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Early vision proceeds through distinct ON and OFF
channels, which encode luminance increments and
decrements respectively. It has been argued that these
channels also contribute separately to stereoscopic
vision. This is based on the fact that observers perform
better on a noisy disparity discrimination task when the
stimulus is a random-dot pattern consisting of equal
numbers of black and white dots (a ‘‘mixed-polarity
stimulus,’’ argued to activate both ON and OFF stereo
channels), than when it consists of all-white or all-black
dots (‘‘same-polarity,’’ argued to activate only one).
However, it is not clear how this theory can be
reconciled with our current understanding of disparity
encoding. Recently, a binocular convolutional neural
network was able to replicate the mixed-polarity
advantage shown by human observers, even though it
was based on linear filters and contained no mechanisms
which would respond separately to black or white dots.
Here, we show that a subtle feature of the way the
stimuli were constructed in all these experiments can
explain the results. The interocular correlation between
left and right images is actually lower for the same-
polarity stimuli than for mixed-polarity stimuli with the
same amount of disparity noise applied to the dots.
Because our current theories suggest stereopsis is based
on a correlation-like computation in primary visual
cortex, this postulate can explain why performance was
better for the mixed-polarity stimuli. We conclude that
there is currently no evidence supporting separate ON
and OFF channels in stereopsis.

Introduction

Harris and Parker (1995) made a striking claim
about stereoscopic vision. They argued for the existence
of neural mechanisms for bright and dark information
that make independent contributions to stereopsis.
Their evidence came from the performance of their

observers on a depth discrimination task made
challenging by the addition of disparity noise. The
stimulus was a random-dot stereogram with a vertical
step edge. The mean disparity was opposite on either
side of the edge, but each dot was given a noise
disparity drawn from a Gaussian distribution with a
given standard deviation. The task was to detect which
half of the stereogram was closer. Observers performed
better when the stimulus was made up of equal
numbers of black and white dots on a gray background
(Figure 1A) than when all dots were black (Figure 1B)
or white (Figure 1C).

One can imagine an ideal observer solving this task
by computing the mean disparity of N dots on either
side of the step-edge. Despite the noise, if observers
averaged enough dots on each side of the boundary,
they would correctly judge the sign of the step. Harris
and Parker (1995) worked out what N would have to be
for this ideal observer to match the performance of
their observers. They found that the implied number of
dots was around twice as large for mixed-polarity
stimuli as for same-polarity stimuli, representing a
doubling of statistical efficiency. Harris and Parker
related this to the problem of stereo correspondence.
Before the disparity of a dot can be identified, it has to
be successfully matched up with the corresponding dot
in the other eye. When all the dots are the same color,
each dot in one eye could potentially be the correct
match for any dot in the other eye. But if the stereo
system only matches black dots with black dots and
white dots with white ones, the number of false matches
is halved for mixed-polarity stimuli. This could enable
more dots to be successfully matched up, increasing the
number N of disparities which can be averaged on each
side of the step-edge and so improving performance.
They suggested that the independent processing of
black and white dots could be mediated by the separate
ON and OFF channels that are well-established early in
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the visual system (Jiang, Purushothaman, & Casa-
grande, 2015; Schiller, 1992, 2010).

Harris and Parker’s (1995) mixed-polarity advantage
was replicated by Read, Vaz, and Serrano-Pedraza
(2011). These authors explored a different way of
making the task hard: They made a certain proportion
of the dots uncorrelated. That is, some dots had the
disparity associated with the step-edge, while other dots
were removed and then replaced at random, indepen-
dently in each eye. Read et al. argued that this presents
even more of a challenge to stereo correspondence. In
the disparity-noise version of the task, each dot does
have a definable disparity, even if this difference may be
hard for the visual system to extract. But in the
decorrelated version of Read et al., the uncorrelated
dots carried no useful disparity signal, although local
false matches may contribute noise. Read et al. found

that the mixed-polarity advantage was even more
pronounced in the decorrelation version of the task,
with an implied efficiency ratio of up to five. Although
this is not as neat as the original doubling of efficiency,
mapped on to distinct ON/OFF channels, it is still
consistent with Harris and Parker’s argument that
stereo correspondence is easier in mixed-polarity
stimuli.

The problem is that it is not at all clear how to
reconcile this with the understanding of disparity
encoding that has developed since Harris and Parker’s
1995 paper was published. Physiologically, stereo
correspondence is believed to begin in primary visual
cortex (V1). Many V1 neurons are tuned to disparity in
random-dot patterns like those shown in Figure 1.
These responses can readily be explained by the
binocular energy model (Ohzawa, DeAngelis, &
Freeman, 1990) which has since become the canonical
description of the early stages of disparity encoding. It
has been extensively tested against real V1 neurons and
although modifications are certainly required, the basic
principle underlying the energy model has been
vindicated (Cumming & DeAngelis, 2001; Henriksen,
Tanabe, & Cumming, 2016; Ohzawa, 1998; Prince,
Cumming, & Parker, 2002; Prince, Pointon, Cumming,
& Parker, 2002; Read, 2005); notably, the model has
made successful predictions about the response of real
neurons to impossible stimuli (Cumming & Parker,
1997). Stereopsis is widely used as a model system to
study how perceptual experience relates to early
cortical encoding (Parker, 2007; Read, 2014; Roe,
Parker, Born, & DeAngelis, 2007).

However, the energy model does not recognise image
features such as dots. Rather, it effectively computes
the interocular cross-correlation between left and right
images after filtering with filters that are bandpass for
orientation and spatial frequency (Allenmark & Read,
2011; Qian & Zhu, 1997). For the energy model, the
dark spaces represented by the background in an all-
white-dot stimulus should serve just as well as black
dots. Recently, Ichiro Fujita and colleagues have
presented psychophysical evidence which they argue
implies a separate ‘‘matching’’ computation, which is
sensitive to contrast polarity and will not match black
dots with white (Doi & Fujita, 2014; Doi, Takano, &
Fujita, 2013; Doi, Tanabe, & Fujita, 2011). In
principle, such a matching computation is consistent
with Harris and Parker’s (1995) theory, but its neural
substrate is unknown. We have recently shown that the
psychophysical data can be equally well explained by a
slight modification (an additional output nonlinearity)
to the energy model (Henriksen, Cumming, & Read,
2016). This model makes specific predictions regarding
the effect of dot size and dot density on performance,
which were tested and verified, and is also consistent
with the properties of V1 neurons (Henriksen, Read, &

Figure 1. Mixed and same-polarity stimuli. The stimuli are

stereograms suitable for free fusion. (A) Mixed-polarity dot

stimuli (black and white dots on a gray background); (B) and (C)

same-polarity stimuli with either black-only or white-only dots.

All three examples are for the no-overlap condition, where dots

are not allowed to overlap/occlude one another, as in Harris

and Parker (1995). The images are 1003100 pixels and the dots

are 4 3 4 pixels with density d ¼ 0.4, corresponding to an

average of 250 dots per image). The images have zero mean

disparity and Gaussian disparity noise with standard deviation

equal to the dot size. The images have been normalized such

that they all have the same mean and standard deviation of

luminance. Psychophysically, the mixed-polarity advantage is

unaffected by this normalization, showing that it cannot be

explained by a contrast artefact.
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Cumming, 2016). Thus, Doi and Fujita’s observations
do not require a dot-matching process.

Therefore, it is not currently clear how one could
build a model of V1 neurons that would provide a
neuronal basis for Harris and Parker’s (1995) inde-
pendent mechanisms. One might consider the modified
version of the energy model proposed by Read, Parker,
and Cumming (2002), where monocular inputs are half-
wave rectified before binocular combination. This
enables a binocular neuron to receive input only from
an ON or an OFF channel. However, Read et al. (2011)
showed that in this model, as for the original energy
model, disparity tuning curves have the same amplitude
for mixed- as for same-polarity stimuli. The reason,
again, is that the energy model and variants sense
interocular correlation, but do not look for specific
image features. Similarly, there is not a simple mapping
between white/black dots and ON/OFF channels.
‘‘OFF’’ detectors based on linear filters are activated by
light decrements in the receptive field centre. But they
are also activated by light increments in the surround.
Consequently, a single-polarity pattern containing only
bright dots does not stimulate only ON channels, since
the OFF channels are stimulated by the dark regions
between the bright dots. Similarly, in mixed polarity
patterns the OFF channel is not blind to the white dots.
So, even if ON and OFF channels are treated
separately, as in the stereo correspondence algorithm of
Glennerster (1998), they would not provide indepen-
dent estimates of disparity. This is what makes the
observation by Harris and Parker so striking, and so
hard to reconcile with current views about disparity
processing.

Very recently, Goncalves and Welchman (2017) put
forward the first simulation that reproduces the
mixed-polarity advantage observed psychophysically.
Their model was a convolutional neural network,
which they called a Binocular Neural Network. They
explained its mixed-polarity advantage by noting that
‘‘the network depends on the activity of the simple
units moderated by readout weights. Presenting mixed
versus single-polarity stimuli increases the simple unit
activity, in turn changing the excitatory and suppres-
sive drives to complex units. We found that mixed
stimuli produce greater excitation for the preferred
output unit and increased suppression to the non-
preferred unit’’. This is puzzling, because Goncalves
and Welchman’s Binocular Neural Network is simply
a generalized version of the original energy model with
more subunits and a half-linear instead of half-
squaring output nonlinearity (discussed in Read &
Cumming, 2017). These additional ingredients could
not enable the model to work as envisaged by Harris
and Parker (1996), matching dot to dot in a way
sensitive to contrast sign rather than simply respond-
ing to the interocular correlation between left and

right images. Despite this, the model in Goncalves and
Welchman clearly did reproduce the effect reported by
Harris and Parker. Even more striking, their model
reproduced a second subtle feature of human psy-
chophysics. In constructing their stimuli, Harris and
Parker did not permit dots to overlap one another.
Read et al. (2011) reproduced the results of Harris and
Parker, but also showed that the mixed-polarity
advantage is no longer present when dots were
allowed to overlap. Goncalves and Welchman repro-
duced this behaviour also. Here, we try to understand
what explains it.

It seems remarkable that a relatively simple model
based on initial linear filtering can reproduce these
psychophysical phenomena, which seem to depend on
specific image features (dots), and subtle rules about
feature placement (no overlap). We will show that
avoiding dot-overlap has a subtle effect on the
binocular cross-correlation in the images, and that this
is different for same-polarity and mixed-polarity
stimuli. As a result, models much simpler than that of
Goncalves and Welchman can also explain these
phenomena. In these simple models, it is clear that
there are not separate ON and OFF channels. As a
result, the existing evidence does not support the
conclusion that human stereopsis uses separate ON and
OFF channels. Of course, our analysis does not prove
that humans do not use separate channels either—
further experimental work will be required to determine
that.

Methods

Pearson correlation coefficient

We measure the correlation between left and right-
eye images with the standard formula for the sample
Pearson correlation coefficient, r. Lj, Rj is the value of
the jth pixel in the left, right eye. Then the sample
Pearson correlation coefficient is

r ¼ LRh i � Lh i Rh iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2h i � Lh i2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2h i � Rh i2

q ð1Þ

where hi indicates the average over all pixels j.
Equation 1 describes the correlation at zero disparity,
but a similar expression holds for any uniform disparity
if hLRi is computed between appropriately displaced
pixels. In Figure 2 and Figure 3, we plot this correlation
coefficient for zero-disparity images. In Figure 6, we
plot it as a function of image displacement for disparate
images.
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Image generation

In each run of a simulation, a mixed-polarity image-
pair was generated first, with a background of 0 and
white and black dots of 61. The absolute value was
then taken to produce a same-polarity stereogram with
white dots on a gray background, and then the sign was
inverted to produce a same-polarity stereogram with

black dots on a gray background (cf. Figure 1). Dots
were square, and the term ‘‘dot size’’ in this paper refers
to the side of the square. To generate the pattern, first
the number of dots was specified, and then dots were
added one after another. First, the luminance of the dot
was chosen, either black or white with equal probabil-
ity. The x and y coordinates of each dot were chosen
from a uniform random distribution across the image.

Figure 2. Disparity noise is more disruptive for same-polarity patterns. Interocular image correlation plotted as a function of disparity

noise (the standard deviation of the Gaussian noise distribution as a fraction of the dot size in the pattern). Lines show the mean

Pearson correlation coefficient between left and right images, averaged over 100 different random-dot patterns; shaded regions

show 6SD. Note that the vertical axis is logarithmic and all images have zero mean disparity. Insets show example mixed-polarity

images. Same-polarity images are the same except all dots are black or all white. In the simulations, the mixed-polarity images were

generated first, and then the dot colors were manipulated to produce same-polarity images. Thus, the same dot patterns were used

for both conditions. (A) and (C) No-overlap condition (dots are placed only in empty regions of the stimulus); (B) and (D) Overlap

condition (dots are placed at random, occluding one another when they overlap). (A) and (B) Low-density (d¼ 0.1); (C) and (D) High-

density (d¼ 0.4). The same number of dots was drawn in each case, so the area unoccupied by dots (the background) is a little higher

for the no-overlap condition. Insets show example regions of mixed-polarity images. Images were 2003 200 pixels; dots were 43 4

pixels.
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Figure 3. For patterns with no dot overlap, correlation is lower in same-polarity dot patterns even where the dots have two different

contrasts. As Figure 2, but the cyan/dotted curves show results for same-polarity patterns with equal numbers of black and dark gray

dots, for comparison with same-polarity patterns with all-black or all-white dots (black/dashed curves). There is no significant

difference between the three same-polarity patterns. (A) Low-density (d¼ 0.1); (B) High-density (d¼ 0.4); no dot overlap throughout.

Other details as in Figure 2.

Figure 4. Patterns can be divided into (A) and (C) ‘‘matched’’ pixel-pairs, where the pixel-values in the two eyes are necessarily the

same, and (B) and (D) ‘‘unmatched pairs’’ disrupted by noise. Graphs show the different possible pixel values in the two eyes (L) and

(R): (A) and (B), for mixed-polarity images, and (C) and (D), for same-polarity. The size of each blob (not to scale) represents the

probability of that particular combination. These probabilities are also labeled on the diagram; see section on formal derivation for

definitions. All blobs of a given color have the same probability in each panel; thus only one is labeled.
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Figure 5. Probability tree showing the possible situations. Each location in the image can be a matched pixel-pair, with probability m,

or an unmatched pair (i.e., affected by noise), with probability u¼ 1� m. Given that the location is matched, the probability that the

left-eye pixel is covered by a dot is dm (by definition), in which case the right-eye must also contain a dot (probability 1). The

probability that a matched location has background in the left eye is (1� dm), in which case the right eye must also be background. If

the location is unmatched, the probability that the left-eye pixel is covered by a dot is du (by definition). The right-eye pixel may

contain either dot or background. Conversely the probability that the left-eye pixel is background is (1� du). In that case, the right eye

must contain a dot, since under our definition unmatched pixel-pairs must contain a dot in at least one eye.

Figure 6. Cross-correlation functions between left and right images, for different types of disparity noise. Pink solid curves: results for

mixed-polarity dot patterns like those shown on the left; black dashed curves: for same-polarity patterns, where the dots are either all

black or all white. Top row: for random-dot patterns where dots are scattered at random; bottom row: where dots are not allowed to

overlap. (B) and (F) ‘‘No noise’’: all dots have the same disparity, 2 pixels. This thus has the same shape as the auto-correlation

function of the monocular images, shifted to the stimulus disparity. (C) and (G) ‘‘Transparent planes’’: half the dots (at random) have

disparity 0 pixels and half have disparity 4 pixels. (D) and (H) ‘‘Gaussian noise’’: every dot has random disparity noise drawn from a

Gaussian of standard deviation 2 pixels. The images are 1003 100 pixels and the dot size is 4 pixels. The curves show the mean cross-

correlation function averaged over 100 different random images; shaded regions show 6SD.
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The appropriate disparity was then applied to the x
coordinate. In the Overlap condition, the dot was then
simply drawn at the resulting location, overwriting any
pixels belonging to existing dots. In the No-overlap
condition, we checked to see if this dot would overwrite
any pixels belonging to existing dots. If it did, the dot
was abandoned and a new one was chosen. This
process was repeated until the desired number of dots
had been placed.

When comparing Overlap and No Overlap condi-
tions in Figure 2 through Figure 5, we set the number
of dots such that each pixel in a monocular image had a
specified probability d of being covered by a dot. If
none of the dots overlap, then the number of dots
required is

NNoOv ¼ d
Aim

Adot
when dot overlap is forbidden

where Aim/Adot is the ratio of the area of the whole
image to the area of a single dot. If dots are allowed to
overlap, obviously more dots are required in order to
achieve the same probability. It can be shown that

NOv ¼
ln 1� dð Þ

ln 1� Adot

Aim

� � when dot overlap is allowed:

The monocular images were then normalised to have
zero mean luminance and unit variance. This is a simple
way of representing low-level luminance and contrast
adaptation in the visual system. As Read et al. (2011)
showed, if the mean luminance is not zero, energy
model neurons have much lower amplitude disparity
tuning to same-polarity images, even in the absence of
noise. (This artefact cannot explain the psychophysical
results, both because early adaptation removes such
changes in overall luminance before binocular combi-
nation, and because empirically the mixed-polarity
advantage persists even if the psychophysical stimuli
are adjusted to have the same luminance.) The same
normalisation is implied in the definition of the Pearson
correlation coefficient r (Equation 1), which is un-
changed when a constant luminance offset is added to
both images or when both images are scaled. The
normalisation of variance ensures that all images have
the same contrast energy. Without this step, same-
polarity stimuli would have lower contrast than mixed-
polarity. We wished to study the response of model
neurons to correlation differences in the stimuli,
unconfounded by changes in contrast.

For clarity, image parameters are given in each figure
legend. In most figures, the images were 100 3 100
pixels, the mean disparity was 0 pixels, and the dot size
was 4 pixels. For the neuronal simulations shown in
Figure 7, we aimed to reproduce the stimulus of Figure
7 of Read et al. (2011). In that paper, the dots were
circles with an area of 82 arcmin and, scattered without

overlap, occupied 0.28 of the stimulus area; the step size
was ;3 arcmin and the noise ;2 arcmin (precise values
differed between observers, depending on what was
needed to bring their performance to around 75%
correct on average). In our simulation, the images were
2413 241 pixels, and the dot density was the same as in
the experiments of Read et al. (2011), i.e., d¼ 0.28 in
the No Overlap condition and correspondingly lower in
the Overlap condition. We took 1 pixel to represent 0.5
arcmin and made the dot size 6 pixels, stimulus
disparity 6 pixels, and disparity noise 4 pixels.

Simulating response of binocular neurons

Our model receptive fields were even or odd Gabor
functions:

fe x; yð Þ ¼ exp � x2 þ y2

2r2

� �
cos 2px=kð Þ

fo x; yð Þ ¼ exp � x2 þ y2

2r2

� �
sin 2px=kð Þ

The receptive field standard deviation was r¼ 32
pixels, representing 16 arcmin or 0.278 since we are
representing 1 arcmin with 2 pixels, and the carrier
spatial period k was 128 pixels or 1.18. For a model
neuron with position disparity x0, we computed the
inner product of each of these receptive fields,
appropriately shifted, with the monocular images:

vLe x0ð Þ ¼
Xn
j¼1

fe xj � x0=2; yj
� �

Lj

vRe x0ð Þ ¼
Xn
j¼1

fe xj þ x0=2; yj
� �

Rj

and similarly for vLo. We considered various possible
model V1 neurons, as follows:

ODF TE: R ¼ vLe þ vReð Þ2
ODF TI: R ¼ vLe � vReð Þ2
ODF ODD: R ¼ vLe þ vRoð Þ2
RPC TE: R ¼ vLeb c þ vReb cð Þ2
RPC ODD: R ¼ vLob c � vReb cb c2

where the symbol bc denotes half-wave rectification,
i.e., bxc ¼ x if x . 0 and is 0 otherwise. Within each
neuron class we simulated a population of neurons with
different position disparities x0 (from�20 toþ20 pixels
in steps of 1 pixel). The tuning curves shown in Figure 7
represent each neuron’s mean response to 10,000
different random-dot patterns with the same disparity,
normalised by that neuron’s mean response to binoc-
ularly uncorrelated stimuli.
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‘‘ODF’’ refers to the original form of the binocular
energy model introduced by Ohzawa, DeAngelis, and
Freeman (1990). ‘‘RPC’’ refers to the modified version
introduced by Read, Parker, and Cumming (2002), in
which the monocular inputs are half wave-rectified
prior to binocular combination. ‘‘TE’’ denotes tuned-
excitatory, i.e., a cell whose monocular receptive fields
have the same phase and whose disparity tuning curve
is therefore symmetric about a central peak (Read &
Cumming, 2004). ‘‘TI’’ denotes tuned-inhibitory, i.e., a
cell whose monocular receptive fields have opposite

phase and whose disparity tuning curve is therefore
symmetric about a central trough. ‘‘ODD’’ denotes a
cell whose monocular receptive fields are p/2 out of
phase. In the ODF model, such a cell has odd-
symmetric tuning.

For simplicity, the example tuning curves in Figure 7
are all for simple cells. The same average tuning curves
are obtained if we use phase-invariant complex cells, as
for example R ¼ vLe þ vReð Þ2 þ vLo þ vRoð Þ2, but com-
plex cells show less variability in their response across
different random-dot patterns.

Figure 7. Population response for five different types of model V1 simple cells, for mixed-polarity (solid pink curve) and same-polarity

(dashed, black) random-dot stereograms. The stimulus mean disparity is 6 pixels. In the top row, the stimuli have no disparity noise;

i.e., all dots have a disparity of 6 pixels. In the bottom two rows, each dot additionally has a noise disparity drawn from a Gaussian

with a standard deviation of 12 pixels. In the top two rows, dots did not overlap; in the bottom row, they did, as shown by the inset

images of mixed-polarity stimuli. The horizontal axis shows the position disparity of the neurons. Curves show the average response

of a cell with the position disparity indicated on the horizontal axis to 10,000 random-dot stereograms with the specified parameters.

The vertical lines show the disparity of the stimulus (solid blue line) and its opposite (dashed). The response of each neuron is

normalised by its response to uncorrelated stereograms, marked with the horizontal gray line. The images were 2413 241 pixels, dot

size was 6 pixels, and images were normalized to have zero mean luminance and unit variance.
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Results

Where dots do not overlap, same-polarity stereo-
grams have lower correlation than mixed-polarity.
Figure 2 shows how the interocular image correlation
declines as noise is added to the stimulus. The plots show
the mean Pearson correlation coefficient between left
and right images of random-dot stereograms, averaged
over different random-dot patterns. The pink/solid lines
show results for mixed-polarity stimuli, with equal
numbers of black and white dots; the gray/dashed lines
show results for same-polarity stimuli, where the dots
are all black or all white. In the left-hand column, the
patterns were generated such that dots are not allowed
to overlap one another, as was done in Harris and
Parker (1995); in the right-hand column, dots are
scattered at random, with dots occluding others where
they overlap. The top row is for a low dot density, and
the bottom row for a high dot density.

Unsurprisingly, image correlation falls as disparity
noise increases. Where dots are scattered at random
(Overlap condition, Figure 2B and D), the decline is
equal for mixed-polarity and same-polarity stimuli: The
same amount of disparity noise results in the same
decrease in correlation for both. However, where dots
are placed so as to avoid overlap, the decline is steeper
for same-polarity stimuli. This means that for a given
amount of disparity noise, image correlation is lower for
all-black or all-white dots. This effect becomes stronger
as dot density increases (compare Figure 2C vs. Figure
2A). Of course, where dot density is low enough, overlap
will be rare anyway and so results must tend to be the
same whether or not overlap is forbidden. The same
effect applies for two shades of the same polarity.

Harris and Parker (1995) also examined stimuli
containing two dot colors but both with the same
contrast polarity relative to the background, e.g., black
and dark-gray dots on a gray background. They found
that performance in this case was no better than for
patterns containing dots of only one contrast. This result
is also predicted by the image correlation. Figure 3
shows how image correlation is disrupted by disparity
noise for the mixed- and same-polarity patterns consid-
ered before, and for ‘‘dark and darker’’ same-polarity
patterns. Clearly the addition of ‘‘dark and darker’’ dots
makes little difference; disparity noise is just as
disruptive as for the other same-polarity patterns, and
mixed-polarity patterns still have an advantage.

Why forbidding dot overlap produces lower
correlation for same-polarity patterns

Why does this happen? In brief, because preventing
dot overlap changes the pairwise statistics of pixels in

the stereo images. Stereo images are made up of pairs
of pixels, one in the left eye and one in the right. We
imagine starting with a blank stimulus in both eyes. All
the pixel-pairs contain background in both eyes, so
they are ‘‘matched’’ in this sense. Now we add dots.
Correlated, zero-disparity dots by definition change
both left- and right-eye pixels to the same value, so the
pixel-pair remains matched. However, disparity noise
and/or uncorrelated dots produce ‘‘unmatched’’ pixel-
pairs. By definition, these either contain a dot in one
eye but background in the other, or where both eyes’
pixels are dots, this sameness is just by chance; it is not
the left and right images of ‘‘the same’’ dot.

Figure 4 shows the pairwise distribution of dot
contrasts for matched (A,C) and unmatched (B,D)
pixel-pairs. Note that under the description developed
in the previous paragraph, all the unmatched pixel-
pairs have a dot in at least one eye, whereas only
matched pixel-pairs can have background in both eyes.
Figure 4A and B is for mixed-polarity images, where
there are three possible values of luminance in each eye
and thus nine possible pairs (L, R). For matched pixel-
pairs (A), only three of the nine are possible: Pixels may
be background in both eyes (color-coded gray in the
figure), and pairs that have dots of the same polarity in
both eyes (green). For unmatched pixel-pairs (B), we
find pixel-pairs that have a dot in one eye but not the
other (pink) and pairs that have dots of opposite
polarity (blue) as well as pairs that have dots of the
same polarity by chance (green). By inspection, the
matched pixels have correlation 1, and the unmatched
pixels have correlation 0.

Figure 4B and D shows what happens if we convert
the pattern into a same-polarity stereogram by turning
all the black pixels white. Now, pixel values of �1
becomeþ1, effectively folding the other three quad-
rants of the space onto the first quadrant. Again by
inspection, the matched pixel-pairs still have correla-
tion 1, even though there are now only two points in
the space. However, now the unmatched pixel-pairs
have a negative correlation. This immediately provides
an intuitive reason why correlation is lower for same-
polarity images: The overall correlation is dragged
down by the negative correlation of the unmatched
pairs.

It is clear from Figure 4D that this negative
correlation is driven by the ‘‘monocular dots’’: That is,
unmatched pixel-pairs which have a dot in one eye and
background in the other. These monocular dots occur
less often when overlap is allowed. This is because when
overlap is allowed, a noise dot in the left eye can land
on a pixel that was previously a matched pair with a
dot in both eyes. As a result, this pixel-pair becomes
unmatched, with unrelated dots in both eyes (the noise
dot in the left eye and the previously matched dot in the
right eye). This situation shifts area from the pink blobs
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to the green blob in Figure 4D, making the correlation
less negative. As a result, as we show below, when dot
overlap is allowed the overall interocular Pearson
correlation ends up being the same for same- as for
mixed-polarity images. When overlap is forbidden, the
situation is different. Now a noise dot in the left eye can
only land on background. A previous noise dot may
have landed at that location in the right eye, resulting in
unmatched pixel-pairs with dots in both eyes, but
previous signal dots cannot contribute to this situation.
This means that less area goes to the green and more to
the anticorrelating pink blobs. This results in lower
correlation for same-polarity stimuli when overlap is
forbidden.

Formal derivation

We now provide formal proofs of the above
statements.

Basic definitions

Above, we defined d to be the probability that any
given pixel in a monocular image is covered by a dot, as
opposed to being part of the background. In general,
this will be different for matching versus nonmatching
pixel pairs. We thus define dm to be the probability that
a given pixel in the left eye is covered by a dot, given
that this pixel belongs to a matched pair (n.b. a pixel
covered by the background in both eyes is a matched
pair). Similarly, we define du to be the probability that a
given pixel in the left eye is covered by a dot, given that
this pixel belongs to an unmatched pair. We define m to
be the probability that any given pixel-pair is matched,
and u ¼ 1 � m the converse probability that it is
unmatched. By the law of total probability,

d ¼ mdm þ udu

Now let us think through the probability tree for any
pixel-pair (Figure 5). With probability m, the pixel-pair
is matched; and then with probability dm, it contains a
dot in the left eye. Then—since it is matched—it also
contains a dot in the right eye. Thus on average a
fraction mdm pixel-pairs are matched pairs with dots in
both eyes. Similarly a fraction m(1 � dm) are matched
pairs with background in both eyes.

Probability tree

For unmatched pairs, by definition the probability
that there is a dot in the left eye is du. Let x be the
probability that, given this, there is also a dot in the
right eye. Then dux is the probability that an
unmatched pair has a dot in both eyes, and du(1� x) is
the probability that an unmatched pair has a dot in the

left eye and background in the right. By symmetry, this
must also be the probability that an unmatched pair
has a dot in the right eye and background in the left.
These are the only three possibilities, so their proba-
bilities must sum to 1: duxþ 2du(1� x)¼ 1 and thus xdu
¼ 2du – 1. So, a fraction u(2du � 1) pixel-pairs are
unmatched pairs with dots in both eyes; 2u (1� du) are
unmatched pairs with a dot in one eye and background
in the other. The precise values of dm,du depend on how
the patterns are generated, but note that du � 0.5 to
avoid negative probabilities.

Expected correlation for mixed-polarity patterns

We can now work out expressions for the expected
correlation. Without loss of generality, we’ll do this for
the case where black dots are�1, and white areþ1 and
background is 0 (the correlation coefficient is un-
changed by shifts or rescalings). Let us first consider
mixed-polarity patterns. Since black and white dots are
equally likely, the mean luminance of the pattern in
both eyes is zero: hLi¼ hRi¼ 0. The mean of the square
depends on the dot density: hL2i ¼ hR2i ¼ d. To
compute hLRi, pairs where either pixel is background
don’t contribute to the sum, so we need only consider
the situation where both pairs are covered by dots. And
for unmatched pairs, the dots are as often opposite-
luminance as same, so these also contribute nothing on
average. We need only consider the matched pairs, so
hLRi¼mdm. Putting all these into Equation 1, then, we
find

rmixed ¼
mdm
d

Expected correlation for same-polarity patterns

For same-polarity patterns, all the dots have the
same luminance, so now hLi ¼ hRi ¼ hL2i ¼ hR2i ¼ d,
and when computing hLRi we now also need to
consider the unmatched pairs which have a dot in both
eyes, so hLRi ¼mdmþ u(2du� 1). From Equation 1 we
find

rsame ¼
mdm þ u 2du � 1ð Þ � d2

d 1� dð Þ

Expected correlation for mixed- and same- polarity
patterns when dots overlap

We now work out expressions for the dot probabil-
ities du,dm and thus for the correlations when dots are
scattered at random, occluding other dots where they
overlap. Consider an unmatched pair. The probability
that it has a dot in the left eye is du. But when dots are
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scattered truly at random, the probability that the
corresponding pixel in the right eye is also a dot is just
d, the overall dot probability. Thus the probability that
an unmatched pixel-pair has a dot in both eyes, which
earlier we saw was (2du� 1), is just dud. This means that

du ¼
1

2� d
ð2Þ

and thus

dm ¼
m� 1� dð Þ2

m 2� dð Þ
Substituting this into the above expressions for rmixed

and rsame, we find

rmixed;Ov ¼ rsame;Ov ¼ 1� u

d 2� dð Þ ð3Þ

Thus, when dots are scattered entirely at random, the
average interocular correlation is the same for same- as
for mixed-polarity patterns.

Expected correlation for mixed- and same- polarity
patterns when overlap is forbidden

When overlap is forbidden, the locations of dots in
the two eyes are not independent. A noise dot in the left
eye cannot have been placed on top of a previous
correlated dot, and so unmatched pixel-pairs are less
likely to have a dot in both eyes than when overlap is
allowed; see Equation 2. Thus, when overlap is
forbidden, du , 1

2�d. The smallest value for du is
determined by the extreme case where noise dots are
only placed where there is background in both eyes,
when du ¼ 0.5 and dm ¼ (d � u/2)/m. Then
rmixed;limNoOV ¼ 1� u

2d and rsame;limNoOv ¼ 1� u
2d 1�dð Þ

(only for the limiting case where unmatched pixels
never have dots in both eyes) and so rsame,limNoOv ,
rmixed,limNoOv. Note that these expressions cannot be
directly compared with those for Overlap, Equation 3,
since the way the pattern is generated may change the
proportion of unmatched pixel-pairs, u, even if the
overall dot density is held constant.

In general for a pattern where overlap is forbidden,

1

2
� du ,

1

2� d

and so rsame,NoOv , rmixed,NoOv.

Spatial properties

The above discussion simply considered images as a
string of pixel values, neglecting the spatial properties
except as they influence the pairwise statistics. However
spatial properties could be important in real images,

which undergo filtering before their interocular corre-
lation is evaluated. We now present an alternative way
of considering the problem which places more emphasis
on the spatial structure. This is particularly relevant
when noise is introduced by adding disparity noise,
rather than by making some dots uncorrelated (as in
Read et al., 2011).

Consider a gray pixel adjacent to an existing dot, and
consider all the possible positions of the next random
dot that could cover this pixel. Half of these random
dot placements would overlap the existing dot, and
hence are not permitted. As a result, the probability
that this particular pixel is a dot is lower than the mean
value across the image, d. This is reflected in the
autocorrelation of monocular images. When overlap is
allowed, the autocorrelation function is a triangle
function (reflecting the autocorrelation function of a
single dot), as shown in Figure 6B. But when overlap is
not allowed, there are regions of negative correlation at
displacements just larger than the dot width, caused by
the reduced probability of dots there, as shown by the
black dashed lines in Figure 6F. Note however that in
mixed-polarity images the auto-correlation function is
still a triangle function (pink curves in Figure 6F). This
is because, while pixels adjacent to an existing dot are
more likely to be gray, the probability of their being
white or black is reduced equally, so that the mean
product is unaffected.

The auto-correlation function, or the binocular
cross-correlation where there is no noise, has a peak at
1.0 for all images (Figure 6B and F). To understand
what happens when noise is added, it is useful to
consider a simplified case where the dots are given one
of two disparities, depicting two transparent planes.
Figure 6C and G shows the cross-correlation for this
situation; the blue dotted lines mark the disparities of
the two planes. The images are the sum of two noise-
free stereograms, for each of which the cross-correla-
tion would be as shown in Figure 6B and F, but shifted.
Although the cross-correlation of the combined ste-
reograms is not necessarily the mean of the cross-
correlations for the individual stereograms, it closely
resembles this. As illustrated in Figure 6G, for same-
polarity stereograms the negative side-lobes in the auto-
correlation reduce the peak cross-correlation, when
there are multiple disparities.

Figure 6D and H shows the cross-correlation
function for stereograms with Gaussian disparity noise.
The same effect applies, meaning that for No-Overlap
random-dot patterns, the cross-correlation function
peaks at a lower value for same-polarity images than
for mixed-polarity. This is the effect we saw in Figure
2C, where we plotted this peak correlation as a function
of disparity noise. In summary, preventing dot overlap
introduces systematic negative troughs in the binocular
cross correlation. In the presence of disparity noise,
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troughs from one disparity can reduce the peaks
produced by other disparities.

Finally, when considering spatial properties, it is
useful to recognize that we have limited ourselves to
just two image forms—random dot patterns where
overlap is forbidden, and patterns where dots occlude
one another and their placement is unrestricted.
Patterns could be constructed in a variety of other ways
(dot placement could reduce overlap but not forbid it;
dot luminance could be added rather than allowing
occlusion). Were psychophysical studies of stereopsis to
use such stimuli, it would be important to examine their
binocular correlation properties. Similarly, studies that
attempted to use more naturalistic images to measure
stereo performance would benefit from studying
binocular correlation in the images used.

Standard models can explain the psychophysics

As we have seen, with the conventional way of
generating no-overlap dot patterns, same-polarity
stereograms end up with lower interocular correlation
than mixed-polarity images affected by the same
disparity noise. Human stereo performance declines as
interocular correlation falls (Cormack, Stevenson, &
Schor, 1991; Tyler & Julesz, 1978). It is therefore not
surprising that humans perform better for noisy mixed-
polarity stereograms than for same-polarity stereo-
grams with the same amount of noise. Standard models
of disparity encoding, such as the binocular energy
model (Allenmark & Read, 2011; Filippini & Banks,
2009; Ohzawa et al., 1990; Qian & Zhu, 1997), are also
based on interocular correlation, so we would expect
these neurons to show stronger disparity tuning for
noisy same-polarity than for mixed-polarity stimuli.

Figure 7 confirms this expectation. It shows the
mean response of a population of model V1 neurons to
mixed-polarity (pink, solid curves) and same-polarity
(black, dashed). In the top row, the stimuli are noise-
free stereograms with a uniform disparity of 6 pixels,
and the disparity tuning curves are identical for mixed-
and same-polarity stimuli. This is the result reported by
Read et al. (2011) in their figure 12. However, in the
bottom two rows, we consider noisy stereograms, with
the same mean disparity of 6 pixels but now disparity
noise of 12 pixels. The noise effectively decorrelates the
stimuli seen by the receptive fields, so the amplitude of
disparity tuning falls for both stimulus types. In the
middle row, the dots in the stimuli are not allowed to
overlap so, as we have seen, the effective image
correlation is lower for the same-polarity stimuli.
Accordingly, the amplitude of disparity tuning for
same-polarity stimuli is approximately half that for
mixed-polarity.

Most obvious ways of decoding this population will
therefore predict a mixed-polarity advantage in per-
formance. For example, to simulate a front/back
discrimination task, we could assume that the observer
answers correctly when the response of the neuron
tuned to the stimulus disparity ofþ6 pixels exceeds that
of the ‘‘anti-neuron’’ tuned to�6 pixels (these neurons
are marked with blue lines in Figure 7A and F). The
quantitative neurometric performance depends on the
size of the receptive fields and the number of subunits.
For our ODF TE simple cells, whose Gabor receptive
fields have a standard deviation of 32 pixels or 5.3 times
the dot size, we obtain a performance of 73% correct
for mixed-polarity stimuli and 63% for same-polarity
stimuli, giving an efficiency ratio of 3.6 (equation 4 of
Read et al., 2011). For a pair of ODF TE complex cells,
which sum input from pairs of subunits in quadrature
phase, performance is better since the phase-indepen-
dence reduces the image-dependent variability: 83%
correct for mixed-polarity stimuli and 70% for same-
polarity stimuli, an efficiency ratio of 3.3. These values
are comparable to those for human observers. This
similarity confirms that the mixed-polarity advantage
can be explained very well even by a single pair of
classic energy-model simple cells. A complex neural
network is not required.

The bottom row of Figure 7 is the same as the middle
row except that stimulus dots are allowed to overlap.
Now, the amplitude of disparity tuning is the same
regardless of dot polarity. This confirms the key role of
‘‘dot repulsion’’ in generating the difference in inter-
ocular correlation and hence in model cell response.

Discussion

We have long been puzzled by the evidence
apparently supporting independent neural mechanisms
for bright and dark information—ON and OFF
channels—in human stereopsis. This evidence seemed
to show that disparity was easier to extract in mixed-
polarity random-dot stereograms—made up of black
and white dots on a gray background—than in same-
polarity stereograms, where all dots are black or all
white. This conclusion is puzzling for two reasons.
First, linear filtering in the early visual system means
that even single-polarity random-dot stereograms
stimulate both ON and OFF channels. Second, by the
time disparity is encoded in the primary visual cortex,
the evidence suggests that ON and OFF channels have
been combined. Simulations confirmed that our current
models predicted the same amplitude of disparity
tuning for mixed-polarity as for same-polarity stereo-
grams (Read et al., 2011).
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In this paper, we have shown that all previous results
can be explained by a subtle consequence of the way the
stimuli were generated. Given a value of disparity noise
or of decorrelation, preventing dot overlap has a
greater effect on the correlation of the entire image
when dots all have the same contrast polarity relative to
the background. We have shown that this effect
produces a good quantitative account of human
performance. This result means that the mixed-polarity
advantage is entirely consistent with our current
understanding of disparity encoding and with other
aspects of stereo psychophysics. Stereo correspondence
is not, after all, intrinsically easier in mixed-polarity
stereograms; it is simply easier in stereograms with
higher interocular correlation.

If the stimuli are generated differently, with dots
scattered at random and occluding one another where
they overlap, then the image correlation ends up being
the same for mixed- and for same-polarity stimuli.
Significantly, the mixed-polarity advantage is then not
observed (Read et al., 2011). This strongly suggests that
differences in correlation explain the mixed-polarity
advantage in the original stimuli.

One of us (JCAR) has the dubious distinction of
having examined the evidence for independent channels
previously without having noticed this explanation.
Read et al. (2011) understood Harris and Parker’s
result as implying that disparity is intrinsically easier to
detect in mixed-polarity stimuli, and that noise
functioned solely to remove the ceiling effect, bringing
performance down to a level where this difference was
observable. Accordingly, we examined the response of
model neurons only to 100% correlated, noise-free
stereograms, and concluded—wrongly—that these
models could not account for the psychophysics.
Goncalves and Welchman (2017) examined the re-
sponse of their model to the actual, noisy stereograms
used in experiments, and so revealed the effect that
Read et al. (2011) missed. Amusingly, Read et al.
(2011) even drew attention to the lack of dot overlap in
Harris and Parker, and showed that the psychophysical
mixed-polarity advantage was abolished if dots were
allowed to overlap. However, we failed to appreciate
the significance of this observation, attributing it to
interference from the occlusion cue present in mixed-
polarity stimuli.

We have now demonstrated that the psychophysical
advantage for noisy mixed-polarity stereograms can be
reproduced just as well with the standard binocular
energy model as with the Binocular Neural Network of
Goncalves and Welchman (2017). Both approaches
judge depth based on which of two neurons, one tuned
to near and one to far disparities, is responding most
strongly. However, whereas Goncalves and Welch-
man’s decision neurons receive input from a convolu-
tional network made up of thousands of binocular

subunits, ours each receive input from just a single
binocular subunit. This demonstrates that computation
specific to Goncalves and Welchman’s Binocular
Neural Network is not required for this result. We
conclude that the differences in image correlation
shown in Figure 2 are responsible for the mixed-
polarity advantage in both models.

The mixed-polarity advantage was originally put
forward as evidence that bright and dark information is
processed separately in stereopsis, via distinct ON and
OFF channels. We have now shown that the apparent
advantage can be entirely explained by changes in
binocular correlation in the stimulus. Of course, this
result does not disprove the existence of independent
ON and OFF channels in stereopsis, but it certainly
undermines the current evidence for them.

Keywords: binocular vision, stereopsis, energy model
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