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Visual Perception: Neural Networks for Stereopsis
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How does our brain use differences between the images in our two eyes, binocular disparities, to generate
depth perception? New work shows that a type of neural network trained on natural binocular images can
learn parameters that match key properties of visual cortex. Most information is conveyed by cells which
sense differences between the two eyes’ images.
Because our eyes are offset in the head,

most points in a visual scene project to

slightly different locations in the two

retinae. These small differences are

called binocular disparities, and they

form the basis of our stereoscopic three-

dimensional vision. The computation of

binocular disparity begins in primary

visual cortex, V1. A study [1] published

recently in Current Biology has now

shown that a neural network trained to

discriminate depth in natural images

learns parameters which match several

properties of real V1 neurons.

V1 neurons can be broadly divided into

two classes: simple cells and complex

cells. Simple cells are characterised by a

receptive field function, which specifies

where in the image the cell responds to

light. Typically, simple cell receptive fields

consist of an ON region, where bright

features in the image tend to excite the cell

and dark features tend to inhibit its firing,

and an OFF region, where the opposite is

true — dark features excite the cell and

bright ones inhibit it. A given simple cell

behaves like a linear filter, representing the

imageatone locationwithasinglenumber,
although the firing rate is a nonlinear

function of this number (negative firing

rates are impossible, for example). Model

binocular simple cells, with linear filters in

each eye, are able to signal disparity [2].

Complex cells behave as if they receive

input from several simple cells. They

typically respond to both bright and dark

features at a given location, with different

simple cells contributing in each case.

Many V1 complex cells are tuned to

binocular disparity, thought to reflect the

disparity tuning of their component simple

cells. Traditional model complex cells are

constructed in a very economical way

with just four simple cells — this is

known as the Binocular Energy Model

[3] (Figure 1A). Mounting evidence in

recent years suggests that real V1

complex cells are less economical, and

receive input from a broader range of

simple cells (Figure 1B; reviewed in [4]).

Recent computational work has

provided an appealing account of why

this might be the case. An important

limitation of the traditional model is that

the response depends on both the

stimulus disparity and details of the
monocular image (such as its contrast

and spectral content). As a result, model

complex cells frequently produce peaks

in activity when the stimulus disparity is

not the cell’s preferred disparity. These

false matches make it hard to decode

disparity. Burge and Geisler [5] identified

the small set (n = 8) of linear filters that

provides the most information about

disparity in natural images. Two key

features of these ‘ideal’ filter sets seem to

explain properties of real neurons. First,

the filter shapes are more diverse than

those used in a traditional complex cell

model. Second, the filters often had

different shapes in the two eyes (this is

often called ‘phase disparity’ in neurons

[6]). This means that the complex cells are

most strongly activated, not by a single

image feature that has been displaced by

a disparity, but by different images in the

two eyes. Although we had noted that

such filters may help to recognize false

matches [7], Burge and Geisler [5]

proved that using such filters is optimal

if the objective is to estimate disparity.

Welchman and Goncalves [1] used a

similar approach, building a network
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Figure 1. Network architecture for V1 disparity detectors.
(A) The original energymodel [3] and (B) the generalisation proposed by [12]; theWelchman andGoncalves
[1] network is of this form. Both of these are examples of ‘LN’ (linear/nonlinear) cascades. In bothmodels, a
disparity-tuned complex cell (Cx) receives input from several binocular simple cells (S), characterised by a
linear binocular receptive field (pseudocolour). In the original model (A), the parameters of the model are
severely constrained. The complex cell has no output nonlinearity and receives only excitatory input from
the simple cells; the simple cells have halfwave rectification followed by squaring. The simple cells come in
pairs with opposite receptive fields, each pair equivalent to a simple cell with a full squaring nonlinearity.
This ensures that the disparity tuning curve has the same amplitude for both correlated and anti-correlated
stimuli. Phase relations between the pairs ensure that the complex cell computes contrast energy, hence
the name. In the generalised model (B), each simple cell may either excite or inhibit the complex cell; the
receptive fields can have any form, and their output nonlinearities can be more general. In the Welchman-
Goncalves model, the complex cell has no output nonlinearity while the simple cells have halfwave
rectification with a threshold individual to each cell. One subtlety: this description is for a convolutional
network with an average-pooling stage, whereas the Welchman-Goncalves [1] model uses max-
pooling, adding a winner-take-all stage between groups of four adjacent simple cells. The authors do
not attribute their results to the use of max-pooling vs average-pooling, and [15] found similar results
with both, so for simplicity we neglect the distinction.
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whose output layer consisted of a small

number of complex cells, each tuned to a

different disparity. These in turn were built

from a large number of binocular simple

cells. Their network included 28 different

classes of simple cell, each with different

binocular receptive fields and hence

different disparity tuning. The model

contains many different individual simple

cells belonging to a given class, with

identical disparity tuning but slightly

different locations on the retina. This

type of network, replicating identical

receptive fields across the retina, is called

‘convolutional’. Convolutional neural

networks are very common in image

processing. They exploit the fact that

image statistics are very similar from

place to place, so networks can learn

much more efficiently if they tile the same

receptive field across the whole retina,

rather than trying to learn independently

at each retinal location. This effectively

exploits spatial pooling to make it easier

to identify points in the two retinal

images that correspond to a single

point in visual space, an approach first

explored by Qian [8].

Each complex cell in the Welchman–

Goncalves model [1] receives input

from the same set of 28 simple-cell

classes. As each class is tuned to a

different disparity, the weights from the

different classes had to be different for

each complex cell, in order to make

complex cells be tuned to different

disparities. The network learned a

beautifully simple rule for achieving

this: to make a complex cell tuned to

disparity d, have each simple cell

project to it with a synaptic weight

proportional to its mean response at

disparity d (normalized by the mean

response to all stimuli). Welchman and

Goncalves [1] show that this rule

produces complex cells like those in [5],

whose firing rate approximates the

log-likelihood that the stimulus disparity is

the cell’s preferred value of d.

Welchman and Goncalves’ [1] complex

cells also exhibit a property of real neurons

that is not captured by the traditional

energy model. When stimulated with

patterns of random dots, both the model

and real neurons preserve their disparity

tuning. If the dot colors are reversed in one

eye (‘anticorrelated’), the resultingstimulus

is something that cannot be produced in

natural binocular viewing. Energy-model
neurons produce inverted tuning curves to

these stimuli. Although real neurons also

display this inversion, they also show a

weaker modulation to anticorrelated

stimuli— the responses seem to sense the

unnatural property of the stimulus, in away

that the traditional energy model does not.

The complex cells producedbyWelchman

and Goncalves’ [1] model reproduced this

property of real neurons.

Welchman and Goncalves’ [1] model

cells are able to do this because (unlike in

[5]) each simple cell is allowed a unique

threshold. Previous models have

exploited similar nonlinearities to achieve

the same effect [9–13], but those models

were constructed by hand precisely in

order to explain the phenomenon. The

remarkable feature of Welchman and

Goncalves’ [1] work is that the thresholds

and the weights are learned simply by

optimizing performance on a set of natural

images. The resulting model cells then

correctly predict how cortical neurons

respond to a completely different,

unnatural, stimulus. This suggests that the

effect seen in real neurons results from a
Current Bi
computation optimized to reduce the

problem of false matches.

An interesting feature of the receptive

fields learnt from the natural images

concerns the type of disparity tuning

they produce. After training, only seven

out of the 28 classes of binocular simple

cell show the type of disparity tuning

known as tuned-excitatory, where the cell

fires most to one particular preferred

disparity [14]; 19 of the 28 (68%) are

tuned-inhibitory, where the cell is silenced

by one particular ‘null’ disparity and

responds roughly equally to everything

else. (Two classes in [1] have odd-

symmetric tuning, where the tuning

curve has a peak and trough of roughly

equal amplitudes.) Welchman and

Goncalves [1] point out that there is a

good reason for this: tuned-inhibitory

neurons convey more information than

tuned-excitatory neurons. This is because

of the confound between contrast and

disparity, mentioned above. When a

tuned-excitatory neuron sees its

preferred disparity, its response will

depend on the contrast of the image
ology 27, R592–R612, June 19, 2017 R595
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feature there. A low-contrast feature at

the preferred disparity may elicit less

response than a higher-contrast feature at

a different disparity, for example. When

an ideal tuned-inhibitory neuron sees its

null disparity, however, it is always

silenced. It has receptive fields with

opposite profiles in left and right eyes,

so no matter how large or small the

monocular responses are, they always

cancel out perfectly. For this reason, a

lack of response from a tuned-inhibitory

cell is much stronger evidence that the

stimulus is at a given disparity than a

strong response from a tuned-excitatory

cell, even if both responses are equally

different from the cell’s mean firing rate.

This property, previously highlighted by

[5], is presumably why the network so

favoured learning opposite receptive

fields in the two eyes. Hunter and Hibbard

[15], who used independent subspace

analysis to encode natural binocular

images efficiently but without extracting

disparity, found only 37% of their learnt

cells were tuned-inhibitory.

While the Welchman-Goncalves [1]

model is remarkably successful at

accounting for a range of psychophysical

and physiological data, it is not yet clear

how literally we should interpret it as a

description of neurophysiology. Their

model complex cells receive input from

over 4000 simple cells with different

retinal locations, so have receptive fields

with diameters 50% larger than those of

simple cells. Both numbers are large for

real V1 complex cells, so the model
R596 Current Biology 27, R592–R612, June 1
complex cells may best be viewed as

representing an additional level of

abstraction, perhaps beyond V1. More

problematically, only around 16% of real

neurons are tuned-inhibitory [6,14,16],

raising the question of why the brain has

not exploited the full potential of ‘what

not’ detectors. One explanation could be

that the model was trained only to encode

disparity, whereas V1 is simultaneously

encoding disparity, contrast, orientation

and many other image properties.

Conceivably, a network forced to encode

these image properties as well might

produce even more realistic solutions.
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The evolution of whales marks one of the major transitions in the history of mammals. Two new studies
provide key insights into the evolution of hearing specializations and feeding strategies in early whales.
The past 30 years have witnessed a

revolution in our understanding of the

evolution of cetaceans (whales, dolphins
and porpoises). Molecular phylogenies

have demonstrated that cetaceans are

most closely related to hippos, and
together with other even-hoofed

mammals, form the clade Artiodactyla

[1]. Cetaceans and close relatives first
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