
Sensors for impossible stimuli may solve the stereo
correspondence problem

Jenny C A Read1 & Bruce G Cumming2

One of the fundamental challenges of binocular vision is that objects project to different positions on the two retinas (binocular

disparity). Neurons in visual cortex show two distinct types of tuning to disparity, position and phase disparity, which are the results

of differences in receptive field location and profile, respectively. Here, we point out that phase disparity does not occur in natural

images. Why, then, should the brain encode it? We propose that phase-disparity detectors help to work out which feature in the left eye

corresponds to a given feature in the right. This correspondence problem is plagued by false matches: regions of the image that look

similar, but do not correspond to the same object. We show that phase-disparity neurons tend to be more strongly activated by false

matches. Thus, they may act as ‘lie detectors’, enabling the true correspondence to be deduced by a process of elimination.

Over the past 35 years, neurophysiologists have mapped the response
properties of binocular neurons in primary visual cortex and elsewhere
in considerable detail. A mathematical model, the stereo energy
model1, has been developed that successfully describes many of their
properties. In this model, binocular neurons can encode disparity in
two basic ways: phase disparity (Fig. 1a), in which receptive fields differ
in the arrangement of their ON and OFF regions, but not in retinal
position, and position disparity (Fig. 1b), in which left and right-eye
receptive fields differ in their position on the retina, but not in their
profile2. Several recent studies in V13–6 have concluded that most
disparity-selective cells are hybrid7, showing both position and phase
disparity. These neurophysiological data present a challenge to com-
putational models of stereopsis. Why does the brain devote computa-
tional resources to encoding disparity twice over, once through
position and once through phase?

Phase disparity presents a particular puzzle, as it does not correspond
to anything that is experienced in natural viewing. For a surface such as a
wall in front of the observer, where disparity is locally uniform, the two
eyes’ images of a given patch on the surface are related by a simple
position shift on the retina (Fig. 1b). For an inclined surface, with a
linear disparity gradient, the two image patches are also compressed and/
or rotated with respect to one another; that is, they differ in spatial
frequency and/or orientation (Fig. 1c). Higher-order changes in dis-
parity, such as those produced by curved surfaces, produce images whose
spatial frequency and orientation differences vary across the retina
(Fig. 1d)8. Disparity discontinuities, which occur at object boundaries,
produce different disparities in different regions of the retina9. However,
phase-disparity neurons do not appear to be constructed to detect any of
these possible situations. They respond optimally to stimuli in which the
left and right eye’s image are related by a constant shift in Fourier phase;
that is, each Fourier component is displaced by an amount proportional

to its spatial period. Physically, such a stimulus would correspond to a set
of transparent luminance gratings whose distance from the observer is a
function of their spatial frequency (Fig. 1a), a situation that never occurs
naturally, and that we therefore characterize as ‘impossible’, even though
it can be simulated in the laboratory.

Recent physiological experiments support this conclusion. When
presented with various possible disparity patterns, V1 neurons prefer
stimuli with uniform disparity10, in contrast to higher visual areas,
where neurons are found that respond optimally to depth disconti-
nuities (V29,11), disparity gradients (V412, MT13, IT14, IP15) and
disparity curvature (IT14). Psychophysical data supports the interpre-
tation that disparity is initially encoded as a set of piece-wise fronto-
parallel patches, which are then combined in higher brain areas to
generate tuning for more complicated surfaces10,16,17. However, when
V1 neurons are probed with impossible stimuli that are designed to be
optimal for phase-disparity detectors, many of them respond better to
these than to any naturally occurring pattern of disparity18. Together,
these results suggest that apparent tuning to phase disparity is not an
artifact of a preference for a physically possible, but nonuniform,
disparity; rather, the phase-disparity detectors found in V1 are genu-
inely tuned to impossible stimuli.

This raises the conundrum of why the brain has apparently built
detectors for stimuli that are never encountered. We present one
possible answer, by demonstrating that phase disparity detectors
could potentially make a unique contribution to solving the stereo
correspondence problem. Here, the major challenge is identifying the
correct stereo correspondence amid a multitude of false matches.
Matching regions of a real image contain no phase disparity.
They will therefore preferentially activate pure position-disparity
sensors. However, false matches are under no such constraints; they
will have neither pure position disparity nor pure phase disparity, and
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may be best approximated by a mixture of both. Thus, it is quite
possible for them to preferentially activate hybrid neurons with a
mixture of position and phase disparity. Consequently, the preferential
activation of these neurons is a signature of a false match. Neurons with
phase disparity, precisely because they are tuned to impossible stimuli,
enable false matches to be detected and rejected.

We prove mathematically that, for uniform-disparity stimuli, this
method is guaranteed to find the correct disparity, even within a single
spatial-frequency and orientation channel, and even when the disparity
is larger than the period of the channel. This is a notable success, given
that previous neuronal correspondence algorithms have had to compare
information across channels to overcome the false-match problem in
this situation, even in uniform-disparity stereograms7,19–22. Of course,
real images contain multiple disparities, so the proof no longer holds. In
such images, our method may give conflicting results in different spatial
frequency and orientation channels. However, we find that a simple
robust average of the results from different channels produces good dis-
parity maps, with no need for any interaction between channels. Thus,
this method is also useful in complex natural images where its success is
not mathematically certain. We suggest that the brain may similarly use
phase-disparity neurons to eliminate false matches in its initial piece-
wise frontoparallel encoding of depth structure. This provides, for the
first time, a clear computational rationale for the existence of both
phase-disparity and position-disparity coding in early visual cortex.

RESULTS

Neither position nor phase detectors can recover disparity

Figure 2 illustrates the responses of model neurons in a simple
situation where an observer stands in front of a wall with stucco texture
(as shown in Fig. 2b). This visual scene, a single frontoparallel surface,
has no depth structure at all (the stucco texture is flat). Yet even in this
simplest of cases, identifying the wall’s disparity from a population of
neurons that have solely position disparity is by no means straightfor-
ward. The receptive fields of these cells have identical profiles in the two
eyes, and differ only in their position on the retina (pure position
disparity, that is, zero phase disparity, as in Fig. 1b). We plotted the
response of a simulated population of these neurons (Fig. 2a). Each
neuron’s firing rate is calculated according to the stereo energy model1

(Methods, equation 1) and plotted as a function of its position
disparity. Using the modern version6,23–25 of the terminology intro-
duced previously26, we shall refer to these pure position-disparity cells
as tuned-excitatory cells (Supplementary Fig. 1 online). In this
modern usage, these terms describe only the shape of the disparity
tuning curve, not the preferred disparity. Therefore, a tuned-excitatory
cell is defined for us by having a symmetrical tuning curve with a
central peak, irrespective of whether this preferred disparity is crossed,
uncrossed or zero.

How can we deduce the stimulus disparity from the response of this
population? Perhaps the simplest approach is to find the preferred
disparity of the maximally responding tuned-excitatory cell and to take
this as an estimate of the stimulus disparity7,27. However, this max-
imum-energy algorithm is not guaranteed to give the right answer. Its
problem is that the stereo energy computed by these model cells
depends not just on the correlation between the left and right images,
but also on the contrast within each receptive field. Thus, mismatched
image patches that have high contrast can easily have more stereo
energy than corresponding patches that happen to have low contrast. In
experiments, the response of the population is often averaged over
many images with the same disparity structure and with purely random
contrast structure, such as random-dot patterns28. This means that the
effect of contrast will average out, and that the cell with the maximum

average response will indeed be that tuned to the stimulus disparity.
However, in real life the brain does not have this luxury. It has to make a
judgment about single stereo images, and here a maximum-energy
algorithm is likely to fail7,27. For example, the false matches at –0.351
and +0.461 both elicited larger responses than the true match at 0.061
(Fig. 2a). Indeed, we point out here that the stimulus disparity may not
be at even a local maximum. If the contrast at the cyclopean location
happens to be particularly low, then the stimulus disparity can actually
fall at a local minimum of the population response (Supplementary
Fig. 2 online). This occurs if the decrease in binocular correlation
produced by moving the receptive fields onto noncorresponding
regions of the image is outweighed by a fortuitous increase in contrast
energy. Thus, all we can deduce is that the stimulus disparity must be
one of the values where the response of tuned-excitatory cells has a local
turning point (Fig. 2a, marked in red). This still left us with six possible
matches even in this restricted range (3 cycles of the cell’s spatial
period). Ignoring these problems and simply picking the tuned-
excitatory cell with the largest response led to the maximum-energy
algorithm finding the correct answer only 29% of the time (Fig. 3).

Physiologically inspired stereo correspondence algorithms have
more commonly used pure phase-disparity detectors21,27,29–31. These
algorithms consider a population of model neurons whose receptive
field envelopes are centered on the same position in both retinas, but
that differ in the pattern of their ON and OFF regions (Fig. 1a). The
response of a simulated population of pure phase-disparity detectors as
a function of their preferred phase disparity is a sinusoid (Fig. 2d). This
is a general property of a population of phase-disparity detectors tuned
to a given position disparity, here zero (Supplementary Note online,
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Distance from observer

Phase disparity
0th order:

position disparity
First order:

disparity gradient
Second order:

disparity curvature

a b c d

Figure 1 Different types of disparity. (a) Disparity stimulus that optimally

stimulates a neuron with phase disparity (example receptive fields shown

below, odd-symmetric receptive field in left eye and even-symmetric in the

right eye). This is a set of luminance gratings (shown as opaque, but actually

transparent), at varying distances that depend on their spatial frequency.

(b–d) Varying-disparity surface, showing different types of physically possible

disparity, and the relationship between the two images of a little patch of

narrow-band contrast on the surface (red, left eye; blue, right eye). These can

also be thought of as the two receptive fields of a binocular neuron that is

optimally tuned to the disparity of the surface at each position. 0th-order

disparity, regions of uniform disparity, is shown in b; optimal detectors have

pure position disparity. First-order disparity, regions where disparity is varying

linearly, is shown in c; optimal detectors have both a position shift and a

spatial frequency difference between the eyes (one receptive field compressed

relative to the other). Second-order disparity, disparity curvature, is shown in d.

Receptive fields are related by a position offset and compression that varies
across the receptive field. The other major situation that occurs in natural

viewing is disparity discontinuities at object boundaries. This is not shown here

because it cannot be detected by a single pair of receptive fields.
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Theorem D). For sufficiently narrow-band cells, the stimulus disparity,
modulo the preferred spatial period of the cell, can be read off from the
peak of this sinusoid. If the sinusoid peaks for cells tuned to a phase
disparity of Dfpref, then the stimulus disparity is lDfpref/2p ± nl,
where l is the period of the spatial-frequency channel under considera-
tion, and n is any integer. Thus, a narrow-band population can correctly
identify stimulus disparities up to a half-cycle limit27. Combining
information from different spatial-frequency channels, in a coarse-to-
fine scheme22,32, could expand this range, at least in uniform-disparity
stimuli where the disparity sampled by the large, low-frequency
detectors is the same as that experienced by the smaller, high-frequency
detectors. However, psychophysical evidence has yielded limited sup-
port for the idea of a coarse-to-fine hierarchy33,34. Pure phase-disparity
detectors cannot explain how humans are able to perceive disparity in
narrow-band stimuli well above the half-cycle limit35,36.

Furthermore, pure phase-disparity detectors perform reliably only if
they are sufficiently narrow band. Previous theoretical work has con-
centrated on this mathematically tractable case. For realistic V1 band-
widths, pure phase-disparity detectors failed even for uniform-disparity
stimuli within the half-cycle limit (Fig. 2). The model neurons in our
simulations have a spatial frequency bandwidth of 1.5 octaves, which
was the mean value for a sample of 180 V1 neurons in our previous
physiological experiments23,37, in agreement with previous estimates38.
The stimulus has a uniform disparity of 0.061, which is 0.28 of a cycle
(1011 phase). Yet the most active phase-disparity detector was tuned to
only 0.15 cycles (541 phase, green curve in Fig. 2d). Thus, the pure
phase-disparity population would give the wrong answer in this case.
This failure is common (purple histogram, Fig. 3). Here, the max-
imum-energy algorithm was tested on pure phase-disparity cells in a
uniform-disparity stimulus whose disparity (0.421) lay outside the half-
cycle limit (± 0.251). Obviously, phase-disparity detectors cannot signal
the true disparity in this case. However, they also failed to correctly
detect the correct disparity even modulo their spatial period. In this
case, the stimulus disparity minus one spatial period was –0.081 (short
black arrow). The maximum-energy algorithm found this value on less
than one-quarter of images. Thus, with a realistic spatial frequency
bandwidth, being even 1 cycle away from the stimulus disparity has a
catastrophic effect on the accuracy of pure phase-disparity detectors.

Position and phase detectors together can recover disparity

We have seen, then, that neither pure position-disparity (Fig. 2a) nor
pure phase-disparity detectors (Fig. 2d) can reliably signal the correct
disparity, even in the simplest possible case where the stimulus contains
only one disparity. However, the brain also contains hybrid position/
phase-disparity sensors. We measured the responses of hybrid energy-
model neurons with all possible combinations of position and phase
disparity (up to 0.61 position disparity) (Fig. 2c). Simply extending the
maximum-energy algorithm to this full population resulted in little
improvement (blue histogram, Fig. 3). However, there is a guaranteed
means of identifying the correct match in uniform-disparity stimuli
from the response of this population.

Real stimuli do not contain phase disparity (Fig. 1); that is, if a
detector is already tuned to the correct position disparity, then its
response can only be reduced by any tuning to nonzero phase disparity
(dashed blue curve, Fig. 2d). Thus, for the subpopulation of hybrid
sensors whose position disparity matches the stimulus, the maximum
response will be in the sensor with zero phase disparity. However, for a
subpopulation whose position disparity corresponds to a false match,
the response is far more likely to be maximum at a nonzero phase
disparity (for example, green curve in Fig. 2d). Expressed formally, this
means that the true match is distinguished by (i) being at zero phase
disparity, (ii) by being at a local extremum (maximum or minimum)
with respect to position disparity (Theorem B in the Supplementary
Note), and (iii) by being at a local maximum with respect to phase
disparity (Theorem C in the Supplementary Note). The first condition
says that the true match will lie on the zero phase disparity curve (blue
line, Fig. 2a,c and Fig. 4). The second condition states that the true
match will be one of the extrema on this curve (dots in Fig. 2a and
Fig. 4). The final condition states that the true match will be the
extremum marked with the cyan dot, as this is the only one located at a
local maximum with respect to phase disparity. False matches that
satisfy the first and second conditions may occur, but are very unlikely
to satisfy the third condition as well. In other words, phase disparity
sensors, precisely because they are tuned to impossible patterns of
disparity, can identify false matches. These three conditions are
guaranteed to hold in any stereo image where the disparity is uniform
across the visual field (see Supplementary Note for mathematical
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Figure 2 Response of a neuronal population to a broadband image with

uniform disparity of 0.061. (a–d) All neurons are tuned to vertical orientations

and a spatial frequency f ¼ 4.8 cycles per degree; the bandwidth is B1.5

octaves. Example receptive field profile is shown in b (black contour lines,

ON regions; white, OFF regions; scale bar is 0.51). Receptive fields differ in

their phase and in their position on the retina, but all cells in this population

have the same cyclopean location, that is, the same mean position of their

binocular receptive fields (Supplementary Fig. 3). The curves in a and d

represent cross-sections through the response surface (c); that is, activity of

two neuronal subpopulations, one with pure position disparity (a), and one

with pure phase disparity (d). Each pixel in c represents one neuron. The

pixel’s horizontal and vertical location indicates the neuron’s preferred

position and phase disparity, respectively. The pixel color indicates the

neuron’s firing rate in response to this image. This was calculated according

to the stereo energy model1, equation (1). Neurons with zero phase disparity

(blue line) are called tuned-excitatory (TE)-type, neurons with ± 1801 of

phase disparity are tuned-inhibitory (TI), and neurons with +901 phase

disparity are ‘near’ and those with –901 phase disparity are ‘far’. The cyan dot

in c marks the stimulus disparity. Red dots in a mark local extrema of the

response. The dashed blue curve in d shows the response of the sub-

population where all neurons are tuned to the position disparity of the stimulus, but have varying phase disparity. The sloping black line in c shows the linear

relationship between position and phase disparity for sine functions: Dx ¼ Df/(2pf). For sufficiently narrow-band neurons, the yellow diagonal stripes of high

neuronal response would all be parallel to the black line, and the stimulus disparity, modulo one period, could be read off from the maximally responding pure

phase-disparity neuron. However, reading along this line on the present plot, we see that the stimulus disparity of 0.061 (cyan dot in c) corresponds to a phase

disparity of –1011 (0.28 cycles), yet the maximally responding pure phase disparity neuron is tuned to just –541 (0.15 cycles, green dashed line).

180T
I

P
re

fe
rr

ed
 p

ha
se

 d
is

pa
rit

y 
(d

eg
re

e 
ph

as
e)

Preferred position disparity (degree on retina)

T
I

N
ea

r
T

E
Fa

r

90

0

–90

–180
–0.5 0 0.5

a b

dc

NATURE NEUROSCIENCE ADVANCE ONLINE PUBLICATION 3

ART ICLES



proofs). This enables the correct disparity to be uniquely identified,
even in a single spatial-frequency channel where the stimulus disparity
is many cycles of the channel frequency.

Anticorrelated images

Anticorrelated images are those for which the contrast in one eye’s
image is inverted. Dense anticorrelated stimuli provide a multitude of
false matches, but no overall depth percept; they have an unsettling,
shimmering appearance39–42. Most existing stereo algorithms pick one
false match from each channel. The fact that no depth is perceived in
these stimuli is then explained as being due to cross-channel conflict,
because a different false match is returned from each channel19. Our
findings on the use of phase disparity suggest an additional possibility.
Anticorrelation corresponds to a phase disparity of 1801. Thus, out of
the subpopulation of detectors tuned to the stimulus position disparity,
the ones responding most will be tuned to a phase disparity of 1801
(Supplementary Fig. 3 online). An algorithm that is looking for a
subpopulation where the peak falls at 01 will therefore ignore this
subpopulation. Indeed, there will, in general, be no point on the zero
phase-disparity line that is both a local extremum with respect to
position disparity, and a local maximum with respect to phase
disparity. Thus, even in a single channel, an anticorrelated stimulus
visibly fails to conform to the expected pattern of population activity
for a uniform-disparity stimulus. Note that this is only true when the
whole population of hybrid position- and phase-disparity sensors is
considered; if we consider only a subpopulation of pure position- or
pure phase-disparity detectors, there is nothing in any one channel to

indicate that the stimulus is unusual. We suggest that this violation of
the expected pattern across the full population, as well as cross-channel
conflict, may contribute to the lack of a depth percept and the
distinctive appearance of this stimulus.

Performance on more complex depth structures

We implemented the above ideas in a computer algorithm (Fig. 4). This
algorithm is guaranteed to return the correct disparity in a uniform-
disparity stimulus (Fig. 3). However, real visual scenes seldom have the
convenient property of containing only a single disparity. How will our
algorithm fare when this requirement is not met? As an example, we
tested the algorithm on slanted surfaces (Supplementary Fig. 4 online).
The disparity at the center of the receptive field was 01, but 11 to the left
or to the right it was ± 0.021 or ± 0.161. This latter case is a very extreme
disparity gradient. When viewed up close at 30 cm, it corresponds to a
surface slanted at nearly 401 to the frontoparallel, and at larger viewing
distances the slant becomes even more extreme. Nevertheless, even here
the algorithm performs well. On any single image, a single channel has
about a 50% chance of returning the correct disparity, and a 50% chance
of returning essentially a random value. Notably, the errors made by
different channels are virtually uncorrelated. Any given channel may be
misled by a particular feature of the image and pick the wrong disparity.
But other channels do not see that feature and are not misled. This
means that by combining the outputs from a few different channels, the
true disparity can be reliably recovered. For example, carrying out a
robust average over just six channels increases the accuracy from 54% to
85%. With less extreme slants, even a single channel is reliable. For
instance, when the surfaces are slanted 181 away from frontoparallel,
viewed at a distance of 1 m, the algorithm performed with 90% accuracy
even in a single channel, and with 100% accuracy when the outputs
from six channels are robustly averaged.

We measured our algorithm on a test stereogram that is widely used
in the computer vision literature (Fig. 5). Good (though noisy)
disparity maps are produced from the output of a single spatial-
frequency and orientation channel (Fig. 5d–h; all channels are shown
in Supplementary Fig. 5 online). When the outputs of several spatial-
frequency and orientation channels are averaged, even better results are
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1.
Find response of
pure position
disparity units.

2.
Locate
extrema.

3.
At each extremum, now
introduce phase disparity.
This yields a sinewave.

Phase
disparity

Position 
disparity

4.
Find peak of sinewave.

5.
Find extremum
with peak closest to
zero phase disparity.

Figure 4 Sketch of the algorithm used to estimate stimulus disparity in a

single channel. The blue and green curves represent horizontal and vertical
cross-sections through the population response in Figure 2. Thus, the blue

curve represents the response of a population of tuned-excitatory cells

(with pure position disparity, no phase disparity), whereas the green curves

represent the response of a population of hybrid cells, with varying phase

disparity, but all having the same position disparity. Note that ‘position

disparity’ and ‘phase disparity’ in this figure refer to the tuning preferences

of the cells, not to properties of the stimulus.

10,000

8,000

6,000

Our new algorithm; 100% accurate
Max-E (pos. only); 29% accurate
Max-E (pos. & phase); 26% accurate
Max-E (phase only); 23% accurate

4,000

2,000

Fr
eq

ue
nc

y

0
–1.0 –0.5 0 0.5

Fitted disparity
1.0

Figure 3 Comparison of our algorithm with four possible implementations of

a maximum-energy algorithm, tested on a uniform-disparity noise stimulus.

The histogram summarizes results for 10,000 noise images with a disparity

of 0.421, marked by the large arrow. All results are for the same channel

(spatial frequency, f ¼ 2 cycles per degree, orientation is vertical, bandwidth

is 1.5 octaves). The shorter arrows mark disparities that are integer multiples
of the spatial period away from the correct disparity. Orange, our algorithm,

using both position- and phase-disparity detectors, always returned the

correct disparity. Blue, evaluating the response of the full population,

including cells with both position and phase disparity, and taking the

stimulus disparity to be the preferred disparity of the maximally-responding

cell (that is, Dxpref - Dfpref/(2pf)), gave the correct answer only 26% of the

time. Green, as for blue, except considering only pure position-disparity

detectors (TE cells, Dfpref ¼ 0); performance is similar. Purple, as for blue,

except considering only pure phase-disparity detectors (Dxpref ¼ 0). This can

only return answers within half a cycle of zero (that is, ± 0.251). ‘% accurate’

refers to the proportion of results that lie within the bin centered on the true

disparity of 0.421, except for the phase-disparity case (purple), where bins

differing from this by integer multiples of the period 0.51 (marked with small

arrows) were also considered to be correct.
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obtained. We robustly averaged the outputs of 36 channels (6 orienta-
tion and 6 spatial frequency; Fig. 5c). Not only was the broad outline of
the Pentagon itself reproduced, but also the details of its roof and even
the trees in the courtyard.

This method allows good disparity maps to be obtained in this
complex image, even from a single channel. Of course, the very lowest
frequency channel (0.5 cycles per degree, Fig. 5d) is unable to report
accurate values, as its large receptive fields span regions of different
disparity. Errors introduced by this channel are kept to a minimum
because our algorithm is capable of reporting failure; when no extrema
were encountered in the disparity range examined, no disparity
estimate was produced (gray pixels), and the channel did not con-
tribute to the overall disparity estimate (Fig. 5c) for this cyclopean
position. However, when the channel does return an estimate, it is
usually at least roughly correct, so the vague outline of the pentagon
emerges even here. For the highest frequency channels, the problem is

the exact opposite. Here, the receptive fields
are small enough that they usually sample a
disparity that remains at least roughly uni-
form. However, they are exposed to more
false matches. One way of overcoming this
well-known problem is to use the outputs of
lower-frequency channels, in a coarse-to-fine
hierarchy22,32. In contrast, we show that by
combining position- and phase-disparity sen-
sors as we propose, quite reliable disparity
maps can be extracted from a single channel,
even where the disparity exceeds the half-cycle
limit (Fig. 5).

We also tested our algorithm on three
images from the Middlebury stereo re-
pository43 (http://cat.middlebury.edu/stereo).
Because this database records the correct
disparity for each image pair, this enables a
quantitative evaluation of our algorithm. The
stimulus disparity range was similar for
each image, about 10 pixels. The algorithm
searched over a much wider range, 30 pixels,
greatly increasing the chance of false
matches. Yet in every image, the algorithm
succeeded in recovering good disparity

maps. We used three quantitative measures of fit quality, R, B and
M. R, the root-mean-square error, and B, the percentage of pixels
where the disparity error is 41 pixel, have been employed previously43.
M is the median absolute error, measured in pixels; in every case, this
is less than half a pixel. Our algorithm considerably underperforms
the best machine-vision stereo algorithms, for which B is typically an
order of magnitude less. It is clear that the high percentage of ‘bad’
pixels arises predominantly not from high-frequency noise scattered
over the disparity map, but from a blurring of the depth dis-
continuities. Edges that are straight and abrupt in the stimulus are
reconstructed as wavy and gradual, whereas disparity over broad
regions is generally correct. This is compatible with a notable
feature of human stereopsis: poor spatial resolution for stereoscopic
structure10,16. Thus, although other machine algorithms produce
more veridical depth maps, they probably outperform human
stereopsis also.©
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Left image Right image Overall disparity map
0.20

0.15

0.10
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0
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–220–22

2

0

0.5 cycles per deg. 1.0 cycles per deg. 2.0 cycles per deg. 4.0 cycles per deg. 8.0 cycles per deg. 16.0 cycles per deg.
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Figure 5 Applying our principle to a classic test stereogram. (a,b) Left and right images of the Pentagon.

(d–i) Disparity maps obtained from single channels, with spatial frequencies indicated. Because

orientation tuning made little difference to the disparity maps obtained, we show results for only one

preferred orientation, 301 (Supplementary Fig. 5 shows results for all six orientations). Contours show
example receptive fields for each channel. Color scale for all panels is as given in c. Gray regions

indicate that no candidate matches were encountered in the range examined. A robust average of

disparity maps obtained by all 36 channels (6 spatial frequencies, 6 orientations) is shown in c.

Venus

Correct Fitted

R = 1, B = 13, M = 0.2 R = 2, B = 21, M = 0.3 R = 2, B = 30, M = 0.4

Correct Fitted Correct Fitted

L R

L Sawtooth R L Tsukuba R
a b c

Figure 6 (a–c) Three test stereo-pairs from the Middlebury repository. In each panel, the top row shows left and right images over the region where disparity
was evaluated (for speed, we did not evaluate disparity at every pixel in the image, although the full-size images were used as input to the algorithm). Bottom

left, pseudocolor plot shows the ‘ground truth’ disparity given in the repository, with occluded regions grayed out. Bottom right, pseudocolor plot shows, on the

same color scale, the disparity fitted by our algorithm (robust average over 6 spatial frequency � 6 orientation channels). Below the plots are three quantitative

measures of fit quality, R (RMS error in pixels), B (percentage of pixels with error 41 pixel) and M (median absolute error in pixels). All three measures are

evaluated over the entire fitted region, including occlusions.
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DISCUSSION

Stereopsis is a perceptual module whose neuronal mechanisms are
understood in considerable detail. The process begins in primary visual
cortex, which contains sensors tuned for both position and phase
disparity, and for combinations of both. It is currently unclear as to why
the brain should encode disparity twice over in this way. Phase disparity
is particularly puzzling, as it can encode disparities up to only half a
cycle, with optimal detection at a quarter-cycle35, whereas position
disparity, and human perception, is subject to no such limit35,36.
Furthermore, we point out here that phase-disparity detectors are
tuned to patterns of luminance that are not found in real stimuli. Of
course, such luminance patterns may occasionally occur, for example,
in regions of the image that are uncorrelated as a result of occlusions.
The point is that, unlike position-disparity detectors, phase-disparity
detectors do not reliably signal a particular physical disparity.

Why build detectors for phase disparity?

Why then does the brain contain both sorts of detector? One early sug-
gestion44 was that phase disparity might compensate for unwanted posi-
tion disparities that are introduced by the finite precision of retinotopy.
However, subsequent studies have failed to show the inverse correlation
between position- and phase-disparity tuning that this would imply4,6.

Only one previous study22 has suggested a theoretical reason as to why
the brain might need both types of detector. This study22 suggested, on
the basis of the simulated response to many different bar and random-
dot patterns, that populations of pure phase-disparity detectors are more
reliable than their pure position-disparity counterparts. The study found
that for any given image the maximally responding phase-disparity unit
was usually the one that was tuned to the stimulus disparity (Dfpref ¼
2pf Dxstim), whereas the position-disparity units showed much wider
scatter in the location of the peak. Thus, it suggested that position dis-
parity was used to overcome the half-cycle limitation, shifting disparity
into the right range, whereas phase disparity was used to make a precise
judgment. However, the study’s observation that phase detectors give
more reliable signals depends critically on the particular set of detectors
that it happened to consider: a group of neurons that all had the same
left-eye receptive field (see Supplementary Note and Supplementary
Fig. 6 online). Thus, in that population, cyclopean location covaried with
position disparity, introducing additional noise into the disparity signal.
When cyclopean location and position disparity are varied indepen-
dently, as we did here (Supplementary Fig. 6), position-disparity
detectors are actually more reliable than phase-disparity detectors over
the same range (compare green and purple histograms in Fig. 3). Thus,
nothing in the existing literature explains why the brain should delib-
erately construct detectors with phase disparity.

One possibility is that such detectors are not, in fact, constructed
deliberately. It may simply be too hard to build neurons that are tuned
strictly to real-world disparities, and so phase disparities represent a
form of noise that the visual system copes with. Phase-disparity detectors
do respond to the disparity in real images, even though they are not
ideally suited to these, which is why stereo correspondence algorithms
can be constructed out of phase-disparity detectors27,30,31,45,46. Perhaps,
therefore, there is not enough pressure to iron out accidental phase
disparities that arise during development.

Here, we point out another possibility. Precisely because phase
disparity does not occur in real-world images, neurons that have
both position- and phase-disparity signal false matches, and so help
to solve the correspondence problem. If stimulus disparity is uniform
across the receptive field, then the neuron that is optimally tuned to the
stimulus will be a pure position-disparity neuron (equivalently, a
tuned-excitatory cell2,23,26), with position disparity equal to that of

the stimulus and with zero phase disparity. Introducing phase disparity
into this cell’s receptive fields would make it less well tuned to the image
and reduce its response. Thus, the tuned-excitatory cell will respond
more strongly than its nontuned-excitatory neighbors with the same
position disparity. This is the signature of the true match. False matches
may elicit a strong response in particular tuned-excitatory cells, but the
response will be even stronger when an appropriate phase disparity is
added in. Thus, these hybrid position/phase-disparity sensors act as lie
detectors. Their activity unmasks false matches.

Implementation in the brain

The algorithm used for our simulations (Fig. 4 and Supplementary
Note) is not physiologically realistic; it was designed for speed in a serial
processor, not as a model of a massively parallel system like the brain.
Nonetheless, the principle underlying our simulations could be imple-
mented in visual cortex by a cooperative network in which lie detectors
with hybrid position/phase disparity suppress activity in the correspond-
ing tuned-excitatory cells. A winner-take-all competition between neu-
rons with different phase disparity could ensure that the only surviving
activity in tuned-excitatory cells is where zero phase disparity produced
the best response. This would silence almost all tuned-excitatory cells
except those located at the true match. Irrespective of the precise neu-
ronal circuitry, our model predicts that activity in neurons with nonzero
phase disparity should tend to reduce either the actual activity in the cor-
responding tuned-excitatory cells, or the downstream effect of that acti-
vity. One way in which this might be tested experimentally is to measure
the dynamics of responses to stimuli that produce local peaks in a popu-
lation of tuned-excitatory cells, but which are vetoed by phase-disparity
detectors (as happens, according to our model, in anti-correlated
stereograms). The effect of this veto should appear later in the response,
so our model predicts that dynamic measures of responses to anti-
correlated stereograms would show a characteristic evolution over time.

Conclusion

We report here a previously unknown way of identifying the stimulus
disparity from a population of hybrid position- and phase-disparity
neurons modeled on primary visual cortex. Where the stimulus disparity
is uniform, this method gives the correct answer with 100% reliability,
even in a single spatial-frequency/orientation channel, and even if the
stimulus disparity is many cycles of the channel’s spatial period. This
success is notable given that most existing algorithms have to compare
information from several channels to overcome aliasing, even for a
uniform-disparity stimulus. For realistic stimuli with varying disparity,
the method is not guaranteed, but simulations suggest that it is still very
successful. This is the first theory to explain the existence of large num-
bers of visual cortical neurons that respond best to stimuli that never
occur in natural viewing18. Our proposal also provides a new insight into
why the modulation of V1 neurons for anti-correlated stimuli does not
result in a depth percept. The theory was inspired by the observed
properties of visual cortex, and can be implemented in a physiologically
plausible manner. The idea of lie detectors specifically tuned to false
matches may also turn out to be useful in machine stereo algorithms.

METHODS
The model neurons in this paper are constructed according to the stereo energy

model described previously1. We begin with binocular simple cells. These are

characterized by a receptive field in each eye: rL(x,y) and rR(x,y). The output from

each eye is given by the convolution of the retinal image with the receptive field

L ¼
Z+1

�1

dxdyILðx; yÞrLðx; yÞ;
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and similarly for the right eye. The retinal images IL(x,y) and IR(x,y) are

expressed relative to the mean luminance, so that positive values of I represent

bright features and negative values represent dark features. The output of an

energy-model binocular simple cell is

E ¼ ðL+RÞ2 ð1Þ

(strictly, a physiological simple cell would be E ¼ L+Rb c2; the unrectified

expression, equation (1), would represent the sum of two physiological

simple cells1).

All simulations used Gabor receptive fields with an isotropic Gaussian

envelope. The basic cyclopean receptive field profile is

rðx; y;fÞ ¼ cosð2pfx0 � fÞ exp � x02 + y02

2s2

� �
; ð2Þ

where x 0 ¼ x cos y+y sin y; y0 ¼ y cos y� x sin y where f is the cell’s preferred

spatial frequency, y is its preferred orientation and f is its phase. The s.d., s, is

s ¼
ffiffiffiffiffiffiffi
ln 2

p

2pf
� 21:5 + 1

21:5 � 1
;

resulting in a full-width, half-maximum bandwidth of around 1.5 octaves19.

The left- and right-eye receptive fields are shifted in position and phase

depending on the tuning of the neuron. For a neuron tuned to position disparity

Dxpref and phase disparity Dfpref, the left- and right-eye receptive fields are

rL x; yð Þ ¼ rðx+Dxpref=2; y;f+Dfpref=2Þ;
rRðx; yÞ ¼ rðx � Dxpref=2; y;f� Dfpref=2Þ:

Tuned-excitatory cells have Dfpref ¼ 0 by definition; tuned-inhibitory cells have

Dfpref ¼ p.

Figure 2 and Supplementary Figures 2 and 3 show the responses of simple

cells (equation (1)), tuned to a particular phase f. To avoid dependence on any

one phase, the results in Figures 5 and 6, and Supplementary Figures 4 and 5,

were obtained using the response of phase-independent complex cells, given by

the sum of two simple cells in quadrature1. The mathematical results

underlying our algorithm hold for both simple and complex cells (Supple-

mentary Note).

We adopted a simple robust-averaging heuristic for combining the disparity

maps produced by different spatial-frequency and orientation channels (Sup-

plementary Fig. 5) into a single best-estimate disparity map (Fig. 5c). At each

cyclopean position (xpref,ypref), we calculated the average disparity from all

channels that returned an estimate of that position, /Dxest(xpref,ypref;f,y)Sf,y.

Then we removed the channel whose estimate was furthest from the mean and

calculated the mean of the remaining channels. We repeated this procedure

until only half of the channels remained.

Note: Supplementary information is available on the Nature Neuroscience website.
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