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Because the eyes are displaced horizontally, binocular vision is inherently
anisotropic. Recent experimental work has uncovered evidence of this
anisotropy in primary visual cortex (V1): neurons respond over a wider
range of horizontal than vertical disparity, regardless of their orientation
tuning. This probably reflects the horizontally elongated distribution of
two-dimensional disparity experienced by the visual system, but it con-
flicts with all existing models of disparity selectivity, in which the relative
response range to vertical and horizontal disparities is determined by the
preferred orientation. Potentially, this discrepancy could require us to
abandon the widely held view that processing in V1 neurons is initially
linear. Here, we show that these new experimental data can be recon-
ciled with an initial linear stage; we present two physiologically plau-
sible ways of extending existing models to achieve this. First, we allow
neurons to receive input from multiple binocular subunits with different
position disparities (previous models have assumed all subunits have
identical position and phase disparity). Then we incorporate a form of
divisive normalization, which has successfully explained many response
properties of V1 neurons but has not previously been incorporated into a
model of disparity selectivity. We show that either of these mechanisms
decouples disparity tuning from orientation tuning and discuss how the
models could be tested experimentally. This represents the first expla-
nation of how the cortical specialization for horizontal disparity may be
achieved.

1 Introduction

Our remarkable ability to deduce depth from slight differences between the
left and right retinal images appears to begin in primary visual cortex (V1),
where inputs from the two eyes first converge and where many neurons
are sensitive to binocular disparity (Barlow, Blakemore, & Pettigrew, 1967;
Nikara, Bishop, & Pettigrew, 1968). Since the discovery of these neurons, it
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has always seemed obvious that their disparity tuning should reflect their
tuning to orientation: a cell should be most sensitive to disparities orthog-
onal to its preferred orientation. As Figure 1 shows, this is a natural con-
sequence of a linear-oriented filter preceding binocular combination. The
fact that disparities in natural viewing are almost always close to horizon-
tal, due to the horizontal displacement of our eyes, led to the expectation
that cells tuned to vertical orientations should be the most useful for stere-
opsis, because such cells would be most sensitive to horizontal disparities
(DeAngelis, Ohzawa, & Freeman, 1995a; Gonzalez & Perez, 1998; LeVay &
Voigt, 1988; Maske, Yamane, & Bishop, 1986a; Nelson, Kato, & Bishop, 1977;
Ohzawa & Freeman, 1986b).

However, it has recently been demonstrated that the “obvious” premise
was wrong. The response of V1 neurons was probed using random dot
stereograms with disparity applied along different axes to obtain the cell’s
firing rate as a function of the two-dimensional disparity of the stimulus.
The resulting disparity tuning surfaces were generally elongated along the
horizontal axis, independent of the cell’s preferred orientation (Cumming,
2002). Paradoxically, this means that V1 neurons are more sensitive to small
changes in vertical than in horizontal disparity—precisely the opposite
of the expected anisotropy. In this article, we consider why the observed
anisotropy might be functionally advantageous for the visual system and
then how individual cortical neurons may be wired up to achieve this.

We begin, in part A, by estimating the distribution of real two-dimension-
al disparities encountered in natural viewing. We show that while large
vertical disparities do occur, they are extremely rare. The probability distri-
bution of two-dimensional disparity is highly elongated along the horizon-
tal axis, reflecting the much higher probability of large horizontal disparity
compared to vertical disparity. We argue that the horizontal elongation ob-
served in the disparity tuning of individual neurons may plausibly reflect
the horizontal elongation of this probability distribution. This would be
functionally useful because in stereopsis, the brain has to solve the corre-
spondence problem: to match up features in the two eyes that correspond
to the same object in space. The initial step in this process appears to be the
computation, in V1, of something close to a local cross-correlation of the
retinal images as a function of disparity (Fleet, Wagner, & Heeger, 1996).
The cross-correlation function should peak when it compares points in the
retinas that are viewing the same object in space. The problem faced by the
brain is that not all peaks in the cross- correlation function correspond to real
objects in space; there are a multitude of false matches where the interocular
correlation is high by chance, even though no object is present at the corre-
sponding position in space. To distinguish true matches from false, the brain
has to consider the image over large scales and use additional constraints,
such as the expectation that disparity generally varies smoothly across the
image (Julesz, 1971; Marr & Poggio, 1976). The horizontal elongation of the
probability distribution for two-dimensional disparity represents another
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important constraint. Because correct matches almost always have dispar-
ities very close to horizontal, local correlations between retinal positions
that are separated vertically are likely to prove false matches (Stevenson &
Schor, 1997). This may explain why the disparity-sensitive modulation of
V1 neurons is abolished by small departures from zero vertical disparity:
this property immediately weeds out a large number of false matches and
simplifies the solution of the correspondence problem. Thus, although the
global solution of the correspondence problem appears to be achieved af-
ter V1 (Cumming & Parker, 1997, 2000), the recently observed anisotropy
(Cumming, 2002) may represent important preprocessing performed by V1.

We next, in parts B and C, address the puzzling issue of how this func-
tionally useful preprocessing can be achieved by V1 neurons. In all existing
models (Ohzawa, DeAngelis, & Freeman, 1990; Qian, 1994; Read, Parker, &
Cumming, 2002), disparity selectivity is tightly coupled to orientation tun-
ing, with the direction of maximum disparity sensitivity orthogonal to pre-
ferred orientation. This coupling arises as a direct result of orientation tun-
ing at the initial linear stage (see Figure 1). It seems impossible to minimize
disparity-sensitive responses to nonzero vertical disparities, independent of
orientation tuning. Thus, at present, we have the undesirable situation that
the best models of the neuronal computations supporting depth perception
conflict with the best evidence that these computations do support depth
perception (Uka & DeAngelis, 2002).

In this letter, we present two possible ways in which existing models
can be simply modified so as to achieve horizontally elongated disparity
tuning, regardless of orientation tuning. The first depends on position dis-
parities between individual receptive fields feeding into a V1 binocular cell,
the second on a form of divisive normalization. This demonstrates that
the specialization for horizontal disparity exhibited by V1 neurons can be
straightforwardly incorporated into existing models and is thus compatible
with an initial linear stage.

2 Materials and Methods

2.1 The Probability Distribution of Two-Dimensional Disparity. In
part A of the Results (section 3.1), we estimate the probability distribution
of two-dimensional disparity encountered by the visual system within the
central 15 degrees of vision.

2.1.1 Eye Position Coordinates. We specify eye position using Helmholtz
coordinates, since these are particularly convenient for binocular vision
(Tweed, 1997a, 1997b). In the Helmholtz system, eye position is specified
by a series of rotations away from a reference position, in which the gaze is
straight ahead. Starting with the eye in the reference position, we make
a rotation through an angle T clockwise (from the eye’s point of view)
about the reference gaze direction; then we make a rotation left through
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Figure 1: Existing models predict that neurons should be more sensitive to
disparities orthogonal to their preferred orientation. (A,B) The receptive fields
of a binocular neuron. The left and right eye receptive fields (RFs) are identical,
both consisting of a single long ON region oriented at 45 degrees to the horizontal
(shown in white) and flanked by OFF regions (black). We consider stimuli with
three different disparities. In each case, the left eye’s image falls in the center
of the left receptive field (circle in A). The different disparities occur because
the right eye’s image falls at different positions for the three stimuli. This are
labeled with the numbers 0–2 in B. (C) The disparities of the three stimuli are
plotted in disparity space. Stimulus 0 has zero disparity; its images fall in the
middle of the central ON region of the receptive field in each eye, and so it
elicits a strong response. Stimulus 1 has disparity parallel to the receptive field
orientation. Although its image is displaced in the right eye, its images still
fall within the ON region in both eyes, so the cell still responds strongly to
both stimuli. In consequence, the disparity tuning curve showing response as a
function of disparity parallel to receptive field is broad (D, representing a cross-
section through the disparity tuning surface along the dashed line). Conversely,
stimulus 2 has the same magnitude of disparity, but in a direction orthogonal
to the receptive field orientation. Its image in the right eye falls on the OFF
flank of the receptive field (B), so the binocular neuron does not respond. This
leads to a much narrower disparity tuning curve; the response falls off rapidly
as a function of disparity orthogonal to the receptive field (E, representing a
cross-section through the disparity tuning surface along the dotted line). This
means that the neuron is more sensitive to disparity orthogonal to its preferred
orientation, in the sense that its response falls off more rapidly as a function of
disparity in this direction.
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an angle H; then we make a rotation down through an angle V. Thus, the
reference direction has H = V = T = 0 by definition. In general, the posi-
tions of the two eyes have 6 degrees of freedom, expressed by the angles
HL, HR, VL, VR, TL, TR. However, we are interested only in the case where
both eyes are fixated on a single point in space, so that the gaze lines in-
tersect (possibly at infinity). This means that both eyes must have the same
Helmholtz elevation, which we write V(= VL = VR), and positive or zero
vergence angle D, defined by D = HR − HL. Specifying the fixation point
further constrains HL and HR, leaving just 2 degrees of freedom, TL and TR.
These describe the torsion state of the eyes, corresponding to the freedom
of each eye to rotate about its line of sight without changing the fixation
point. Donder’s law states that whenever the eyes move to look at a par-
ticular fixation point, specified by V, HL, and HR, they always adopt the
same torsional state. So Helmholtz torsion can be expressed as a function of
the Helmholtz elevation and azimuth: TL(V, HL, HR), TR(V, HL, HR). Cur-
rent experimental evidence (Bruno & Van den Berg, 1997; Mok, Ro, Cadera,
Crawford, & Vilis, 1992; Van Rijn & Van den Berg, 1993) suggests that the
function TR(V, HL, HR) has the form

tan TR/2 = tan
V
2

{
tan[λR + µR(HR − HL)] − tan HR/2

1 − tan HR/2 tan[λR + µR(HR − HL)]

}
, (2.1)

where TR/2 stands for TR/2 and HR/2 stands for HR/2. The corresponding
expression for the left eye’s torsion is obtained by interchanging L and R
throughout. Estimates ofµ range from 0.12 to 0.43 (Minken & Van Gisbergen,
1996; Mok et al., 1992; Somani, DeSouza, Tweed, & Vilis, 1998; Tweed, 1997b;
Van Rijn & Van den Berg, 1993), and estimates of λ are around +2 degrees
for the left eye and −2 degrees for the right (Bruno & Van den Berg, 1997).
In our simulations, we use µ = 0.2 and |λ| = 2◦.

2.1.2 The Retinal Coordinate System and Two-Dimensional Disparity. Next,
we need a coordinate system for describing the position of images on the
retinas. We assume that the retinas are hemispherical in shape. We define
a Cartesian coordinate system (x, y) on the retina by projecting each retina
onto the plane that is tangent to it at the fovea. The coordinates of a point
P on the physical retina are given by the point where the line through P
and the nodal point of the eye intersect this tangent plane. By definition, the
fovea lies at the origin (0,0). We define the x-axis to be the retinal horizon,
that is, the intersection of the horizontal plane through the fovea with the
retina in its reference position. The y-axis is the retinal vertical meridian:
the intersection of the sagittal plane through the fovea with the retina in its
reference position.

Clearly, these axes change their orientation in space as the eyes move.
However, we shall continue to refer to the x- and y-axes as the “horizontal”
and “vertical” meridians, with the understanding that this terminology is
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based on their orientation when the eyes are in the reference position. We
shall define the horizontal and vertical disparity of an object to be the differ-
ence between the x- and y-coordinates, respectively, of its images in the two
retinas. Expressed in angular terms,

δx = arctan
(

xL

f

)
− arctan

(
xR

f

)
,

δy = arctan
(

yL

f

)
− arctan

(
yR

f

)
, (2.2)

where f is the distance from the nodal point of the eye to the fovea.

2.1.3 The Epipolar Line. Given a particular point (xL, yL) in the left retina,
the locus of possible matches in the right retina defines the right epipolar
line. This depends not only on (xL, yL), but also on the position of the eyes.
On our planar retina, the epipolar lines are straight but of finite extent. Two
points on the epipolar line are the epipole, which is where the interocular
axis intersects the tangent plane of the right retina, and the infinity point,
which is the image in the right retina of the point at infinity that projects to
(xL, yL) in the left retina. Written as a vector, these are, respectively,

q0 = f
tan HR

(− cos TR, sin TR), (2.3)

and

q∞ = f
[ f cos D − xL sin D cos TL − yL sin D sin TL]

× (xL[cos D cos TR cos TL + sin TR sin TL]

− yL[cos D cos TR sin TL − sin TR cos TL] + f sin D cos TR,

− xL[cos D sin TR cos TL − cos TR sin TL]

+ yL[cos D sin TR sin TL + cos TR cos TL]

− f sin D sin TR), (2.4)

where f is the distance from the nodal point of the eye to the fovea. We use
bold type to denote a two-dimensional vector on the retina.

Not all points on the straight line through q0 and q∞ correspond to
possible objects in space (we do not allow objects to be inside or behind
the eyes). When the eye is turned inward, the epipolar line runs from the
epipole q0 to the infinity point q∞. When the eye is turned outward, the
epipolar line starts at the infinity point. Formally:
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If HR = 0:
the right-epipolar line is specified by the vector equation r = (xR, yR) =

q∞ + βε, where β ranges from 0 to ∞, and

ε = 2If
(xL sin HL cos TL − yL sin HL sin TL + f cos HL)

× (− cos HR cos TR, sin TR),

where I is half the interocular distance.

If HR 	= 0: the right-epipolar line is r = q0 + βε, where ε = q∞ − q0, and

if
sin HR

( f cos D − xL sin D cos TL + yL sin D sin TL)
> 0,

then β goes from 0 to 1;

if
sin HR

( f cos D − xL sin D cos TL + yL sin D sin TL)
< 0,

then β goes from 1 to ∞; (2.5)

2.1.4 Distribution of Horizontal and Vertical Disparities for a Given Eye Pos-
ture. For a given eye posture, we sought the distribution of physically
possible disparities for all objects whose images fall within an angle 15 de-
grees of the fovea in both retinas. For example, we consider an object whose
image falls on (xL, yL) in the left retina and calculate the epipolar line in
the right retina, as described above (see equations 2.3–2.5). We discard all
points on the epipolar line that fall further than 15 degrees from the right
eye fovea. With equation 2.1, we can then calculate the set of possible two-
dimensional disparities (δx, δy) for all objects whose image in the left retina
falls at (xL, yL), and whose image on the right retina falls within 15 degrees of
the fovea. On disparity axes (δx, δy), this set forms an infinitely narrow line
segment, which we convolved with an isotropic two-dimensional gaussian
in order to obtain a smooth distribution.

We repeated this calculation for a set of 420 points (xL, yL) within the
central 15 degrees region of the left retina and then redid the calculation
the other way around: starting with a set of 420 points in the right retina
and finding the epipolar lines in the left retina. The starting points (x, y)

were equally spaced in latitude and longitude on the hemispherical retina:
x = f tan φ cos θ , y = f tan φ sin θ , where θ covered the range from 0 to 360
degrees in steps of 18 degrees and φ ran from 0 to 15 degrees in steps of
0.75 degrees. For each starting point, we obtained another line segment on
the disparity axes, and so gradually built up a picture of the distribution
of possible disparities for the chosen eye position. The value of the angular
disparities (δx, δy) so obtained does not depend on the interocular distance
2I or the eye’s focal length f individually, but only on the ratio I/f , which
we took to be 3.
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2.1.5 Distribution of Eye Postures. Finally, we wanted to find the mean
distribution of disparity after averaging over likely eye positions. To do
this, we repeated the above procedure for 1000 different randomly chosen
eye positions. The eyes’ common Helmholtz elevation V, mean Helmholtz
azimuth Hc, and the vergence angle D were drawn from independent gaus-
sian distributions with mean 0 degree (for D, the absolute value was then
taken, since D must be positive for fixation). The Helmholtz azimuths of
the two eyes are given by HL = Hc − D/2, HR = Hc + D/2. The Helmholtz
torsion in each eye, TL and TR, was then set according to equation 2.1. The
disparity distribution for this eye position was then calculated as above.

2.2 Models of Disparity Tuning in V1 Neurons. In parts B and C of
the Results (section 3), we investigate how existing models of disparity-
selective V1 neurons can be modified to produce horizontally elongated
disparity tuning surfaces, regardless of preferred orientation. Most of the
results presented here use our model of V1 disparity selectivity (Read et al.,
2002), which is a modified version of the stereo energy model (Ohzawa et
al., 1990; Ohzawa, DeAngelis, & Freeman, 1997). As in the original energy
model, disparity-selective cells are built from binocular subunits charac-
terized by a receptive field in the left and right eye (see Figure 2A). Each
binocular subunit (BS in Figure 2A) sums its inputs and outputs the square
of this sum. However, whereas the original energy model is entirely linear
until inputs from the two eyes have been combined, our version postulates
that inputs from left and right eyes pass through a threshold before be-
ing combined at the binocular subunit. For instance, this could occur if the
initial linear operation represented by the receptive field is performed in
monocular simple cells (MS in Figure 2A). Because these cannot output a
negative firing rate, they introduce a threshold before inputs from the two
eyes are combined. This modification allows better quantitative agreement
with the data in a number of respects. It was introduced to account for the
weaker disparity tuning observed with anticorrelated stereograms (Cum-
ming & Parker, 1997). It also naturally accounts for disparity-selective cells
that do not respond to monocular stimulation in one of the eyes, which are
not possible in the original energy model, and explains why the dominant
spatial frequency in the Fourier spectrum of the disparity tuning curve is
usually lower than the cell’s preferred spatial frequency tuning, even though
the energy model predicts that these should be equal (Read & Cumming,
2003b).

All the models considered in this article have an initial linear stage in
which we calculate the inner product of the retinal image I(x, y) with the
receptive field function ρ(x, y) in that eye:

v =
∫ +∞

−∞
dx

∫ +∞

−∞
dy I(x, y)ρ(x, y). (2.6)
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Figure 2: (A) Circuit diagram for our modified version of the energy model
(Read et al., 2002). Binocular subunits (BS) are characterized by receptive fields
in left and right eyes. The initial processing of the retinal images is linear, but
input from left and right eyes is thresholded before being combined together.
Here, this thresholding is represented by a layer of monocular simple cells (MS).
In our simulations, the receptive field functions are two-dimensional Gabor
functions (shown with gray scale: white = ON region, black = OFF region).
The dots in the receptive field profiles mark the centers of the receptive fields,
which are taken to be the peak of the gaussian envelope. (B) Disparity tuning
surface for this binocular subunit. The gray scale indicates the mean firing rate
of a simulated binocular subunit to 50,000 random dot patterns with different
disparities: white = high firing rate (normalized to 1), gray = baseline firing rate
obtained for binocularly uncorrelated patterns; black = low firing rate. The dot
shows the difference between the receptive field centers, which is the position
disparity of this binocular subunit (zero in this example).

In our modified version of the energy model (Read et al., 2002), the response
of a binocular subunit is

B = [�(vL) + �(vR)]2, (2.7)

where the subscripts L and R indicate left and right eyes, and � denotes a
threshold operation: �(v) = (v − q) if v exceeds some threshold level q, and
0 otherwise. In part C of the Results (section 3.3), the threshold q was set
to zero (half-wave rectification). Since any given random dot pattern is as
likely to occur as its photographic negative, the inner product in equation 2.6
is equally likely to be positive or negative. Thus, a threshold of zero implies
that the monocular simple cell fired to only half of all random dot patterns.
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In part B of the Results, the threshold was raised above zero, such that the
monocular simple cell fired to only 30% of all random dot patterns.

2.2.1 Inhibitory Input from One Eye. We also consider the case where in-
put from one eye influences the binocular subunit via an inhibitory synapse.
In the expression for the response of the binocular subunit, the inhibitory
synapse is represented by a minus sign:

B = [Pos{�(vL) − �(vR)}]2, (2.8)

where we have explicitly included half-wave rectification (Pos(x) = x if
x > 0, and 0 otherwise) since it is now possible for the net input to the
binocular subunit to be negative, and it should not fire in this case. A subunit
of this type is disparity selective while still being “monocular” in that it
does not respond to stimulation in the inhibitory eye alone. Many such cells
are observed (Ohzawa & Freeman, 1986a; Poggio & Fischer, 1977; Read &
Cumming, 2003a, 2003b).

2.2.2 The Original Energy Model. We also consider the response of the
original energy model (Ohzawa et al., 1990). This assumes that each binoc-
ular subunit receives bipolar linear input from both eyes, so its response
is

B = [vL + vR]2 (2.9)

This circuitry is sketched in Figure 8A.

2.2.3 Response Normalization. In part C of the Results (section 3.3), we
consider the effect of incorporating a form of response normalization. This
postulates that monocular inputs are gated by inhibitory zones outside the
classical receptive field, before they converge on a binocular subunit (see
Figure 3). The response of a binocular subunit is now

B = [�(vLzL) + �(vRzR)]2 (2.10)

where the “gain factor” z describes the total amount of inhibition from the
inhibitory zones. z ranges from 1 (inhibitory zones are not activated; output
from monocular subunit is allowed through unimpeded) to 0 (inhibitory
zones are highly activated: monocular subunit is silenced). To work out how
much a particular retinal image activates the inhibitory zones, we calculate
the inner product of the retinal image with each inhibitory zone’s weight
function w(x, y) (analogous to a receptive field):

u =
∫ +∞

−∞
dx

∫ +∞

−∞
dy I(x, y)w(x, y).
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Figure 3: Circuit diagram for a binocular subunit in which the response from a
classical receptive field is gated by input from inhibitory regions. As in Figure 2,
monocular subunits, each characterized by a receptive field, feed into a binocu-
lar subunit. However, now the input from each eye may be suppressed, prior to
binocular combination, by activity in horizontally elongated inhibitory regions.
Excitatory connections are shown with an arrowhead, and quasi-divisive in-
hibitory input is shown with a filled circle. In the plots of the inhibitory regions,
the gray scale shows several inhibitory zones in a ring around the receptive field
in each eye.
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The weight functions are gaussians, which ensures that the inhibition is
spatially broadband; this is designed to approximate the total input from a
large pool of neurons with different spatial frequency tunings. In order to
obtain the desired horizontally elongated disparity tuning surfaces, we pos-
tulate that the inhibitory zones are elongated along the horizontal axis (the
elliptical contours in Figure 10A). This means that each inhibitory zone in-
dividually is orientation selective; however, we include multiple inhibitory
zones, so arranged that their total effect is independent of orientation. Thus,
the inhibition does not alter the orientation tuning of the original receptive
field. The amount of inhibition contributed by each end zone is a sigmoid
function of µ. The total inhibition from n zones is

z = 1
n

n∑
j=1

1
1 + exp[(|uj| − c)/s]

. (2.11)

The parameters c and s are chosen so that when u is small, the sigmoid
function is 1, allowing monocular input to pass unimpeded, but as the
magnitude of u increases, it falls to zero, meaning that more and more
of the monocular input is blocked. This is qualitatively similar to divisive
normalization (Heeger, 1992, 1993). c and s are small relative to the typical
activation of each inhibitory zone, so that the sigmoid is less than half for
85% of the random dot patterns. We take the absolute value of |u| so that
the inhibitory zones are activated by both bright and dark features.

In the simulation of Figure 10, we used 10 inhibitory zones, which were
gaussians with standard deviations 0.31 degree in a horizontal direction and
0.04 degree vertically. The inhibitory zone centers were placed at 0.5 degree
from the origin, at polar angles that are integer multiples of 36 degrees. As
explained in section 3, these precise values are unimportant.

Again, the input from one eye can be purely subtractive inhibition; the
output of the binocular subunit is then

B = {Pos[�(vLzL) − �(vRzR)]}2. (2.12)

2.2.4 Receptive Fields. Model receptive fields are two-dimensional Ga-
bor functions with isotropic gaussian envelopes of standard deviation 0.2
degree, and carrier frequency 2.5 cycles per degree. Spatial frequency and
orientation tuning are experimentally observed to be similar in the two eyes
(Bridge & Cumming, 2001; Ohzawa, DeAngelis, & Freeman, 1996; Read &
Cumming, 2003b), so in our simulations, these are the same in both eyes.
Left- and right-eye model receptive fields differ only in their position on
the retina; none of the models in this article has phase disparity (although
it would be easy to incorporate it).

2.2.5 Stimuli. Orientation tuning was assessed using sinusoidal lumi-
nance grating stimuli with a spatial frequency of 2.5 cycles per degree. Dis-
parity tuning was assessed using random dot stereograms with dot-density
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25%, as in the relevant experimental studies (cf. Cumming, 2002). The model
response varies depending on the pattern of dots in the individual random
dot stereogram. We therefore show the mean response, averaged over 50,000
random dot patterns generated with different seeds. This simulation was
repeated for every combination of horizontal and vertical stimulus dispar-
ity on a two-dimensional grid, so as to obtain the model’s disparity tuning
surface (analogous to the one-dimensional disparity tuning curve obtained
when disparity is applied along a single axis). All simulated disparity tun-
ing surfaces are shown normalized, so that 1 is the largest mean response
at any disparity.

The random dot patterns used dots of 2 × 2 pixels. The size of the image
and model retina was either 41×41 pixels representing 1.4◦ ×1.4◦ (30 pixels
per simulated degree; see part B of the Results, section 3.2) or 221 × 131
pixels representing 2.2◦ × 1.3◦ (100 pixels per simulated degree; see part C
of the Results, section 3.3). For part C, the monocular-suppression model,
a higher resolution was needed since the disparity tuning is suppressed at
large disparities, so we need to be able to study the disparities around zero
in more detail. All simulations were performed in Matlab 6.1.

3 Results

3.1 A: The Probability Distribution of Two-Dimensional Disparity.
Stereopsis appears to be a phenomenon mainly of central vision; stereo-
scopic thresholds rise sharply for eccentric stimuli. We therefore consider
only the central 15 degrees of cyclopean vision (i.e., the region of space pro-
jecting within 15 degrees of the fovea in both retinas). Obviously, 30 degrees
is an upper bound for the disparity of any object in the central 15 degrees
of vision. Most points on the retina will be associated with much smaller
disparities; the precise distribution depends on the position of the eyes. To
find the distribution for a given eye position, we have to consider each point
PL on the left retina in turn. For each PL, we find the set of points PR in the
right retina that are possible physical correspondences for PL. This is the
epipolar line, and because we are restricting ourselves to central vision, we
take only that portion of the epipolar line that lies within 15 degrees of the
fovea. This gives us a set of possible disparities that could be associated
with the point PL. So every point in the left retina gives us a set of possible
disparities. If we repeat this for all points in both retinas, we obtain the set of
all the physical correspondences that are possible within the central visual
field for this eye position (see section 2).

Figure 4A shows the probability distribution of retinal disparity for the
eye position specified by a Helmholtz elevation V of 15 degrees, mean
Helmholtz azimuth Hc of 15 degrees, and vergence D of 10 degrees. That is,
the eyes are converged and looking down and off to the left. Note that the
range of the horizontal axis is 10 times wider than that of the vertical axis.
The dotted contour line marks the extent of possible physical correspon-
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Figure 4: The probability distribution of horizontal and vertical disparities for
a vergence angle of 10 degrees. (A) Helmholtz elevation V = 15 degrees, mean
Helmholtz azimuth Hc = 15 degrees. (B) Helmholtz elevation V = 0 degree,
mean Helmholtz azimuth Hc = 0 degree. In each case, the outer dotted con-
tour marks the limit of possible disparities (beyond this contour, the proba-
bility density is zero). In A, this contour is only approximate: its irregularities
reflect the relatively small number of retinal positions investigated. The solid
contour marks the median (50% of randomly chosen possible correspondences
lie within this iso-probability contour). In A, the SD of the isotropic gaussian
used for smoothing was 0.04 degree; in B, it was 0.01 degree. The width of the
distribution’s central ridge is limited by this smoothing.

dences. Outside this boundary, the probability density is zero; that is, for
the given eye position, there can be no physical correspondences with that
disparity. For this eye position, the maximum vertical disparity is 2.3 de-
grees, but this occurs with a horizontal disparity of 20 degrees, far too large
for fusion. If we restrict ourselves to horizontal disparities within Panum’s
fusion limit, δx < |0.5|◦, the maximum vertical disparity is around 1 degree.
The solid contour line marks the median; that is, 50% of possible physical
correspondences fall within the solid line. Within this boundary, the range
of vertical disparities is even smaller.

Figure 4A demonstrates that large, vertical disparities can occur. But in
fact, during natural viewing, it must be relatively uncommon to have the
eyes elevated as much as 15 degrees and turned as much as 15 degrees to
the side. We flick our eyes around a scene, but we do not usually spend
a long time directing our eyes eccentrically; if that became necessary, we
would move our head or the object of interest so that it could be viewed
with Hc ∼ V ∼ 0◦, where large, vertical disparities are even rarer. Figure 4B
shows the distribution of retinal disparity for Hc = V = 0◦ with the same
vergence as before, D = 10 degrees. Now, the largest vertical disparity is
0.35 degree. As before, the solid contour line encloses 50% of the possible
physical correspondences. While this contour extends to horizontal dispari-
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ties as large as 15 degrees, it never reaches a vertical disparity as large as 0.05
degree. Of course, which physical correspondences actually occur depends
on the scene being viewed. But since there are far more possible correspon-
dences with vertical disparities less than 0.1 degree, it seems reasonable to
assume that with the given eye position (D = 10 degrees, Hc = V = 0 de-
gree), it would be rare for a natural scene to contain an object with a vertical
disparity more than 0.1 degree. In contrast, with this eye position, extremely
large horizontal disparities are common.

To estimate the incidence of vertical disparities experienced by the visual
system, we need to find the disparity distribution averaged not only over
retinal position, as in Figure 4, but over all eye positions. For simplicity,
we assume that Hc, V, and D are independently and normally distributed
with mean zero (for D, since fixation requires a positive vergence angle,
we use only the positive half of the gaussian). Figure 5 shows the resulting
distributions for two different sets of values for the standard deviations of
these distributions. In these plots, we have homed in on the small range of
horizontal disparities that can actually be fused rather than the full range of
possible horizontal disparities. Note that again the range of the horizontal
axis is 20 times that of the vertical. In Figure 5A, gaze direction is assumed

Figure 5: The distribution of horizontal and vertical disparities for normal view-
ing, averaged over 1000 random eye positions. Helmholtz elevation V and mean
Helmholtz azimuth Hc are picked from a gaussian with mean 0 degree and SD
either 10 degrees (A) or 20 degrees (B). To obtain vergence D, a random number
is picked from a gaussian with mean 0 degree and SD either 3 degrees (A) or 8
degrees (B), and then vergence is set to the absolute value of this number. The
resulting vergence distribution has a mean 2.4 degrees (A) or 6.4 degrees (B), and
SD 1.8 degrees (A) or 4.8 degrees (B). The contour line marks the median for the
section of the probability distribution shown (50% of randomly chosen possible
correspondences with |δx| < 0.5 and |δy| < 0.05 lie within this iso-probability
contour).
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to be fairly tightly distributed about Hc = V = 0 degree (with a standard de-
viation of 10 degrees), while vergence is generally small (mean 2.4 degrees,
SD 1.8 degrees). Figure 5B gives more weight to eccentric and converged
gaze (the standard deviation of Hc and of V is 20 degrees, meaning that the
person spends 5% of his or her time gazing more than 40◦ off to the side,
while the vergence angle D has mean 6.4 degrees, SD 4.8 degrees, mean-
ing that the person spends 20% of the time looking at objects closer than
about 34 cm). These distributions are chosen to reflect opposite extremes of
behavior, to demonstrate that our conclusions do not depend critically on
the assumptions made about the distribution of eye position during normal
viewing. The only critical assumption is that binocular eye movements are
coordinated such that the gaze lines always intersect.

Under both sets of assumptions, the most striking feature in Figure 5 is
the extreme narrowness of the disparity distributions in the vertical dimen-
sion (especially given the much larger scale on the vertical axis): less than
0.01 degree in both cases. At first sight, this extreme narrowness is hard
to reconcile with Figure 4A, where the probability distribution peaks for
−0.5◦ < δy < 0◦. The solution is that the plots in Figure 5 represent the
average of many plots like those shown in Figure 4. These all have a rodlike
structure, with the orientation of the rod depending on the particular eye
posture. But all the rods pass close to zero disparity. Thus, when we average
over all eye postures, we end up with a strong peak close to zero disparity.
This peak is stronger in Figure 5B, where the gaze and vergence are more
variable. The rods are thus more widely dispersed, and we end up with
a more pronounced peak at their common intersection. In Figure 5A, the
eyes are assumed to stay fairly close to primary position, and so the rods
are almost all close to horizontal. The averaged distribution is thus more
elongated horizontally. The slight bias toward crossed (positive) disparities
particularly evident in Figure 5A stems from an obvious geometric reason:
the amount of uncrossed disparity, −δx, can never exceed the vergence an-
gle D. (This restriction is visible as a sharp boundary in Figure 4.) No such
restriction exists for crossed disparity. We began this discussion by restrict-
ing ourselves to central vision—the central 15 degrees around the fovea. If
we widen this to the central 45 degrees—essentially the entire retina—then
obviously larger disparities, both horizontal and vertical, become possible.
However, the shape of the disparity distribution remains highly elongated
horizontally (not shown).

This analysis has shown that independent of the precise assumptions
made, the distribution of two-dimensional disparity experienced by the
visual system in natural viewing is highly elongated. Large, horizontal dis-
parities are far more likely to be encountered than vertical disparities of the
same magnitude. We would therefore expect disparity detectors in V1 to be
tuned to a considerably wider range of horizontal than vertical disparities.
Following conflicting reports in earlier studies (Barlow et al., 1967; Joshua
& Bishop, 1970; von der Heydt, Adorjani, Hanny, & Baumgartner, 1978),
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recent experimental evidence shows that this is indeed the case. Cumming
(2002) extracted a single preferred two-dimensional disparity for each of 60
neurons and found that the distribution of this preferred disparity was hor-
izontally elongated, with an SD of 0.225 degree in the horizontal direction
and only 0.064 degree vertically. This observation is simple to incorporate
within existing models: for example, if a cell’s preferred disparity reflects
the position disparity between its receptive field locations in the two eyes,
then the horizontally elongated distribution means that there is greater scat-
ter in the horizontal than in the vertical location of the two eyes’ receptive
fields. However, Cumming also found that the disparity tuning for individ-
ual neurons was horizontally elongated, independent of their orientation
tuning. While this too makes sense in view of the extreme horizontal elon-
gation of the disparity distribution shown in Figure 5, it presents problems
for existing models of individual neurons. In the next section, we explain
why and investigate how these models can be altered so as to reconcile them
with the data.

In existing physiological models of disparity selectivity, tuning to two-
dimensional binocular disparity must reflect the monocular tuning to orien-
tation. This is illustrated in Figure 2, which sketches the circuitry underlying
our model of disparity selectivity. In this example, the left and right eye re-
ceptive fields are oriented at 45 degrees to the horizontal (see Figure 2A).
The disparity tuning surface (see Figure 2B) is approximately the cross-
correlation of the two receptive fields (the thresholds prior to binocular
combination in our model mean that it is not exactly the cross- correla-
tion, but the approximation is accurate enough to be helpful). It is therefore
elongated along the same axis as the receptive field. This means that as we
move away from the cell’s preferred disparity along an axis orthogonal to
the preferred orientation, the response falls off rapidly, whereas it falls off
only slowly along an axis parallel to the preferred orientation. In this sense,
therefore, the cell is most sensitive to disparities applied orthogonal to its
preferred orientation. The challenge is to find a way of making the cell most
sensitive to vertical disparity, while keeping its oblique orientation tuning.
We consider two possible mechanisms that achieve this.

3.2 B. Multiple Binocular Subunits with Horizontal Position Dispar-
ity. Tuning to nonzero disparity may arise if the left and right eye receptive
fields differ in their position on the retina, or in the arrangement of their ON
and OFF subregions. In recent years, there has been intense debate about the
relative contribution of the two mechanisms, known as position and phase
disparity (Anzai, Ohzawa, & Freeman, 1997, 1999; DeAngelis, Ohzawa, &
Freeman, 1991; DeAngelis et al., 1995a; Fleet et al., 1996; Ohzawa et al.,
1997; Prince, Cumming, & Parker, 2002; Tsao, Conway, & Livingstone, 2003;
Zhu & Qian, 1996). Both mechanisms predict a disparity tuning surface
elongated along the preferred orientation of the cell, and thus preclude the
experimentally observed specialization for horizontal disparity. However,
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all previous analysis has assumed that position and phase disparity is the
same for all binocular subunits feeding into a given complex cell. Here, we
relax this assumption and show that this breaks the relationship between
disparity tuning surface and orientation tuning, allowing a specialization
for horizontal disparity independent of orientation selectivity.

In Figure 2A, the left and right eye receptive fields are identical and
occupy corresponding positions on the retina. The receptive fields are rep-
resented by Gabor functions; the dot indicates the receptive field center,
which is in the same place in each retina. Thus, the disparity tuning surface
has its peak at zero disparity (the dot in Figure 2B). If the receptive fields
were offset from one another, they would have a position disparity, and the
peak of the disparity tuning surface would be offset accordingly.

We now consider a complex cell that sums the outputs of several binoc-
ular subunits that differ in their horizontal position disparity. Figure 6A
shows the centers of the left eye receptive fields for 18 binocular subunits
that all feed into the same complex cell. (For comparison, one receptive field
is indicated with contour lines.) The gray scale shows the sum of the gaus-
sian envelopes for all 18 subunits, which is almost circularly symmetrical.
Thus, no anisotropy is visible when the cell is probed monocularly.

The disparity tuning of the complex cell depends on how pairs of monoc-
ular receptive fields are wired together into binocular subunits. We choose
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to pair together receptive fields that have the same vertical position on the
retina but differ in their horizontal position. This means that the binocular
subunits all have zero vertical position disparity but differ in their horizon-
tal position disparity. Three examples are shown in Figure 7; the position
disparity for these three subunits are indicated with different symbols in
Figure 6C. For example, the top subunit in Figure 7, marked with a dia-
mond, has zero position disparity, whereas the bottom subunit in Figure 7,
marked with a triangle, has a position disparity of −0.6 degree. Because
of the horizontal scatter of the subunits, the disparity tuning surface of the
complex cell (see Figure 6C) is elongated along the horizontal axis, even
though the monocular receptive field envelope is isotropic (see Figure 6A),
and the preferred orientation remains at 45 degrees (see Figure 6B), reflect-
ing the individual receptive fields. This demonstrates that disparity tuning

Figure 6: Facing page. Response properties for a multiple subunit complex cell.
(A) Monocular receptive field envelope. The gray scale shows the sum of the
gaussian envelopes for all 18 receptive fields in one eye. The dots indicate the
center of the receptive fields. The square is the center of the receptive field shown
in Figure 2 (marked here with contour lines; solid lines show ON regions and
broken lines OFF regions). (B) Orientation tuning curve. This shows the mean
response of the complex cell to drifting grating stimuli at the optimal spatial fre-
quency, as a function of the grating’s orientation. The preferred orientation is 45
degrees, reflecting the structure of the individual receptive fields. (C) Disparity
tuning surface. This shows the mean response of the complex cell to random
dot stereograms as a function of two-dimensional disparity. The disparity tun-
ing surface is clearly elongated along the horizontal axis. The responses have
been normalized to one, as indicated with the scale bar. The superimposed dots
show the position disparities of the individual binocular subunits; the 18 sub-
units have 9 different disparities. The circuitry for three subunits is sketched in
Figure 7; the position disparity for the three subunits shown there is here indi-
cated with matching symbols. In the top subunit in Figure 7, the receptive fields
in the two eyes are identical; this subunit therefore has zero position disparity
(the diamond at (0,0)). The middle subunit in Figure 7 has receptive fields at
different positions in each retina. It therefore has a horizontal position disparity,
marked with a triangle pointing up. The bottom subunit in Figure 7 has an even
larger horizontal position disparity, marked with a triangle pointing right. The
tuned-excitatory disparity tuning surface shown here is the sum of 18 disparity
tuning surfaces like that in Figure 2, but offset from one another horizontally.
Thus, although the individual tuning surfaces were elongated along an oblique
axis, the resulting disparity tuning surface is elongated horizontally. (D) Dispar-
ity tuning surface for a tuned-inhibitory complex cell. This was obtained with
exactly the same receptive fields and subunits as in C, except that now, one out of
each pair of monocular subunits made an inhibitory synapse onto the binocular
subunit (see equation 2.8).
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Figure 7: Circuit diagram indicating how multiple binocular subunits (BS) can
be combined to yield a complex cell whose disparity tuning surface is elon-
gated along the horizontal axis. Our model complex cell receives input from
18 binocular subunits, of which 3 are shown. The gray scale plots on the left
show the monocular receptive field functions for monocular simple cells (MS).
These are combined into binocular subunits (BS); note that the monocular sim-
ple cells apply an output threshold prior to binocular combination. The centers
of the receptive field envelopes are shown with the symbols used to identify
these disparities in Figure 6. As shown by the positions of these symbols, the
three subunits have different horizontal position disparities (0 degree, −0.3 de-
gree, −0.6 degree) and no vertical disparity. The receptive field phase is chosen
randomly for each subunit, but within each subunit, it is the same for each eye.
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and orientation tuning can be decoupled in a cell that receives input from
multiple subunits with different position disparities.

In Figure 7, all the binocular subunits receive excitatory input from the
monocular subunits feeding into them, and the left and right receptive fields
for each subunit are in phase. This results in a “tuned-excitatory” type of
disparity tuning surface (Poggio & Fischer, 1977), in which the cell’s firing
rate rises above the baseline level for range of preferred disparities (see Fig-
ure 6C). If for each subunit one eye sends excitatory input and the other
inhibitory (Read et al., 2002), then we obtain a “tuned-inhibitory” complex
cell, whose firing rate falls below the baseline for a particular range of dis-
parities (see Figure 6D). The position disparity of the individual subunits
works in exactly the same way as before, so this cell’s disparity tuning sur-
face is also elongated along the horizontal axis. Thus, this model works for
both tuned-excitatory and tuned-inhibitory cells.

3.2.1 Energy Model Subunits Tend to Cancel Out. In the simulations above,
we used our modified version of the stereo energy model (Ohzawa et al.,
1990) because this is in better quantitative agreement with experimental
data than the original energy model (Read & Cumming, 2003b; Read et al.,
2002). As we shall see, this modification is also key to the success of the
multiple-subunit model shown in Figures 7 and 6.

The receptive fields in the example cells in Figures 2 and 7 were chosen
to be similar to the type of receptive fields derived from reverse correlation
mapping (DeAngelis et al., 1991; DeAngelis, Ohzawa, & Freeman, 1995b;
Jones & Palmer, 1987; Ohzawa et al., 1996). They are spatially bandpass,
containing several ON and OFF subregions and little power at DC. In the
energy model, bandpass receptive fields must yield bandpass disparity tun-
ing curves (i.e., curves with several peaks and troughs). One problem for the
energy model is that multiple peaks are not often seen in experimental dis-
parity tuning curves. These are frequently close to gaussian in shape, with
only weak side lobes, even when the spatial frequency tuning is bandpass.
That is, real disparity tuning curves seem to be more low-pass than pre-
dicted from the energy model. This discrepancy has been noted by various
authors (Ohzawa et al., 1997; Prince, Pointon, Cumming, & Parker, 2002),
and quantified in detail by us (Read & Cumming, 2003b). Our modifica-
tion to the energy model, introducing thresholds prior to binocular com-
bination, helps fix this problem by removing side lobes from the disparity
tuning curves, making them more low-pass and in better agreement with
experimental data (Read & Cumming, 2003b). It turns out that this reduc-
tion of the side lobes is also what enables us to construct a horizontally
elongated disparity tuning surface by combining multiple subunits with
different horizontal position disparities.

To see why, consider what happens without the monocular thresholds.
Figure 8A shows the circuit diagram of a binocular subunit according to
the original energy model; the key feature is that bipolar input from the
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Figure 8: (A) Circuit diagram for a single binocular subunit from the original
energy model (Ohzawa et al., 1990). In contrast to our modified version (see
Figure 2), inputs from the two eyes are combined linearly (though the binoc-
ular subunit still applies an output nonlinearity of half-wave rectification and
squaring). This results in more bandpass disparity tuning. (B) The side lobes in
the disparity tuning surface shown here are much deeper than in Figure 2. This
surface has almost no power at DC. As a consequence, when several binocular
subunits with different horizontal position disparity combine to form a complex
cell, their disparity tuning surfaces cancel out over most of the range (cf. Figure
9A). (C) The disparity tuning surface for a complex cell receiving input from
18 energy model binocular subunits whose position disparities are indicated by
the symbols. Instead of being elongated horizontally as in Figure 7, all but the
two end subunits are canceled out by their neighbors, so it has two separate
regions of oscillatory response. This does not resemble the responses recorded
from real cells.

two eyes is combined linearly. The disparity tuning surface for this sub-
unit is shown in Figure 8B. Note that the central peak is flanked by two
deep troughs where firing falls well below baseline, so the surface as a
whole has very little power at DC (compare Figure 8B to Figure 2B, which
shows the equivalent surface for our modified version). As a result, when
we add together several copies of such disparity tuning surfaces, most of
the power cancels out, leaving a highly unrealistic tuning surface contain-
ing two distinct regions of modulation (see Figure 8C). To see why this
happens, consider Figure 9A. The thin, broken lines show five hypothetical
disparity tuning curves (in one dimension for clarity) that have no power
at DC, because their deep side troughs have the same area as their central
peak. When the five offset curves are averaged (heavy line), the peak of one
subunit is canceled out by the side troughs of the two adjacent subunits,
so that the response averages out to the baseline level everywhere except
at the two ends, where the subunits have only one neighbor. In Figure 9B,
the five disparity tuning curves are gaussians, representing the effect of a
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Figure 9: Problems encountered in combining subunits tuned to different dis-
parities. Thin, broken curves: hypothetical disparity tuning curves from five
binocular subunits. They are identical in form but offset from one another hori-
zontally. Heavy curve: the mean of the thin curves. (A) These binocular subunits
have bandpass disparity tuning (like those obtained from the original energy
model). The thin curves have near-zero DC component, since the central peak is
nearly equal in area to the two side troughs. When the subunits are combined,
their disparity tuning curves cancel out over most of the range, leaving an oscil-
latory region at each end. This does not resemble real disparity tuning curves.
(B) These binocular subunits have low-pass disparity tuning (like those obtained
from our modified version of the energy model). Now, combining many sub-
units tuned to different disparities results in a broadened disparity tuning curve
resembling experimental results. However, the disparity tuning is weakened.
Whereas the tuning curves for individual subunits (thin lines) have amplitude
equal to their baseline, the amplitude for the combination (heavy line) is only
25% of the baseline. This problem could be solved by imposing a final output
threshold on the complex cell. If the region of the plot below the dotted line
could be removed by an output threshold, then the amplitude of the disparity
tuning curve would be a larger fraction of the new baseline.

high threshold before binocular combination (Read & Cumming, 2003b).
Because there are no inhibitory side lobes, cancellation does not occur, and
the resultant disparity tuning curve (heavy curve) is above baseline for an
extended range. In our simulations, the threshold was set such that each
monocular simple cell fired on average for 3 out of every 10 random- dot
patterns; for comparison, this figure would be 5 out of 10 for a threshold at
zero (half-wave rectification). This does not entirely remove the side lobes
(see Figure 2), but has enough of an effect to prevent cancellation. Thus
our modification, introduced for quite different reasons, also enables us to
obtain horizontally elongated disparity tuning surfaces by combining mul-
tiple subunits with horizontal position disparities. For bandpass receptive
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fields, this is not possible in the energy model, although it is possible for
receptive fields with a substantial DC response.

3.2.2 An Additional Output Threshold is Needed. Figure 9B also highlights
a problem with this multiple-subunit model as it stands. Summing multiple
subunits inevitably reduces the amplitude of the modulation with disparity.
In Figure 9B, the individual disparity tuning curves have amplitude equal
to the baseline response, while the amplitude of the averaged curve (black)
is just 20% of the baseline. This effect is apparent on examining the scale bars
in Figure 6: the amplitude of the disparity tuning is only about 5% of the
baseline (the response at large disparities, where the random dot patterns
in the two eyes are effectively uncorrelated). In an experiment, a cell with
such weak modulation would probably not even pass the initial screening
for disparity selectivity. This problem can be solved if we postulate that
the complex cell applies an output threshold: that is, it fires only when its
inputs exceed a certain value (cf. the dotted line in Figure 9B). For the tuned-
excitatory model, it would be equally valid to postulate that the necessary
threshold is applied by the individual binocular subunits. However, for
tuned-inhibitory cells, the threshold must be applied by the complex cell
that sums the individual subunits (this is apparent on redrawing Figure 9B
with tuned-inhibitory tuning curves).

3.3 C. Monocular Suppression from Horizontally Elongated Inhibitory
Zones. We now turn to an alternative way of decoupling disparity and ori-
entation tuning. A well-known feature of V1 neurons is that they can be
inhibited by activity outside their classical receptive field (Cavanaugh, Bair,
& Movshon, 2002; Freeman, Ohzawa, & Walker, 2001; Gilbert & Wiesel, 1990;
Jones, Wang, & Sillito, 2002; Maffei & Fiorentini, 1976; Sillito, Grieve, Jones,
Cudeiro, & Davis, 1995; Walker, Ohzawa, & Freeman, 1999, 2000, 2002).
Phenomena such as end stopping, side stopping, and cross-orientation in-
hibition have been explained by suggesting that individual V1 neurons are
subject to a form of gain control from the rest of the population, for example,
by divisive normalization (Carandini, Heeger, & Movshon, 1997; Heeger,
1992, 1993). Yet existing models of disparity selectivity ignore these aspects
of V1 neurons’ behavior. We now extend our model (Read et al., 2002) to
include these effects. We postulate that inputs from each eye are suppressed
by activity from inhibitory zones prior to binocular combination. We shall
show that if the individual inhibitory zones are elongated horizontally on
the retina, the disparity tuning surface will be horizontally elongated. If
there are several inhibitory zones arranged isotropically, the total inhibition
is independent of orientation. Thus, this horizontal elongation in disparity
tuning is achieved without altering the cell’s orientation selectivity.

3.3.1 Monocular Suppression Can Decouple Disparity and Orientation Tun-
ing. As before, we consider a binocular subunit with identical obliquely
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oriented receptive fields in left and right eyes. However, now the monocular
inputs are gated by inhibitory zones before being combined in a binocular
subunit. This is sketched in Figure 3. If the retinal image does not stimulate
the inhibitory zones, the inhibitory synapses in Figure 3 are inactive, and
the output of the monocular simple cell is passed to the binocular subunit
just as in the previous model. But if the retinal image stimulates the in-
hibitory zones, the inhibitory synapses become active, and the firing rate
of the monocular cell is reduced or even silenced (see section 2 for details).
This is very similar to the divisive normalization proposed to explain non-
specific suppression and response saturation (Carandini et al., 1997; Heeger,
1992, 1993; Muller, Metha, Krauskopf, & Lennie, 2003): the firing rate of a
fundamentally linear neuron is suppressed by activity in a “normalization
pool” of cortical neurons. In the simple model presented here, the horizon-
tal elongation of the individual inhibitory zones, chosen in order to obtain
horizontally elongated disparity tuning surfaces, means that they are tuned
to horizontal orientation. This is a side effect of the computationally cheap
way we have chosen to implement divisive normalization by a pool of neu-
rons: in a full model, each inhibitory zone would represent input from a
multitude of sensors tuned to different spatial frequencies and orientations,
so that the response of each inhibitory zone individually would be indepen-
dent of orientation. Equally, it would be possible to construct the surround
such that it was sensitive to orientations other than horizontal. So long as the
region over which these subunits are summed remains horizontally elon-
gated, it would still produce the desired effect on disparity tuning. In this
way, it would be possible to construct a model using the same principles
that matched the reported orientation selectivity of surround suppression
(Cavanaugh et al., 2002; Levitt & Lund, 1997; Muller et al., 2003). However,
the simple model presented here is designed to be nonspecific in that the
suppression contributed by all the inhibitory zones together is independent
of orientation. This means that the suppression in our model affects the
disparity tuning while leaving the orientation tuning unchanged.

One way of achieving this is to place the inhibitory zones in a ring around
the original receptive field, as shown in Figure 10A, so that while the in-
dividual inhibitory zones are horizontally elongated, the total inhibitory
region is roughly isotropic. Figure 10B shows the orientation tuning curves
obtained with no suppression (solid curve) and after including the effect
of suppression from the inhibitory end zones (broken curve). Despite the
horizontal orientation of each inhibitory zone individually, the cell still re-
sponds best to a luminance grating aligned at 45 degrees. The ring pattern is
consistent with experimental evidence indicating that suppressive regions
are located all around the receptive field (Walker et al., 1999). In fact, as far
as disparity tuning to random dot patterns is concerned, similar results are
obtained no matter where the inhibitory zones are placed, provided that the
overall arrangement is not tuned to orientation. We also ran our simulations
with inhibitory end zones placed at the top and bottom of the original recep-
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Figure 10: Horizontally elongated inhibitory end zones need not alter the orien-
tation tuning. (A) Receptive field and inhibitory end zones. The gray scale shows
the receptive field—a Gabor function in which a central ON region (white)
is flanked by two OFF regions (black). The contours show the ten inhibitory
end zones. Each inhibitory zone is a gaussian, and the contour marks the half-
maximum. (B) Orientation tuning curve for the model with (dashed line) and
without (solid line) gating by the inhibitory zones. This demonstrates that the
horizontally elongated inhibitory zones do not alter the orientation tuning of
the cell: it still responds best to a grating oriented at 45 degrees.

tive field (not shown), and obtained essentially the same results. Similarly,
the gaps between the inhibitory zones in Figure 10 are not important. We
chose a sparse arrangement of inhibitory zones so that the location of the
individual zones would be clear; in fact, the same results are obtained with
a much denser array of overlapping inhibitory zones forming a complete
ring around the original receptive field (not shown).

Although the inhibitory zones have little effect on orientation tuning,
they have a profound effect on the two-dimensional disparity tuning ob-
served with random dot stereograms. Figure 11A shows the disparity tuning
surface that would be obtained from this binocular subunit in the absence
of inhibitory zones. It is, as expected, elongated along an oblique axis corre-
sponding to the orientation tuning. Figures 11B and 11C show the disparity
tuning surface after incorporating inhibition from the ten inhibitory zones
(in Figure 11B, for the same range of disparities as in Figure 11A, and in
Figure 11C, focusing in on a smaller range of disparities). Comparing Fig-
ures 11A and 11B, it is apparent that the original disparity tuning surface
has been greatly reduced. Suppression from the inhibitory zones has re-
moved or weakened the cell’s responses to most disparities away from the
preferred disparity (zero, in this example), especially to disparities with
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Figure 11: Monocular suppression by horizontally oriented inhibitory regions
can result in a horizontally elongated disparity tuning surface. (Top row) Dis-
parity tuning surface with and without monocular suppression. (A) Disparity
tuning surface for a single binocular subunit without any suppression from in-
hibitory zones, as sketched in Figure 2 (equation 2.7, with the threshold set at
zero so that � represents half-wave rectification). (B, C) Disparity tuning surface
for the same binocular subunit after incorporating monocular suppression from
inhibitory zones prior to binocular combination, as sketched in Figure 3 (see
equation 2.10; again � represents half-wave rectification). At large scales (B),
some trace of the original oblique structure remains, but in the central region
where sensitivity to disparity is strongest (shown expanded in C), the structure
is horizontal. (Bottom row) Correlation between left and right eye inputs as a
function of disparity. (D) Correlation between output of classical receptive fields
in left and right eyes (see equation 2.6). (E) Correlation between total inhibition
from end zones in left and right eyes (see equation 2.11). (F) Correlation between
output of classical receptive fields after inhibition from end zones.

significant vertical components. However, the response to horizontal dis-
parities has been relatively spared. This is especially clear in Figure 11C,
where we focus in on the smallest disparities. What remains of the disparity
tuning surface is now elongated along a near-horizontal axis.

3.3.2 The Monocular Suppression Vetoes Vertical-Disparity Matches. The
inhibitory zones effectively veto local correlations with vertical disparities.
Functionally, this would be useful since such correlations are likely to be
false matches, which will only hamper a solution of the correspondence
problem. Yet at first sight, it is hard to understand how this can occur. In
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our model, the inhibition is purely monocular: the inhibitory zones receive
input from only one eye and suppress the response only in that eye. How,
then, can they detect interocular correlation for vertical disparities in order
to suppress it?

To understand this, we first note that the output of an ordinary binocular
subunit (without gating from inhibitory zones) depends on the correlation
between the terms from left and right eyes, which depends on disparity.
If we plot the correlation between the inputs from left and right eyes, be-
fore normalization by the inhibitory zones, as a function of horizontal and
vertical disparity, the resulting correlation surface has the same orientation
as the receptive fields (see Figure 11D). Similarly, the correlation between
the suppressive input from the inhibitory zones in left and right eyes is
oriented along the same axis as the inhibitory zones, that is, horizontally
(see Figure 11E). It was to achieve this result that we made the inhibitory
zones horizontally elongated. Regions of weaker correlations at disparities
corresponding to the separation between nearby inhibitory zones are also
visible.

Finally, Figure 11F homes in on the same small range of disparities as
in Figure 11C and shows the correlation between left and right eye inputs,
after suppression from the inhibitory zones. In order for these to be tightly
correlated, we need strong correlation between both the left and right re-
ceptive field inputs and the left and right eye inhibition. Thus, Figure 11F
can be thought of as the product of Figures 11D and 11E. For disparities
with a significant vertical component in Figure 11F, the lack of correlation
in the inhibitory zone responses (see Figure 11E) has largely canceled out the
correlation between the inputs from the receptive fields (see Figure 11D).
The original obliquely oriented correlation function has been weakened,
leaving a band of high correlation for small horizontal disparities. This hor-
izontally elongated correlation translates into the horizontally elongated
disparity tuning surface we saw earlier (see Figure 11C). Figure 12 shows
that this works for tuned-inhibitory cells (see equation 2.12) too. Thus, end
stopping can decouple disparity tuning from orientation tuning, for both
tuned-excitatory and tuned-inhibitory cells. This basic idea has been sug-
gested before (Freeman & Ohzawa, 1990; Maske et al., 1986a; Maske, Ya-
mane, & Bishop, 1986b), but no one has previously developed a quantitative
model and examined its properties.

4 Discussion

Because our eyes are displaced horizontally, most disparities we encounter
are horizontal. We have quantified this by producing estimates of the proba-
bility distribution of two-dimensional disparity encountered during natural
viewing, making plausible assumptions for the distribution of eye posture.
The results are independent of the precise assumptions used and show
clearly that the probability distribution of experienced disparity is highly
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Figure 12: Monocular suppression by horizontally oriented inhibitory regions
can also yield a tuned-inhibitory disparity tuning. As for Figures 11A to 11C,
but for a model incorporating a tuned-inhibitory synapse, so the disparity is of
the tuned-inhibitory type.

elongated along the horizontal axis. Psychophysically, this anisotropy mir-
rors our different sensitivities to horizontal and vertical disparity (Stevenson
& Schor, 1997). Physiologically, it is reflected in V1 at two different levels.
At the population level, there is a wider scatter in the horizontal than in the
vertical component of preferred disparities (Barlow et al., 1967; Cumming,
2002; DeAngelis et al., 1991). At the level of individual cells, disparity tun-
ing surfaces are usually elongated along the horizontal axis, regardless of
orientation tuning (Cumming, 2002).

While the specialization at the population level was expected and is
straightforward to incorporate into existing models, the specialization found
in individual cells is at first sight extremely surprising. It is not only incom-
patible with all existing models of the response properties of disparity-tuned
cells; it is the exact opposite of the behavior previously predicted to be func-
tionally useful for stereopsis. Many workers have argued that cells mediat-
ing stereopsis should be most sensitive to horizontal disparity; their firing
rate should change more steeply as a function of horizontal than of vertical
disparity (DeAngelis et al., 1995a; Gonzalez & Perez, 1998; LeVay & Voigt,
1988; Maske et al., 1986a; Nelson et al., 1977; Ohzawa & Freeman, 1986b).
Given the expectation that the direction of maximum disparity sensitivity
would be orthogonal to the cell’s preferred orientation, this led to the ex-
pectation that cells tuned to vertical orientations should be most useful for
stereopsis, since these were expected to be the most sensitive to horizontal
disparity. It was therefore puzzling why real disparity-tuned cells occur with
the full range of preferred orientations, with no obvious tendency to prefer
vertical orientations. The recent discovery that the direction of maximum
disparity sensitivity is in fact independent of orientation tuning (Cumming,
2002) would have satisfactorily solved this puzzle if it had not been for the
fact that the direction of maximum disparity sensitivity was found to be
vertical rather than horizontal. From the conventional point of view, this
anisotropy of individual V1 neurons looks more like a specialization for
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vertical than for horizontal disparity. It is important, therefore, before we
discuss how we have been able to reproduce the horizontally elongated
disparity tuning surfaces of V1 neurons, to consider why this anisotropy
occurs. Armed with hindsight and recent experimental evidence, we shall
argue that the previous expectations were flawed and attempt to suggest
plausible reasons that the observed anisotropy is in fact a useful specializa-
tion for horizontal disparity.

The previous expectation of vertically elongated disparity tuning sur-
faces was based on the fact that these are most sensitive to horizontal dis-
parity. Yet given that stereo information is usually thought to be represented
in the activity of a whole population of sensors tuned to different disparities,
this is not particularly relevant. The sensitivity with which the population
encodes horizontal disparity is not limited by the sensitivity of the individ-
ual sensors. It is not possible, therefore, to deduce the shape of the individual
disparity tuning surfaces from the need for sensitivity to horizontal dispar-
ity. A population of sensors with either horizontally elongated or vertically
elongated surfaces would be equally capable of achieving high sensitivity
to horizontal disparity.

Imagine a population of neurons whose disparity tuning surfaces are
isotropic (equally sensitive to vertical and horizontal disparity). If the scat-
ter of center positions (preferred disparity) is equal in vertical and hori-
zontal directions, the population carries equivalent information concerning
the two disparity directions. The population response could be made more
sensitive to horizontal than vertical disparity by reducing the scatter in the
horizontal direction. However, the population would show such sensitivity
over a narrower range of horizontal than vertical disparities. For simple
pooling over a population of independent disparity detectors, there is a
trade-off between the range of disparity encoded in any one direction and
the sensitivity to small changes, regardless of the shape of individual filters.

That said, the horizontal displacement of the eyes does place constraints
on the maximum useful extent of the individual disparity tuning surfaces.
There is no point in having any one filter encompass a larger range than is
required of the population. As our simulation of the probability distribu-
tion of the two-dimensional disparities encountered during normal viewing
demonstrates, large, vertical disparities are rare in comparison to large, hor-
izontal disparities. The iso-probability contours (see Figures 4 and 5) span a
greater range of horizontal than vertical disparities. Suppose that the brain
ignores disparities outside a certain iso-probability contour and that this is
the functional reason that we cannot fuse large disparities outside Panum’s
fusional limit: such large disparities are too rare to be worth encoding. The
range of disparities to be encoded in each direction places an upper limit
on the useful extent of an individual cell’s disparity tuning surface in that
direction. Due to the horizontally elongated shape of the iso-probability
contours, this upper limit is much lower in the vertical direction than in
the horizontal direction. While this does not prove that individual disparity
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tuning surfaces must be horizontally elongated (it would be theoretically
possible to cover the desired horizontally elongated range with vertically
elongated disparity sensors), it nevertheless suggests that horizontally elon-
gated surfaces may be more likely than vertically elongated ones.

The characteristic feature of horizontally elongated disparity tuning sur-
faces is that they continue responding to features across a range of horizontal
disparities, while their response falls quickly back to baseline if the vertical
disparity changes. This may be useful, given that features with significant
vertical disparity are likely to be “false matches.” There is some evidence
that the brain does not explicitly search for nonzero vertical disparities when
solving the stereo correspondence problem. If the eyes are staring straight
ahead (more precisely, are in primary position), then there are no vertical
disparities, and the epipolar line of geometrically possible matches for a
given point in the other retina is parallel to the horizontal retinal meridian.
When the eyes move, the epipolar lines shift on the retina, so they are not in
general exactly horizontal. However, rather than recompute the position of
the epipolar lines every time the eyes move, the brain seems to approximate
epipolar lines by horizontally oriented search zones of finite vertical extent.
The search zones are horizontal because the epipolar lines are usually close
to horizontal, while their finite vertical width allows for the fact that nonzero
vertical disparities do occur. Computationally, this strategy is an enormous
saving. The cost is that when the eyes adopt an extreme position that gives
rise to vertical disparities larger than the vertical width of the search zones,
matches are not found and the correspondence problem cannot be solved
(Schreiber, Crawford, Fetter, & Tweed, 2001). If this theory is correct, the
horizontally elongated disparity tuning surfaces in V1 (Cumming, 2002)
may be a neural correlate of the psychophysics reported by Schreiber et al.
(2001). The vertical extent of the search zones should then be determined
by the vertical width of the disparity tuning surface and the scatter in pre-
ferred vertical disparity. The tolerance of vertical disparity estimated from
Cumming’s (2002) data is ∼0.4 degree at eccentricities between 2 and 9
degrees, while the psychophysics suggests that vertical disparities of ∼0.7
degree should be tolerated at 3 degrees eccentricity (Schreiber et al., 2001;
Stevenson & Schor, 1997). Given the uncertainties, these are in reasonable
agreement.

Of course, nonzero vertical disparities do sometimes occur, especially
when the eyes are looking up, down, or off to one side, and there is evi-
dence that they influence perception (first shown by Helmholtz, 1925). Thus,
the brain must presumably contain sensors that detect vertical disparity.
However, the relative rarity of vertical disparities in perceptual experience
suggests that these sensors should be correspondingly sparse. This may
explain why vertical disparities appear to influence perception at a more
global level, being integrated across the whole image, whereas horizontal
disparities appear to act more locally, contributing to a local depth map
(Rogers & Bradshaw, 1993, 1995; Stenton, Frisby, & Mayhew, 1984).
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The above arguments give some insight into the functional constraints
underpinning V1’s observed specialization for horizontal disparity at both
the population level and the level of individual cells. The next problem is
how to reconcile the individual cell specialization—the horizontally elon-
gated disparity tuning surfaces—with existing models of disparity tun-
ing, in which disparity tuning surfaces must be elongated parallel to the
preferred orientation. Thanks to a multitude of electrophysiological, psy-
chophysical, and mathematical studies, stereopsis is one of the best-under-
stood perceptual systems. Our understanding of the early stages of cortical
processing is encapsulated in the famous energy model of disparity selec-
tivity, which has successfully explained many aspects of the behavior of
real cells (Cumming & Parker, 1997; Ohzawa et al., 1990, 1997). Although
it has long been known that there are quantitative discrepancies between
the energy model and experimental data (Ohzawa et al., 1997; Prince, Cum-
ming et al., 2002; Prince, Pointon et al., 2002; Read & Cumming, 2003b), the
decoupling of disparity and orientation observed in real cells (Cumming,
2002) violates a key energy model prediction in a dramatic, qualitative way.
This forces us to reconsider the model’s most fundamental assumptions,
such as the underlying linearity (Uka & DeAngelis, 2002). This initial linear
stage has been a cornerstone of a whole class of models, not only of disparity
selectivity but of V1 processing in general.

Fortunately, as we demonstrate in this article, it turns out that the existing
models can be fairly readily modified to allow the observed separation of
disparity and orientation tuning. We present two possible ways of solving
the problem: (1) multiple subunits with different horizontal position dis-
parities and (2) monocular suppression from inhibitory zones. Both yield
horizontally elongated disparity tuning surfaces—the first by extending the
response to a wider range of horizontal disparities and the second by pre-
venting response to any but a narrow range of vertical disparities. Both
involve further modifications of the energy model, building on previous
work in which we introduced a threshold prior to binocular combination
(Read et al., 2002). The models are not necessarily alternative possibilities;
some combination of the two may occur. For instance, complex cells in
V1 may represent the sum of multiple subunits with different horizontal
position disparities, with the monocular inputs to each subunit gated by
horizontally elongated inhibitory zones.

4.1 Position versus Phase Disparity. The multiple subunit model relies
on horizontal position disparities to achieve horizontally elongated dispar-
ity tuning surfaces. Phase disparities alone could not achieve this because
differences in receptive field phase produce disparities only along an axis
orthogonal to the cell’s preferred orientation. Of course, phase disparities
could occur alongside the position disparities postulated here. Furthermore,
phase disparities may be important in producing the wider range of pre-
ferred disparities along the horizontal than along the vertical axis which is
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observed at the population level (Anzai et al., 1999; Cumming, 2002; DeAn-
gelis et al., 1991, 1995a).

4.2 Model Tests and Predictions. When postulating new physiological
models, it is important to consider how they could be tested and falsified.
One important point is that, at least as developed here, the multiple subunit
model works only for complex cells. The model would respond to all phases
of a grating stimulus at the optimum spatial frequency, since as the grating
moves, it simply passes from one of the multiple subunits to the next. Thus,
the observation of simple cells with horizontally elongated disparity tuning
surfaces would present difficulties for the multiple subunit model. It would
require a rather contrived relationship between the phase of a subunit’s
receptive field and its position within the array of subunits.

Since the monocular suppression model achieves horizontally elongated
disparity tuning by postulating horizontally elongated inhibitory regions,
the obvious way of testing this model appears to be to see if suppressive
zones in real cells are horizontally elongated. However, if there are several
suppressive zones, as in our simulations, this could be difficult to establish.
For example, in our simulations, the inhibitory zones are arranged in a ring.
An experimental determination of the regions where stimuli exerted a sup-
pressive effect would discover a halo of suppression around the receptive
field center. In fact, this halo is made up of many horizontally elongated
components, but this might not be apparent experimentally. Thus, it is hard
to test this feature of the model.

Importantly, both models predict that with appropriately chosen stim-
uli, the horizontally elongated disparity tuning should vanish, and the cou-
pling between disparity tuning and preferred orientation should reemerge.
For example, the monocular suppression model predicts that when the
disparate stimulus is a single dot, the two-dimensional disparity tuning
should be elongated along the cell’s preferred orientation, as in the energy
model. This is because—at least if the inhibitory zones do not substantially
overlap the classical receptive field—when the dot stimulus activates the
inhibitory zones, it is already largely outside the classical receptive field,
so further monocular suppression has little effect. The disparity tuning is
therefore elongated along the preferred orientation, as it would be in a
model without horizontally elongated inhibitory zones. In contrast, ran-
dom dot patterns—and most natural stimuli—activate both the receptive
field and the inhibitory regions at the same time, allowing the inhibitory
zones to suppress the response to vertical disparities. In this context, it is
interesting to note that Pack, Born, and Livingstone (2003), using a single
disparate dot stimulus, did not report the specialization for horizontal dis-
parity found by Cumming (2002); in their data, in both V1 and MT, disparity
tuning appeared to agree well with direction tuning. Our monocular sup-
pression model explains how this apparent discrepancy could be due to the
different stimuli used. It would thus be valuable to test disparity tuning
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in the same cell with both a disparate dot stimulus and with random-dot
patterns.

The multiple subunit model still shows a horizontally elongated dispar-
ity tuning surface when probed with a single dot stimulus, as with random
dot patterns. However, with suitable stimuli, the disparity tuning of this
model too can be made to reveal the oriented structure of the receptive
fields. For example, consider extended one-dimensional noise stimuli (“bar
codes”). The disparity of such a stimulus is effectively one-dimensional:
disparities applied parallel to the bar code have no effect, so all dispari-
ties can be reduced to their component orthogonal to the bar code. Now
consider a stimulus made up of two such bar codes superimposed—one
aligned with the cell’s preferred orientation and the other orthogonal to it.
Any disparity can be resolved into a component parallel to the preferred
orientation (which would affect only the orthogonal bar code), and a com-
ponent orthogonal to the preferred orientation (which would affect only the
parallel bar code). Thus, disparity would effectively be applied only along
the two axes orthogonal and parallel to the cell’s preferred orientation. The
disparity tuning is therefore elongated along this axis. This is not just an
inevitable consequence of the stimulus, but reflects the underlying linearity
of the models presented in this article. If V1 neurons implement more so-
phisticated nonlinearities than proposed here, they could potentially show
horizontally elongated disparity tuning surfaces even with this crossed bar
code stimulus. Thus, experiments with this stimulus could be a powerful
way of probing the computations performed by V1 neurons.

5 Conclusion

This work provides the first explanation of the newly observed special-
ization for horizontal disparity in V1. It demonstrates that although this
observation initially seemed completely at odds with all previous models,
it can in fact be fairly straightforwardly incorporated into existing models
of disparity selectivity. This represents an important step forward in our
understanding of how cortical circuitry is specialized for binocular vision.
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