cell, as in Fig. 4. Wagner, 2001); in the right-hand plot, the response of the ODF cell
Experimentally, many different values of the tuning-curve has been squared. The effect of the nonlinearity in both cases is to
phase¢ are observed (Ohzawa et al., 1997; Anzai et al., £999 enhance the response at high levels of excitation, relative to that at
Prince et al., 2002). Here, we concentrate on cells with= 0 low excitation. This emphasizes the peak of the curve and weakens
or 7 and¢ = +£7/2. In the terminology of Poggio and Fischer the side-flanks and troughs. Note that a different nonlinearity
(1977), cells with¢y = 0 would be classified as tuned excitatory would be required to explain the reduced modulation in Tl-type
(TE), cells with¢ = 7 would be tuned inhibitory (Tl), whereas cells. Instead of a threshold, as for TE cells, we would have to
those with¢p = +=7/2 would be near or far cells (cf. Figs. 8 & postulate a saturation; instead of an expansive nonlinearity such as

°A single output nonlinearity can explain even- but not
odd-symmetric tuning curves
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Fig. 4. The ODF model with an output nonlinearity. In the left-hand plot, the complex cell is given a threshblthe outputC of
the ODF model exceeds the cell fires at a ratéC — 6); if C < 6, it is silent. In the right-hand plot, the cell fires at a r@é The
underlying simple cell RFs are Gabor functions in quadrature, shown in Fig. 9.
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form of the RFs, merely on their symmetry about an arbitrary point
in the retina. The most general monocular RF can always be
expressed as the sum of an even and an odd component. The
resulting disparity tuning curve has a phase that depends on the
relative weighting of odd and even components in each eye.

The problem is that the initial linear stage of the ODF model
guarantees that responses of odd-symmetric tuning curves will
show the same degree of modulation for both correlated and
anticorrelated stimuli, in conflict with the experimental data. We
therefore consider alternative, more general ways of obtaining

disparity (degrees) even-symmetric and odd-symmetric tuning curves. The response
of any model complex cellC’) must be a function of the left and
Fig. 5. Experimental data from a complex cell with an odd-symmetric right images:C’ = C’(l.,lg). The actual form of this function

disparity tuning curve. Experimental details as in Cumming and ParkerdepemjS on the RFs in each eye. A sufficient—though not

(1997). The curves show the Gabor fit. This cell shows strong disparity, o ;e ssary—condition for a complex cell to yield an even disparity
tuning for correlated stimuli, and none at all for anticorrelated.

tuning curve is that its response to any stereogram remain the same
when the disparity is inverted by exchanging the left and right
images. Formally, to achieve even symmetry in this way, we

. . . . require that the functiol€’ (I, Igr) must be symmetric undearR
squaring, we would have to postulate a compressive nonhneanty .

. ., Interchange—that is, unchanged when the lakieland R are

such as square rooting. Such a model would therefore predict Sva ed:C/(IL.1r) = C'(Ir 1L). Swapping the labelt and R
systematic relationship between the shape of the disparity tuning - 2PPco-~ UL R Ro L/ pping

. . . o orresponds to exchanging the left and right images, not the left
curve and the nature of the nonlinearity. This prediction has noEnd right RFs (which are indicated with the subscrigis).

been tested experimentally but seems implausible. More signifi- One particular case of anR-symmetric complex cell occurs

gzlrl];l)\//;/i{ah (s)lgg_lg ?nul;%itri:(():Q;Z?)ngi/slsa:irlciﬁﬁ?r:e :Jr\fggi\tlrhuigﬂngwhen the left and right RF profiles are identical within all subunits
Y panty g ép(ls) = pd), 5@ = 5, @d) The even-symmetric complex cell of

N b O
o O O

firing rate (impulses/s)

o

also show reduced amplitude under anticorrelation. The outpu hzawa et al. (1990) (Fig. 2, left panel) has this property, meaning

nonlinearity necessarily has equal and opposite effects for crossef i S L :
; e - . that it is actually even-symmetric twice over: it is symmetric under
and uncrossed disparities, so that if it suppresses the modulati

for anticorrelated stimuli at crossed disparities, it correspondingly interchangeandit is made from combining subunits with the

. . o ; same symmetry in both eyes. If there is more than one subunit, a
boosts it at uncrossed disparities. Yet experimentally, there are y y Y ’

P model with LR interchange symmetry is capable of delivering
clear examples of such cells (cf. the extreme example in Fig. 5)iaven-s mmetric disparity tuning curves from complex cells even if
We asked what kind of model could, in principle, account for the y parity 9 P

response of these reduced-amplitude odd-svmmetric cells the left and right RF profiles within each subunit differ in their
P P y ' symmetry properties. Referring back to egn. (6), we see that if the

left RF of the first subunit has the same profile as the right RF in

General mechanisms for obtaining even the second subunit andce versa(that is, pS = p@d), p@s =
and odd tuning curves pA9), then the response of the complex cell [egn. (6)] can be
written as

To understand the possible effects of anticorrelation in odd-
symmetric cglls, itis first vital to understand the properties of the C = [9]2 4+ [8]2 + [2]? + [02]
model that give rise to the odd symmetry. In this section, therefore, L R L R

we co_n5|der_ how to obtain complex cells with even and odd + 2[uﬁ13)u,§15) +uﬁ25)vé}5)], 9)
disparity tuning curves.

The ODF complex cell is built from pairs of GRDFF BS cells. which is clearly unchanged when the labkelandR are swapped.

The disparity-modula_lted component C_Jf 5”?12) a&?“ is simply theAIthough models of this form produce even tuning curves, the
product of left- and _rlght-eye _convolutlon@L_ vg ). It can be curves can have a rather curious-looking shape that is not well
shown (see Appendix A) that if the left- and right-eye RFs are bOthdescribed by a Gabor function (examples are shown in Figs. 8 and

even, or both odd, abput a particular pglnt n the retina, then the10). Clearly, with more subunits still more possibilities would
product of left- and right-eye convolutions is, on average, un-

affected by changing the sign of the dispaiity arise.

More pertinently, the same general approach can be followed to
obtain odd disparity tuning curves. In order for the concept of odd
T v (8) = (¥ v)(=9). (8)  tuning curve to make sense, we need to make one additional
assumption about our general complex cell: that its response
That is, the sum of such an QRFF pair of BS cells yields an C’(I, ) can be divided into a disparity-sensitive tebBn(l, Ir)
even tuning curve. (To be precise, the tuning curve is even abowind a disparity-independent terbh representing the cell's re-
zero only if the leffright RFs are symmetric about binocularly sponse to binocularly uncorrelated images. Then, a sufficient (not
corresponding points in the left and right retinas; otherwise, thenecessary) condition for an odd tuning curve is that swapping the
tuning curve is symmetric about a dispamyycorresponding to the left and right images of an arbitrary stereogram changes the sign
position disparity between the centers of symmetry in each retinajput not the amplitude of the disparity-modulated term. Formally,
Conversely, if the RF in one eye is odd and the other even, a paive requireD’(l,Igr) = —D’(lg,1.). We refer to a function with
of ON/OFF BS cells yields an odd tuning curve (Appendix A; this property as being antisymmetric undeR interchange. An
Ohzawa et al., 1990). This result does not depend on the precisxample of such a function is the model of Ohzawa et al. (1990)
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with the RFs of the subunits related ' = p@d, p9 = Left Right Simple Complex
—p"Y. Then, eqn. (6) becomes Monocular  Binocular
C = [o{9]? + [of9]? + [9] + vi™12 i\
+ 2[00 29 4 29397, (10)
-1s]
The monocular, disparity-insensitive terms are clearly un- —&1+~~
affected by swapping the labels and R, while the disparity-
sensitive cross-terms change sign. Thus the disparity tuning
curve of this cell is odd. In the ODF model, egn. (10) is used (\2s
with p@® an even, andp® an odd, Gabor function. Such \/
a model is, again, odd symmetric twice over: it is antisymmet-
ric under LR interchange, and also the individual disparity-
modulated terms(v*® 02,02 v8¥) are themselves odd. /\ -2
However, theLR interchange antisymmetry is, on its own, suf-

ficient to yield an odd disparity tuning curve, whatever the RF

prqflles p(ls) and p,(ZS)' The only .reqUIrement IS that th_e sub- Fig. 6. Schematic diagram of our new model. Input from the retinal RFs is
units do not have identical RFs in the two eyes [in which caseot fed directly to BS cells, but is passeih monocular simple cells
the disparity-selective terms in eqn. (10) cancel]. (‘MS"). This introduces a rectifying nonlinearity prior to binocular com-
We note as an aside that the generation of odd-symmetrigination. In this paper, the computational results are from a model in which
tuning curves does not require a Gabor-like RF structure incorpomonocular simple cells signal the sum of their inputs provided this exceeds
rating ON and OFF regions. The fact that phase-disparity has oftea threshold. Initially we set this threshold at zero, that is, half-wave
been employed within the original ODF model to yield odd- r_ectifice_ltiqn; in later results we rai_se the threshold above zero. Q_ualita-
symmetric tuning curves risks giving the impression that phasey"ely similar results are obtained if the output of the monocular simple

disparity is necessary for odd tuning curves, and thus that Od((]ells is a threshold followed by a squaring nonlinearity, as for the binocular

. . . . . | lls (‘BS’). The circui h in this fi TE-
tuning curves provide evidence for phase-disparity. However anpie ce s (BS). The circuitry shown in this figure produces TE-type

. . .. Tdisparity tuning curves; analogous circuitry which produces ftiaatun-
counterexample is easy to construct. Imagine two tuned-excnatow|g curves is shown in Fig. 7.
complex cells like those in Ohzawa et al. (1990), with different
position disparities ensuring that they are tuned to different dis-
parities. Now consider a cell which receives excitatory input from
one and inhibitory input from the other. Clearly this will have an hierarchy,
odd-symmetric tuning curve, although for each binocular subunit

the phase-disparity is zero.

in which monocular simple cells feed into BS cells, this
is not formally required. We could equally envisage the BS cell
[egn. (11)] as receiving input directly from the lateral geniculate
nucleus (LGN), with the half-wave rectification implemented at
the synaptic or dendritic level.

As in the ODF model, we construct a complex cell which
receives input from four such simple cells, two pairs of matching
We have seen that in order to obtain an attenuated response t9N/OFF cells:
anticorrelated stimuli within the basic framework of the original
ODF model, we must add a nonlinearity to the binocular simple (1) (1s) (1d)\1 2
cell. Out of many potential choices for such a nonlinearity, one Son = [Podu ™) + Podug )]

Whl(_:h seems partlcula_rly stralghtforward_ and biologically plau5|- L = [Pog—uv™) + Pog—v29)]2, (12)
ble is the case where input from the retinal RFs passes first to a
monocular simple cell rather than feeding directly onto a BS cell. ) (29) (2d)2
BS cells would then receive input from two monocular simple Son = [Podv”™) + Posiug )]

cells, as _sketched in Fig. 6. The effect of this is that the mono'c_ular SSE)F _ [Pos{—vﬁzs)) + Pos(—véfd))] 2 (13)
convolutions [eqn. (3)] from the two eyes are half-wave rectified
beforebeing combined. That is, the firing rate of each BS cell is
now given by

A new model: Monocular simple cells prior to binocular
combination

The response of the complex cell is, again, given by the sum of the
firing rates of the simple cells [egn. (6)].
This is now equal to

S’ =[Podv,) + Poquvg)]? (112)
C'=[w]? + [br V12 + [ + [ ']
[cf. eqn. (4)].
For simplicity, we have assumed that the monocular simple + 2[Pogv*®)Podvd?) + Pog—0v*¥)Pog—v ")
cells implement only half-wave rectification. In fact, we have
found that qualitatively similar results are obtained if, like the + Pogv*? Posvg ") + Pog—v*)Pog—vg™)].  (14)

model BS cells, they also include a squaring nonlinearity. The key

features of our model do not depend on the precise form of the The monocular terms are the same as in the ODF energy model,
point nonlinearity prior to binocular combination. Similarly, al- but the cross-terms are half-wave rectified. As in the ODF model,

though it seems natural to interpret our model in terms of athe combination of ON and OFF simple cells ensures that the
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response of our complex cell is unchanged by inverting the conthe monocular simple cells at all, and so the complex cell’s firing
trast in both eyes. Thus, the model responds equally well taate peaks. In contrast, for anticorrelated stimuli at zero disparity,
binocularly presented bars regardless of whether they are botthe disparity-modulated term is always zero, meaning that the
bright or both dark. Once again, we can divide the response of théring rate is minimum. Thus, this disparity tuning curve is of the
complex cell into a component that arises from the four monoculaiTE type. It could be converted into a Tl type merely by inverting
terms and does not depend on disparity, and a component that ike RF profiles in one eye, since the response previously obtained

disparity modulated: with anticorrelated stimuli would now be obtained with correlated
stimuli. However, since the original cell is empirically found to
D'(8) = 2[Pogv™)Pogvil") + Pog—v*)Pog— @) have an amplitude ratio less _than 1 (cf. Figs 8, 10, & 12), th_e
Tl-type tuning curve thus obtained would have an amplitude ratio
+ Pogv*)PoqvE?) + Pog—v/*)Pog—vE™)] of greater than 1.

To obtain Tl-type and odd-symmetric tuning curves which
(15) show reduced amplitude to anticorrelated stimuli, we need to
modify eqn. (15) by introducing minus signs. Although the math-
[which may be compared with egn. (7) for the ODF model]. ematics is straightforward, the circuitry is slightly more complicated.
The monocular half-wave rectification causes important differ- ~ To implement a minus sign in egn. (18), we must include
ences in the behavior of the disparity-modulated term. For binocsimple cells that receive an excitatory input from one of the
ularly uncorrelated images, these cross-termsatmow average half-wave rectified monocular RFs but a subtractive inhibitory
to zero. Thus, the response to uncorrelated images consists ofi@put from the other eye:
contribution from the four monocular terms in egn. (14), as in the
ODF m_odel, plus a c_ontnbqun from _the 'dlsparlty-mod_ulate_d S’ = Pos[Po&, ) — Podvg)]. (16)
term. With correlated images, the contribution from the disparity-
modulated term is suppressed at some disparities and enhanced.r%t
.. . . . |
others. This is why a model of this form can produce dlspantythe

) . ir BS cells receive both excitatory and inhibitory influences
tuning curves which go below the uncorrelated level, even thoug - . . . .
! . " . . rom each retina. Thus if the convolution of the image with the RF
the disparity-sensitive component in egn. (15) is clearly never,

. is negative in one eye, it has a subtractive effect on the simple
negative.

. . . . . . cell’'s firing rate. In our model, since we are half-wave rectifying
With this model, anticorrelation no longer simply inverts the - .
. . . . the convolutions from each eye before they are combined, sub-
tuning curve. Changing the sign of all thgin eqn. (15) does not

simply change the sign @'(8) as it did in egn. (7). Furthermore, tract_lon must be_t_)unt in explicitly by using m_hlblFory_ln_tercon
. . o nections. An additional overall half-wave rectification is included
we can see how this model might be capable of giving an atten: . . ST
to prevent the model simple cell from having a negative firing rate.

uated response to anticorrelated stimuli. For instance, consider th@ ; . o
N . . - nce again we can effectively remove the half-wave rectification
situation where, for a particular correlated image pair, the convo,

. : e N > 2
(1s) 49 are both negative, while® andu2® are by combining BS cells in pairs: [P08)] * + [Pos(~x)]* = x2 For

lutions v andv instance, we can combine six BS cells to obtain a complex cell
both positive. Then the disparity-modulated componeftis, = ' . P
whose response is

2002 o8 + 12927, 1f we now invert the contrast of the
right image, the response vanishes altogetbég;; = O.

This observation merely illustrates that it is possible for this C' = [Posu{™®) + Posvg )] + [Pod—v(*) + Pog—ug®)]?
model to generate weakened responses to anticorrelated stimuli. 28 2d
By itself, this observation does not guarantee that the amplitude of + {Pos[Po(*?) — Posug™ )} ?
the tuning curve will actually be zero for anticorrelated stimuli, or + {Pos[Pog-v{*®) — Pog—vg)]}2
even that it will be less than the amplitude for correlated stimuli.
29 and v§?, andv{®® and + {Posf-Pogv{*?) + Pogv")]}?

For instance, if the convolutions
+ {PosF-Pog—v{®®) + Pog—uv&¥)]}2 17)

s possibility is automatically built into the ODF model, because

u,&zd), haveoppositesign, then the situation is reversed and this
time D¢y = 0. The degree of attenuation for anticorrelated stimuli
thus depends on how likely it is that the convolutions in the WO 6 e setp9 = p@d) andp@ = A the disparity-modulated

eyes have the same sign when the stimuli are correlated. This Worm is antisymmetric unddrR interchange, and so the complex

turn depends on the particular form of the RFs. As we shall . . . . o
Ilyiel .Th ketch
demonstrate (Figs. 8, 10, & 12), plausible RFs can be chosen fo%e yields an odd disparity tuning curve. The circuitry is sketched

: I . . in Fig. 7.
which there is significant amplitude attenuation. Thus, we have a family of models which is capable of giving

disparity tuning curves of all four general types: /TE (even

Generalizing to arbitrary tuning curves symmetry) and nedfar (odd symmetry). We use complex cells

. . . ) . whose output can be written as
It is easy to obtain a TE-type disparity tuning curve from the cell

just developed. With the relations™® = pQd), p9 = p@d) , s ) . 1)
between the RF profiles in the different eyes, the disparity- C' = [Posui™™) = Posug™)]? + [Pog—uv™™) + Pog—uvg“)]?

modulated term ?n [egn. (15)] becomes symmetric unUE&l . + [Pogv®) + Pogv2?))]2
interchange, and is thus even. Furthermore, for correlated stimuli
its tuning curve peaks at zero disparity, since then the left and right + [Pog—v%®) + Pog—v&?]2 (18)

images are identical and 80" = v5?’ (= v™®, say). This means
that the disparity-modulated term [egn. (15)] become® 2])2 + The pattern of the four plus and minus signs in this equation,
(v@)2?]: that s, it is positive (not zero) for any image which drives together with the relationship between the RFs, determines the
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Left Right Simple Complex ships between the RF profiles. We highlight the following spe-
Monocular Binocular cial cases:
1s 1d MS - e For TE/TI-type tuning curves which have even symmetry about
AN the disparitydo:
MS parityoo
s -1d—MS Déver(d) = +2[Podu*¥)Posvg ) + Pog—v(*)Pod—ug")
i BS + Pogv*)PoguvE?)
MS L R
+ Pog—u{*)Pog—vg")], (19)
\2s 2d—AMS BS ] "
Y, N with p9(x,y) = p@@(x + 8,y), p®(x,y) = p@V(x +
MS BS 80, Y); the £ controls whether the tuning is TEH or Tl ().
A s o MS BS e For ngayfqr-type tuning curves which have odd symmetry about
X the disparitydo:
/ MS BS

Déaa(8) = £2[Posu{"¥)Posvg ) + Pog—v{*¥)Pod—ug")
Fig. 7. Schematic diagram of our new model that produces odd disparity (2s) (2d)
tuning curves in which the response to anticorrelated stimuli may be — Podu ™) Posug ™)
reduced. Although the example RFs in this figure have phase-disparity, this _ Pos(—uf_ZS))Pos(—u,(fd))], (20)
is not a prerequisite for odd disparity tuning curves. The solid dots
represent inhibitory connections. The circuitry is slightly more complicated  yjith ,p9(x,y) = p@D(x + 85,y), p@(x,y) = pAD(x +

than the equivalent for TE-type tuning curves (Fig. 6), even though 80, Y); the = controls whether the tuning is near)or far ().
mathematically the difference between them is trivial. Briefly, the odd

model involves thedifferencebetween positive quantities, whereas the * FOr tuning curves_with_a central notch which have even sym-
even model involves the sum. Owing to the rectification at the simple cells, Metry about the disparitgo:

computing differences [usingA — B) = PoJA — B) + PogB — A)]

requires tw_ice as many gells as computing sums. To_ adapt this mod_e_l for Diyver(8) = iZ[Pos(uﬁls))Pos{v,(qld)) + Pos(—vﬁls))Pos(—v,(qm)
TI-type tuning curves, eight BS cells would be required, each receiving

excitatory input from one eye and inhibitory input from the other. + Pogv*®)PoqguE?)
+ Pog—v(*?)Pog—vi)], (21)
with p@9(x,y) = p@D(x + 8o,y), p?(x,y) = p(x +
type of tuning curve. If left and right RFs are identiggl*® = 8o,Y); the £ controls whether the side-flanks are positive or
pd) p9 = ;@) and all the signs are positiver(+ + +), negative.

eqgn. (18) becomes the same as eqn. (14), representing a TE-type
cell. With the same RF relations but all signs negative{ — —), Simulation results
the disparity-modulated term is inverted, so we obtain a TI-type
cell. With patternst++—— or ——++, together with the relation- Having constructed our model complex cells, we performed nu-
shipsp®® = p@d andp®@ = p19 the complex cell response is merical simulations to determine their responses to correlated and
antisymmetric undekR interchange, and therefore yields an odd anticorrelated random-dot stereograms. Figs. 8 and 10 show the
(near/far) disparity tuning curve. numerical simulations of all six types of tuning curve specified in
However, if we combine the pattera+++ or ———— egns. (19)—(21) (wittdy = 0) to illustrate the point that the new
with the RF relationshigp@®® = p®@® and p®¥ = pA9 we  model shows an attenuated response to binocularly anticorrelated
obtain a different type of even tuning curve, which is not well random-dot patterns. In Fig. 8, the underlying RFs (shown in
described by a Gabor function; it usually has a notch at theFig. 9) are Gabor functions like those employed by Ohzawa et al.
central disparity, flanked by side peaks. A few disparity tuning (1990, 1997), differing in phase by/2. In Fig. 10, the underlying
curves similar to this have been observed in the barn owRFs (Fig. 11) consist simply of a single Gaussian.
(Nieder & Wagner, 2000). Although they appear to be rare in It is apparent in Figs. 8 and 10 that greater amplitude attenu-
the monkey (Prince et al., 208 it is possible that some ation is obtained with the Gaussian RFs than with the Gabor. This
examples have gone unrecognized because of limited samplingflects a general tendency, within our model, for amplitude ratios
of the tuning curve in the experiments. to be smaller when the RFs have large spatial-frequency band-
To generalize to disparity tuning curves incorporating a non-width. In the limiting case where the RFs have infinitely narrow
zero disparity offsefy, we simply have to shift the RFs in one eye bandwidth, that is, are sinusoidal gratings of infinite extent, it
by &0. To obtain tuning curves with intermediate phaseve can  can be shown that the amplitude of the disparity tuning curves is
postulate a complex cell receiving input from multiple simple the same for correlated as for anticorrelated patterns (amplitude
cells, some subgroups of which have the even-type connectivityatio 1), even for our modified version of the energy model. This
(Fig. 6) and others the odd (Fig. 7). means that Gabor RFs with obvious side-lobes rather than low-
To summarize, all our model complex cells include a dis- pass RFs tend to give amplitude ratios closer to 1, as exemplified
parity-independent componefity*®12 + [v5" 12 + [v*)]2 +  in Figs. 8 and 10.
[v&"12]. The disparity-modulated component depends on the Note that, when Gabor RFs are used with the “notch” form of
choice of pluses and minuses in eqn. (18), and on the relationthe model [egn. (21)], the anticorrelated tuning curve is not
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Fig. 8. Our new model with Gabor RFs (shown in Fig. 9). The six types of disparity tuning curves were obtained as explained in
egns. (19)—(21). For ne#dar-type tuning curves, only very slight attenuation is obtained with these RFs.

inverted. With the 1.5 octave bandwidth used here, it is virtuallyinteracts with the anatomy of the notch model, requires more space
identical to the correlated tuning curves; with a broader bandwidtithan is warranted here, given that double-peaked cells are uncom-
it would have smaller amplitude. The explanation for this, which mon and their responses to binocular anticorrelation are unknown.
depends on a detailed consideration of how the Gabor RF structure

A higher threshold yields smaller amplitude ratios
With the model in the form developed so far [egns. (19)—(21)],

c _50 1 we have not been able to find RFs that yield amplitude ratios
o much smaller those shown in Figs. 8 and 10: around 0.5 or
S 0.5 greater. Thus our model is not yet capable of matching the full
ol 0 0 range obsgrved experimental!y. Cumming _and Pgrker (1997, Fig. 4)
@ found a wide range of amplitude ratios, including a few greater
% -05 than 1 (the cell responded better to anticorrelated than to corre-
o 50 ' lated stimuli), and a few as low as 0.01 (there was hardly any
-1 response to anticorrelated stimuli). Our model is, of course,
-50 0 50 -50 0 50 capable of producing amplitude ratios greater than 1, simply by
changing the sign of all the right-eye convolutions in eqns. (19)—
1 (21). To produce amplitude ratios below 0.5 and approaching
c -50 zero, we must strengthen the half-wave rectification by raising
2 05 the threshold: that is, we now assume that the monocular simple
2 cells fire only if the net retinal input exceeds a threshéld- 0.
2 9 0 Thus the response of the BS cell is
S
3 o 05 $ = [Posu, — ) + Posur = 0)]2 22)
=50 0 50 -50 0 50

. o We note that a similar threshold is also required in the ODF model
horizontal position horizontal position [egn. (4)] in order to produce the correct response to binocular

] o ) o o ) drifting sinusoidal gratings. If the fundamentéF;) harmonic
Fig. 9. Receptive fields used in obtaining the disparity tuning curves shownComponent of the cell's response at the temporal frequency of the

in Fig. 8. The left-hand images show the full RFs as a function of position | ... L . .
in the retina. The plots on the right show a horizontal cross section througt‘wjrnctlng grating is measured as a function of interocular phase, then

the RF profiles. In obtaining the TH| even tuning curves (left-most plots the ODF model simple gell predicts that’ the magr_"tUdeFQf
of Fig. 8), the upper RF profile was assignedg@® and p®, and the should be a constant fraction of the neuron’s mean firing (&
lower to p@ and p@. In obtaining the odd and “notch” even tuning fegardless of the interocular phase. Experimentally, for many cells

curves (middle- and right-most plots of Fig. 8), the upper RF profile wasthis ratio shows clear variation as a function of interocular phase.
assigned tp™® andp®¥, and the lower tp®® andp19. A threshold higher than zero is required to reproduce this variation
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Fig. 10. Our new model with Gaussian RFs (shown in Fig. 11). The six types of disparity tuning curves were obtained as explained
in egns. (19)—(21).

with an ODF-like model in which binocular combination is linear Pogx — #). Once again, the tuning curve has a constant compo-
(see Appendix C). nent that represents the response to uncorrelated stimuli, although

The disparity-modulated component of the tuning curve stillthe magnitude of this constant is affected by the threshold. By
follows egns. (19)—(21), but now every Ra$ is replaced by choosing a high enough value for the threshold, we can obtain
almost arbitrarily small amplitude ratios. An example is shown in
Fig. 12. With the Gabor RFs shown here, the ré&arcells retain
some anticorrelated response even with the present high threshold.
With Gaussian RFs and a similarly high threshold (not shown),
none of the cell types show any modulation for anticorrelated
stimuli.

We take this opportunity to explain the unorthodox choice of
phases for the Gabor RFs (Fig. 9). The ODF model has the special
property that its response depends only on the phase-disparity
between left and right RFs, not on the phases themselves. Thus,
0 previous workers have restricted themselves to RFs which are
50 -50 0 50 purely odd or purely even, with no loss of generality, even though
many physiological cells have RFs with intermediate phases. This
1 property is not true of general models. The response of our
modified model depends, in general, on the phase of the RFs in
each retina, even for a given phase-disparity. The results shown
here were obtained using RFs with a phasetof/4 (Fig. 9).

0.5 These produce an amplitude ratio of around 0.9 with a threshold of
zero (Fig. 8), and 0.2 with the higher threshold used in Fig. 12. If
we used RFs with a phase of 0 in one eye afid in the other, we

I
[4)]
o

0.5

vertical position
o

wn
o

|
o
o
o

-50

vertical position
o

50 would obtain an amplitude ratio of exactly 1, no matter how high
0 we raised the threshold. This property is extremely general: it can
'50_ 0 _50 -50 0 50 be shown (Appendix B) that, faany model built from convolu-
horizontal position horizontal position tions of the images with RFs, even incorporating monocular

nonlinearities which are different in the two eyes, the combination

Fig. 11. Receptive fields used in obtaining the disparity tuning curves ¢ o purely odd RF in one eye with a purely even RF in the other
shown in Fig. 10. The left-hand images show the full RFs as a function of,

position in the retina. The plots on the right show a horizontal cross sectior‘leye must produce an amplitude ratio of 1.
through the RF profiles. The position disparity is 16 pixels. In obtaining the
TE/TI even tuning curves (left-most plots of Fig. 10), the upper RF profile Complex cells summing many simple cells

was assigned tp®® and p®®, and the lower top®® and p@¥. In , o )

obtaining the odd and “notch” tuning curves (middle- and right-most plots The ODF model predicts that the disparity tuning curve should
of Fig. 10), the upper RF profile was assignedptd® andp@®, and the ~ undergo a phase shift af when the stimulus is anticorrelated.

lower to p® and p™¥. Experimentally, although many complex cells do indeed show
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Fig. 12. Our modified model with threshold. The monocular simple cell RFs employed are Gabors, shown in Fig. 9. The monocular
simple cells had a high threshold, such that they fired in response to only around 1% of images. The tuning curves shown here represent
the mean response to 500,000 stereograms.

phase differences close t6, others clearly do not (Cumming & Behavior of BS cells constructed from monocular simple
Parker, 1997). We can combine model tuning curves with signif-cells
icant amplitude attenuation to obtain new complex cells that will
exhibit intermediate phase differences. One example is shown ilWe have envisaged our model complex cell as receiving input
Fig. 13. Even and odd versions of our model, incorporating a higifrom BS cells in which the combination of inputs from the two
threshold, were used to obtain the first two plots. The third ploteyes is nonlinear [egn. (22)], owing to a half-wave rectification
shows the sum of the even and odd curves. The result is an evérefore summation. Although there are some clear examples in
tuning curve for correlated stimuli, and a odd-symmetric curve forthe literature of simple cells whose properties are hard to rec-
anticorrelated stimuli. The circuitry is plausible: it assumes onlyoncile with anything other than a linear binocular combination
that several subunits feed onto the same complex cell, an extensig@hzawa & Freeman, 1986), other simple cells may show non-
of the energy model already proposed by several workers (Zhu dinearities of the form we propose. In fact, it is not critical to
Qian, 1996; Fleet et al., 1996; Qian & Zhu, 1997). our model of complex cells that the postulated BS cells should
Our model also retains an important property of the originalactually exist as individual neurons in the brain—a complex cell
energy model. With a combination of many subunits, whose RFsvith the properties described by our model could conceivably
have the same phase-disparity but random overall phases, thee built with input directly from monocular simple cells or from
response to drifting gratings is not modulated, as observed expethe LGN, with the necessary nonlinear combination being achieved
imentally for complex cells. at the dendritic level. If they do exist, however, the proposed BS

20

Fig. 13. The left plot shows results from the TE-type model shown in Fig. 12. The middle plot shows results from a far-type model
similar to that shown in Fig. 12, except that the model has been adapted to fire more to anticorrelated than to correlated stimuli, by
changing the sign of the right-eye convolution wherever it occurred in eqn. (20). The right-most plot shows the sum of the previous
two plots, representing a complex cell receiving input from ten BS cells. Other details are as in Fig. 12.
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cells would have a number of interesting properties, which we Column 2 in Fig. 14 shows model simple cells which receive
consider here. excitatory input from one eye and inhibitory from the other. These
Fig. 14 shows the responses of various model simple cells tavere postulated in order to explain the existence of complex cells
disparate drifting sinusoidal gratings. The phase difference bewith odd disparity tuning curves and attenuated response to anti-
tween the left- and right-eye gratings varies from 0 deg to 330 degorrelated stimuli. Such a model can explain the existence of cells
in 30-deg steps, as indicated to the left of each row. The differenthat show no response to monocular stimulation in one of the two
columns show results for different model simple cells: the ODFeyes, but are nevertheless sensitive to the interocular phase differ-
binocularly linear simple cell on the left, and then two of our ence. The model simple cell shown in column 2, for example,
modified simple cells, in which the nonlinearity occurs before clearly responds to stimulation in the right eye only if the stimu-

binocular combination: lation in the left eye exceeds some threshold. If the left eye is
shown a gray screen and the right eye a drifting grating, the neuron
S= [POS(UES) + v,%d))]z does not fire at all, whereas with binocular gratings it is sensitive

to interocular phase (Fig. 14). It is common to find disparity-
selective neurons that appear to have only monocular responses
when each eye is tested separately (Ohzawa & Freeman, 1986). By
itself, this observation might be explained by a high threshold
S = [Pogv” + Poduy )12 (23)  applied after binocular combination. However, in some examples

S’ = [Pos{Pogv,”) — Pogvs )12
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Fig. 14. Responses of model simple cells to drifting sinusoidal gratings. The different columns are for different models, as specified
in eqgn. (23), with Gabor RFs. The phase of the right eye’s grating atttim® was the same in every row; the initial phase of the

left eye’s grating (the interocular phase difference) is indicated to the left of each row. The response is shown over two temporal periods
of the stimulus.



748 J.C.A. Read, A.J. Parker, and B.G. Cumming

(see Prince et al., 2002 Fig. 4c and Discussion) comparison of Detecting a nonlinearity prior to binocular combination
binocular and monocular responses indicates that the result of
stimulation in one eye is always suppressive. This indicates thaiVe reexamined data from 117 disparity tuned neurons from V1 of
the output of the monocular RF is passed through an inhibitoryawake monkeys, tested with drifting gratings at multiple disparities
synapsafter half-wave rectification, exactly as occurs in the new (Cumming & Parker, 2000). Of these, 38 neurons were classified
model. as simple on the basis that the: F, ratio exceeded 1 for at least
Column 3 in Fig. 14 shows the behavior of model simple cellsone disparity tested.
receiving excitatory, half-wave rectified input from both eyes. Fig. 15 shows sample data from one example. At [OF
Such cells are used in our models of both even- and odd-symmetri@pper plot), the cell displays typical simple cell behavior, respond-
complex cells. They show characteristic changes in the pattern ahg with one burst of spikes in every period of the stimulus. But
response modulation when presented with drifting sinusoidal gratwhen the 10P is half a cycle (lower plot), the cell responds with
ings of different disparities. Although thg response of such a cell two bursts of spikes for each stimulus period. Fig. 16 shows data
is generally similar to that of the ODF linear-combination model, from three of our 38 simple cells which showed clear evidence of
its F, response (at twice the grating frequency) is clearly verymodulation at the second harmonic of the temporal frequency.
different. For a particular interocular phase difference, its respons€urthermore, a clear progression is observed between modulation
is a full-wave rectified sinusoid, rather than the half-wave rectifiedat the fundamental frequency and modulation at the second har-
sinusoid predicted by the linear-combination model. This occursmonic, as interocular phase alters. These neurons behave more like
when the phase difference between the gratings is such that theur model frequency-doubling cells (Fig. 14, column 2) than
convolutions with the RFs in each eye are equal and opposite. Ithe ODF simple cell (column 1). For 13 of these 38 cells (34%),
the linear-combination model, left- and right-eye contributionsthe ratio of the response at the second harmonic to the response
cancel out to give a null response. In our model, one eye at a timat the fundamental frequenck,: F;, was greater than 1 at the
contributes, giving the frequency-doubling to a drifting grating. disparity where thé; response was minimal. This is exactly what
This very striking disparity-dependent frequency-doubling has notjs predicted by our model, whereas for the ODF model, and a set
to our knowledge, been previously reported. of generalizations of it which retain the property of linear binoc-
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Fig. 15.Cell hg136.0. The monkey was viewing sinusoidal gratings with a spatial frequency of ¥Ydgglat an orientation of 60 deg

to the horizontal, drifting at a rate of 4 cyclsgc. This figure shows results from two stimulus presentations, at IOP of zero (top plots)
and half a cycle (a disparity of 0.58, deg lower plots). The long plots on the left show all the spikes recorded during a 2-s window
beginning 50 ms after the presentation of the stimulus. The superimposed sine wave (thin line) shows the temporal frequency of the
stimulus. The heavier line below shows the estimated firing rate reconstructed from the spike density function obtained after folding
all spikes back into one stimulus temporal period (right-hand plots).
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Fig. 16. The columns show the response of three different simple cells to drifting gratings. The first column is for the same cell as in
Fig. 15. Each row shows the spike density function for a different interocular phase (indicated to the left of each row), as a function
of time (in units of the stimulus temporal period). The drifting gratings are described, at the top of each column, by their spatial
frequency, in cycles per degree, temporal frequency, in cycles per second, and orientation, in degrees to the horizontal. The axes are
scaled differently in each panel, since the frequency-doubling generally occurs for the lowest firing rates, and so otherwise would be
obscured.

ular combination,F,: F; can never exceed 1 (Appendix C). A null hypothesis. Applying a threshold after binocular summation
detailed statistical evaluation of the significance of this finding iswill also reduce the observde: F; ratio for our model neuron, so
made difficult by several factors. First, the data were not collectedhat there are circumstances in whigjt F; never exceeds 1, even
with this question in mind. Larger numbers of repetitions would befor simple cells constructed in accordance with our model. None-
desirable for estimating the temporal modulation in the responseheless, at least some BS cells behave as if they receive input from
The need for extensive data is exacerbated by the fact that th@onocular simple cells which themselves have output nonlinearities.
model predicts the greateBt modulation for the disparity that
produces the weakest response. Second, quantitative eStimationﬂ?scussion
complicated by fixational eye movements which occur in the

awake monkey. Finally, the predictions of the ODF model dependrhe otherwise successful energy model of complex cells fails to
on the size of the threshold that is applied after binocular combi-explain the response of all V1 neurons to anticorrelated random-
nation (Appendix C), so it is not easy to formulate an appropriatedot stimuli (AC-RDS). Most of these cells show amplitude ratios
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less than 1, whereas the energy model predicts an amplitude rataffected by global matching. They used sine-wave grating stimuli
of exactly 1. We show that a simple modification of the model— presented within circular apertures, chosen to be larger than the
which may be interpreted as constructing BS cells from the output®F. If the stimuli are displaced by one spatial period of the grating,
of monocular simple cells—reproduces the behavior of thosdhe portion of the image within the RF is unchanged, but the
cortical neurons which are incompatible with the energy model. Ofdisparity of the aperture means that the depth of the stimulus is
course, the energy model may still be valid for those cells whichunambiguous. Cells’ responses depended essentially only on the
show amplitude ratios of 1. V1 may contain a mixture of energy-stimulus within their RF, arguing against feedback from higher
model units and units of the form proposed here. According to thisareas. Thus, there are now several converging lines of evidence to
hypothesis, neurons showing strong evidence of linear binoculasuggest that binocular responses of V1 neurons are primarily
combination should always have amplitude ratios close to 1. Thigccounted for by the local anatomical connections within V1.
has yet to be examined experimentally. The present work strengthens this conclusion. We demonstrate
Anti-correlated stimuli, which do not support depth perception,that a straightforward modification of the energy model can ac-
are of special interest because of the insight they provide into theount for the response of V1 complex cells to both correlated or
solution of the correspondence problem (Cumming & Parkeranticorrelated stimuli. This physiologically plausible, purely local
1997; Read & Eagle, 2000). They contain many false, localmodel can produce disparity tuning curves of every observed
matches, but the visual systems of humans and monkeys are unalgbase, including those in which anticorrelation introduces a phase
to discover any global solution. For human observers, anticorreehange other tham, which exhibit reduced amplitude for anticor-
lated stereograms do not result in a segregated depth percept iialated stimuli.
which “cyclopean form” (Julesz, 1971) can be perceived. By
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Transforming the dummy integration variables> —x, x" — x’ makes no
difference, so we can write

Appendices
(vaenvgddﬂfa) — ffdxdyffdxrdyfﬁ(,x +Xx' +8,y-Y)

A: Symmetry of coqvolutlon products with X peve(—x, y) pod(—x',y'). (A5)
even-/odd-symmetric RFs

In the basic Ohzawa-DeAngelis-Freeman (ODF) energy model, convoluNOW using the stated symmetry of the RFs and of the funcfipwe find
tions from the left and right eyes are added, then squared. The squarintﬁ'a‘t
results in two terms involving one eye only, plus one cross-term in which
contributions from the left and right eyes are multiplied together. On oven. od B L , ,
average, the sum of the monocular convolutions cannot depend either diC"“"2R")(~8) = ffdxdyffdx dy’L(x+x" —8,y=Yy')
the disparity between the two retinal images, or on their correlation. It is
the cross-term that contains any dependence on binocular disparity. X p®YeN(x,y) p°lUx,y") = — (RN (8).  (A6)
In this appendix, we consider the situation where the receptive-field
(RF) functions possess pure even or odd symmetry about a point in th&hus, the producty£'¢"wg% is an odd function of disparity.
retina. We prove that if one is even and the other is odd, the disparity tuning  Precisely analogous manipulations show that, if left and right RFs are
curve is odd (see Results, p. 736). It is also easy to show that if both RFboth even, or both odd, then the convolution product is an even function of
are even, or both odd, then the product of their convolutions yields an evedisparity. Note that, in contrast to theR symmetry discussed in the
disparity tuning curve. For convenience, we assume that all RFs ar®esults, none of these results require the RFs in different eyes to be related
symmetric about the retinal position zero. Relaxing this assumption simplyin any way. They must simply be individually either even or odd, as
shifts the central disparity, of the tuning curve. indicated. General RFs may be handled by expressing them as a sum of an
The convolution of a retinal image with an RF was defined in eqgn. (3).even and an odd component. (Note that the results may not always be
We now average the product of left and right convolutions over manyinteresting. For instance, if the left and right RFs have spatial periods
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separated by many times their bandwidth, they will effectively see uncor-mirror-imagel (—x, y). This means that the mean response obtained with
related images. In this case, the convolution product will, on average, banticorrelated patterns at disparityd must be the same as the mean
zero. A function which is everywhere zero is both even and odd. Thus theesponse obtained with correlated patterns at dispar8ly The effect of
results still hold formally, even though there is no disparity tuning.) anticorrelation is simply to reflect the disparity tuning curve about zero
disparity. If we generalize to allow the RFs to be odd- and even-symmetric
about arbitrary points in the retina, anticorrelation reflects the disparity
tuning curve about a nonzero disparity equal to the position disparity of the
RFs. Thus, in order to obtain amplitude ratios less than 1 from any model

We consider a very general model, built from a combination of binocular®f this very general type (30), we must avoid pairing pure-even with

subunits whose output depends only on the convolution of the image witfuré-0dd RFs. Phase-disparities f2 are capable of giving amplitude
the RF in each eye: ratios<1, provided that the phase-disparity is not achieved with a phase of

/2 in one eye and a phase of 0 in the other. This is why, in Fig. 9, the RFs
are chosen to have phases-ofr/4.

B: Even-/odd-symmetric RFs always yield amplitude
ratios of 1

c=3 ™ v, (B1)
J

C: Fourier analysis of the response of model simple cells
where thef; are arbitrary functions of two variables. The ODF model is a 4 drifting gratings

special case of this class, but so is our modified model which includes
nonlinearities prior to binocular combination. We derive the Fourier coefficients characterizing the response, to drifting
In this appendix, we shall show that if within each subgnine eye’s  sinusoidal gratings, of model simple cells in which binocular combination
RF has pure even symmetry and the other has pure odd symmetry aboistlinear. We consider a binocular simple (BS) cell whose response is given
some point on the retina, then the effect of anticorrelation is simply toby
reflect the disparity tuning curve about some disparity. It follows that the
amplitude ratio is necessarily 1.
To prove this claim, we write the convolutions for one subunit in terms
of the Fourier transforms of the images and RFs:

S=[Poguv,_+ vg— 0)]". (C1)

This is a generalization of eqn. (4) to include a threshlghich may be
greater than zero, and an arbitrary powermote that the nonlinearity is

(s _ * “ ~(s) e introduced after binocular combination.
o dey[w dkRe{ 59 (k, )1 (K, )}, The cell is stimulated with drifting sinusoidal gratings:

*© *© N : 1(x,y,t) = sin(kyx + kyy — ¢ + wt). Cc2
ok = [Coy [ deretp @y kye) (@2) Gyt = sinllox+loy = ¢ + o) ©2
In general, the phas¢ is different in the two eyesA¢ = ¢ — @R is the
where the tilde represents a one-dimensional Fourier transform along thiaterocular phase difference. The convolution in egn. (2) of the grating with
same axis« along which disparity is applied: the RF is given by

flky) = f_mdxf(x, y)ekx (83) v(t) = Im[exp(iot —i¢)p], (C3)

wherep is the Fourier coefficient of the RF at the grating frequency:

and we have used the fact that, since the right image is simply the left

image displaced through along thex axis, Ir(X,y) = I.(x — §,y), then ~ ) )

&k y) = It (k y)e™. p =f axdy p(x, y)explikcx + ikyy) (C4)
We shall consider the situation where the left RF is purely even about

the origin, and the right RF purely odd about the same point. TH#k, y)

F .C3,th f the left- and right- luti i
is purely real, angs“(k.y) is purely imaginary. Thus, rom eqn e sum of the left- and right-eye convolutions is

" w v (t) + vg(t) = |R|sin(wt — argR), (C5)
o = f dy J dkp® (k, y)Re{T* (k, y)},
o Yo where
o == f dy J dig @ (k, y) Im{T™ (k, y) &'}, (B4) R=explig )5 + explidr) 5@,
IR = 15912+ 5@ 2 +2|5 5D |cos(A¢ + AE), (ce)

Now, consider making three simultaneous manipulations: (1) replace

the original stimulug (x, y) with its mirror image) (=x, y); (2) present the . . . ) .
. N o - . whereA¢ is the phase disparity between the left and right RFs, that is, the
| h ) ke th | -
stimulus at the opposite disparity,5; and (3) make the stimulus anticor: _difference in the arguments of the complex quantifiés and 3¢, The

related b)_/ contrgs_t inverting the image presented to the ”g.ht cye. That ISaibsolute value of thath Fourier coefficient of the response to the drifting
whereas in obtaining eqn. (B4) the left image Wwax) and the right image o
wasl(x — §), we now consider the case where the left imade(isx) and grating is
the right image is—I (=x — §). It turns out that thesamevalues are
obtained for the convolutions. To see this, note that the Fourier transform. | [*™/*
of the mirror image is the complex conjugate of that of the original image.':0 B fo dtS(t) - (€7)
But Re(z) = Re(z*), so the left convolution® in eqn. (B4) is clearly
unchanged. For the right convolution, the term inside curly braces iSt can pe shown that this is given by
complex-conjugated with a sign change. But sincéans Im(—z*), once
again there is no change to the convolution.

Now, for the random-dot patterns generally used in physiological |Foool = 2|RIP
experiments, any given stimulugx, y) is as likely to be presented as its

27 /w
, Freo=2 ’ f dt exp(inwt) S(t)
0

7m/wo—T
f dt exp(inwt)[sin(wt) — 6/|R|1?|,  (C8)
-
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whereT is defined to be the smallest value satisfying(aifi) = 6/|R|. general, the ratio of any two Fourier coefficients will depend on the
Notice that|R|, and hencdl, depend on the interocular phase. Egn. (C8) interocular phasevia the ratio /|R|. However, when these ratios are

is valid for interocular phases such th&| > 6. If # = |R|, the cell does  calculated numerically, it turns out th&: Fo is always greater than 1,

not respond at any stage of the cycle, so all Fourier coefficients are zeraneaning that these cells would be classified as simple according to the
Notice that if the threshold is zero [i.e. half-wave rectification, as originally classification criterion of Movshon et al. (1978). The rafg: F, never
envisaged by Ohzawa et al. (1990)], so tiat= 0, then the Fourier  exceeds 1. It approaches 1&$R| — 1; this is the limiting case where the
coefficients depend on interocular phase only through the overall factothreshold suppresses any response in the cell. Thus, frequency-doubling
IR|P, and so theratio of any two Fourier coefficients is independent of cannot be obtained by any member of this rather wide class of model cells
interocular phase. For the cade- 0 andP =1, F;: Fo= 7/2, andF,: F; = in which binocular combination is linear. This conclusion is independent of
4/3/m; for # = 0 andP = 2, F1:Fy = 16/37, andF,: F; = 37/16. In the form of the RFs.



