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Read, Jenny C. A. and Bruce G. Cumming. Testing quantitative
models of binocular disparity selectivity in primary visual cortex. J
Neurophysiol 90: 2795–2817, 2003. First published July 16, 2003;
10.1152/jn.01110.2002. Disparity-selective neurons in striate cortex
(V1) probably implement the initial processing that supports binocular
vision. Recently, much progress has been made in understanding the
computations that these neurons perform on retinal inputs. The bin-
ocular energy model has been highly successful in providing a simple
theory of these computations. A key feature of the energy model is
that it is linear until after inputs from the two eyes are combined.
Recently, however, a modified version of the energy model, incorpo-
rating threshold nonlinearities before binocular combination, has been
proposed to account for the weaker disparity tuning observed with
anticorrelated stimuli. In this study, we present new data needed for a
critical assessment of these two models. We compare two key pre-
dictions of the models with responses of disparity-selective neurons
recorded from V1 of awake fixating monkeys. We find that the
original energy model, and a family of generalizations retaining linear
binocular combination, are quantitatively inconsistent with the re-
sponse of V1 neurons. In contrast, the modified version incorporating
threshold nonlinearities can explain both sets of observations. We
conclude that the energy model can be reconciled with experimental
observations by adding a threshold before binocular combination.
This gives us the clearest picture yet of the computation being carried
out by disparity-selective V1 neurons.

I N T R O D U C T I O N

The separation of the two eyes introduces disparities be-
tween the images received by the left and right eyes. The visual
system is somehow able to fuse the images so as to produce a
unified percept of the visual world, while using the stereo-
scopic disparities to extract information about how far away
viewed objects are. The neural circuits specific to this ability
begin in primary visual cortex (V1), the first place in the visual
system where inputs from the two eyes converge on individual
cells. Many V1 cells modulate their firing rate according to the
stereoscopic disparity of the stimulus (Barlow et al. 1967;
Nikara et al. 1968). These disparity-tuned cells are believed to
perform the initial processing of retinal inputs that eventually,
in higher visual areas, gives rise to stereoscopic depth percep-
tion and to binocular fusion (single vision). Thus, a detailed
understanding of the computations carried out by these cells
represents the first step toward a complete description of ste-
reoscopic vision.

The current best description of the operation of these cells is
provided by the energy model (Adelson and Bergen 1985;
Fleet et al. 1996; Ohzawa 1998; Ohzawa et al. 1990; Qian
1994), sketched in Fig. 1A and described more fully below.
This elegant model has been extremely successful in explain-
ing qualitatively the properties of disparity-tuned neurons in
V1, for example, the shape of the binocular receptive field
obtained with disparate bar stimuli and the shape of the dis-
parity tuning curve obtained with random-dot stereograms
(Anzai et al. 1999a; Cumming and Parker 1997; Ohzawa et al.
1996, 1997; Prince et al. 2002b).

Although the energy model was originally intended as a
qualitative description, its success to date suggests that it may
be possible to elaborate the model so as to provide a good
quantitative description of neuronal behavior. Extending the
energy model requires identifying those quantitative discrep-
ancies that have not so far been reconciled with the original
structure of the model. First, the response to anticorrelated
random-dot stimuli (when contrast polarity is inverted in one
eye) must be accounted for. In real cells, anticorrelation inverts
the disparity tuning curve and also reduces the amplitude,
whereas the energy model predicts inversion only (Cumming
and Parker 1997; Ohzawa et al. 1997). The amplitude reduction
can be explained if we modify the energy model by incorpo-
rating threshold nonlinearities before binocular combination
(Read et al. 2002). This modified version of the energy model
is shown in Fig. 1B.

Second, the energy model predicts that monocular stimula-
tion in either eye should always have an excitatory effect. In
this study, by making a quantitative comparison of monocular
and binocular responses, we confirm that there are many cells
in which input from one eye always seems to suppress the
cell’s response, as previously reported by others (Ohzawa and
Freeman 1986a; Prince et al. 2002a). Such behavior is incon-
sistent with linear binocular combination, but is predicted by
our modified version (Read et al. 2002).

Third, the energy model predicts that the response to binoc-
ularly uncorrelated random-dot patterns should equal the sum
of the responses to monocular random-dot patterns. In fact, it
is generally much closer to their mean. It has been suggested
(Prince et al. 2002b) that this is a consequence of a contrast-
normalizing mechanism that tends to boost the response to
monocular. We show here that the relative size of the monoc-
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ular and binocular response can be explained by our modifi-
cation to the energy model, without the need to invoke a
normalization process.

Fourth, a key prediction of the energy model is that the
shape of monocular receptive fields determines the shape of the
disparity-tuned response. Although this has been verified for
simple cells in the cat (Anzai et al. 1999b), the situation for
complex cells is less clear because it is difficult to estimate the
receptive fields of the subunits. Fortunately, the model can also
be tested in the frequency domain: the Fourier power spectrum
of the disparity-tuning curve should match the shape of the
monocular spatial frequency-tuning curves. Preliminary testing
of this prediction has indicated a conflict with the energy model
prediction (Ohzawa et al. 1997; Prince et al. 2002b); however,
for a number of reasons, the seriousness of this conflict is hard
to assess. Prince et al. (2002b) found that their disparity tuning
curves often had spatial frequency bandwidths substantially
larger than those estimated from luminance gratings in other
studies (de Valois et al. 1982). However, Prince et al. measured
tuning for horizontal disparity, so these data are not directly
comparable with selectivity for the spatial frequency (SF) of
luminance gratings at the preferred orientation. Ohzawa et al.
(1997) found that the frequency of the disparity-tuning curve
tended to be lower than the preferred spatial frequency re-
vealed with monocular luminance gratings in the dominant
eye, apparently contradicting the energy model. However, their
definition of disparity frequency could potentially obscure an
underlying agreement with the energy model (see below); also,
confidence intervals were not presented. Most important, nei-
ther of these studies reported measures of spatial frequency
tuning in both eyes. The original energy model assumes that
spatial frequency tuning is identical in the two eyes, so it is
possible that the discrepancies could be attributable to binoc-

ular differences in spatial frequency tuning. If this were the
case, it would be easy to extend the energy model to take
account of this difference, by allowing different spatial fre-
quency tuning between subunits, either within an eye or be-
tween eyes. The data should then agree with this generalized
version of the energy model. Thus, a more complete compar-
ison of the spatial frequency tuning and the power spectrum of
the disparity tuning is necessary to test the model.

To resolve this important question, we recorded the monoc-
ular spatial frequency and orientation tuning in both eyes. This
is compared with the selectivity for disparity applied to ran-
dom-dot patterns along an axis orthogonal to the preferred
orientation. Both comparisons systematically violate the pre-
dictions of the energy model, even after it has been generalized
to allow for differences between subunits. The disparity-tuning
curves show more power at lower frequencies than is possible
within these models, even allowing for the presence of several
subunits that may differ in position and/or spatial frequency
tuning. However, once again, the results may be explained by
our modified version of the energy model incorporating a
threshold nonlinearity before binocular combination.

In summary, therefore, we have compared two families of
models of disparity selectivity: 1) the energy model and a set
of generalizations of it, all postulating linear binocular sum-
mation; and 2) our modified version incorporating threshold
nonlinearities before binocular combination. For a wide range
of observations, the data are quantitatively at odds with the
linear model and can be accounted for by the threshold model.
We conclude that adding thresholds to the energy model,
before inputs from the two eyes are combined, represents a
substantial step forward in our understanding of disparity se-
lectivity in V1.

FIG. 1. Block diagrams of the energy model (A) and our modified version (B). Grayscale plots represent receptive fields, which
are shown differing in phase. Arrows show results vL and vR of a linear operation performed on image in each eye. The models
do not specify physiological details of how this linear operation is calculated, so they are shown simply with arrows. Subsequently,
triangles represent excitatory synapses, and disks inhibitory synapses. A: in the energy model, linear inputs from both eyes converge
onto a single binocular simple cell. Each binocular simple cell computes the linear sum of its left and right inputs, and outputs the
half-squared sum to the complex cell. B: possible implementation of our modified version: linear inputs from left and right eyes
pass through monocular simple cells, and are thus half-wave rectified, before converging on a binocular simple cell. After this
rectification, the type of synapse (excitatory/inhibitory) at the binocular simple cell has a profound influence on the type of disparity
tuning observed. In B, top binocular subunit is shown receiving excitatory synaptic input from both eyes; bottom subunit is shown
with one excitatory and one inhibitory synapse.
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M E T H O D S

Detailed descriptions of the general procedures have appeared
elsewhere (Cumming and Parker 1999; Prince et al. 2002b). Briefly,
single-unit activity was recorded from primary visual cortex (V1) of
two awake macaques trained to maintain fixation while viewing
stimuli for fluid reward. All protocols were approved by the Institute
Animal Care and Use Committee and complied with Public Health
Service policy on the humane care and use of laboratory animals.

Stimuli were generated on a Silicon Graphics Octane workstation
and presented on two Eizo Flexscan F980 monitors (mean luminance
41.1 cd/m2, contrast 99%, frame rate 72 Hz) viewed through a
Wheatstone stereoscope, in which the monitors are viewed through
mirrors positioned in front of the animal’s eyes. At the viewing
distance used (89 cm) each pixel in the 1,280 � 1,024 display
subtended 1.1 min arc. Antialiasing was used to render with subpixel
accuracy [pixels are colored intermediate shades of gray to represent
edges that only partially cover the pixel (Foley et al. 1990)]. Glass-
coated platinum–iridium electrodes (FHC) were placed transdurally
each day. Electrode position was controlled with a custom-made
microdrive that used an ultralight stepper motor mounted directly onto
the recording chamber.

The monkeys initiated a stimulus presentation by maintaining fix-
ation on a binocularly presented spot to within �1°. They were
required to maintain fixation at this accuracy for 2.1 s to earn a fluid
reward. During each such trial, 4 stimuli were presented, each lasting
420 ms, separated by 100 ms.

Stimuli

Sinusoidal luminance gratings were used to determine the mini-
mum response field, spatial frequency, and orientation tuning of the
cell. After an initial determination of the preferred spatial frequency
and orientation, the monocular orientation-tuning curve in each eye
was obtained using a circular patch of grating with spatial frequency
reasonably close to optimal. Quantitative orientation-tuning curves
usually spanned a range of 180° centered around the preferred orien-
tation (or direction, for direction-selective cells). The spatial fre-
quency tuning curve (SFTC) was then obtained using a large rectan-
gular grating patch at the preferred orientation. The frequencies gen-
erally spanned 0.0625 to 16 cycles per degree (cpd) in steps of 1
octave. A pseudo-random sequence interleaving frequencies and eye
of presentation was used in both cases. During monocular trials, the
nonstimulated eye viewed a uniform screen of the same mean lumi-
nance.

Dynamic random-dot stereograms were composed of black and
white dots, scattered at random on a gray background. The dots were
usually 5 � 5 pixels (0.1° � 0.1°); for some cells, a different size was
used if this enhanced the response rate. A new random stereogram was
generated every frame (72 Hz). The dot density was sufficient to cover
50% of the gray background but, because the dots were allowed to
overlap one another (dot location was randomly assigned with sub-
pixel precision using antialiasing), the total coverage was slightly less.
On average, 20% of pixels were black, 20% white, and 60% gray.
Figure 2 shows an example stereogram, together with a circle indi-
cating the size of typical V1 minimum response fields for comparison.

The energy model assumes that all receptive fields feeding into a
cell have the same orientation. Its predictions are therefore most easily
framed in terms of disparities parallel and orthogonal to this orienta-
tion, rather than horizontal and vertical disparities. Accordingly, to
facilitate testing of energy model predictions, experimental disparities
were applied along the axis orthogonal to each neuron’s preferred
orientation. These covered the range from �1.2° to �1.2° in the
initial test for disparity selectivity, with the range �0.6° to �0.6°
covered in steps of 0.1°, and steps of 0.2° outside this range. A larger
range of disparities was used if necessary to ensure that there was no
modulation at the extremes of the tuning curve (i.e., that the full

response range had been explored). In neurons with preferred SFs �4
cpd, the central region of the curve was sampled more finely, to ensure
that sampling exceeded the Nyquist limit predicted from the monoc-
ular SF tuning.

Data analysis

Data analysis such as curve fitting is greatly simplified if we can
make the assumption that variance is constant across the data set. This
assumption is invalid for neuronal firing rates, whose variance tends
to increase in proportion with the mean (Dean 1981). However, the
square root of firing rates has variance that is roughly constant,
independent of the mean (Cumming and Parker 2000; Prince et al.
2002b). This variance-stabilizing transformation greatly simplifies the
analysis of neuronal data. For this reason, we performed all our
analysis on the square root of the recorded firing rates.

To quantify the strength of disparity tuning, we used the disparity
discrimination index (DDI) introduced by Prince et al. (2002b)

DDI �
Rmax � Rmin

Rmax � Rmin � 2RMSerror

(1)

where Rmax and Rmin are the maximum and minimum �firing rate,
respectively, and RMSerror is the square root of the residual variance
around the mean �firing rate recorded across the whole tuning curve,
including the response to uncorrelated stimuli (effectively, infinite
disparity). Like the more familiar binocular interaction index, (Rmax �
Rmin)/(Rmax � Rmin), this is a contrast measure, except that here the
difference in response between the preferred and null disparity is
contrasted not with the mean response, but with the variability of the
firing rate RMSerror. This means that cells in which the range in firing
rates is largely the result of random fluctuations are not wrongly
classified as being highly sensitive to disparity; equally, cells in which
the change in firing as a function of disparity is relatively small but
highly reliable are correctly described as strongly disparity-tuned. The
term (Rmax � Rmin) in the denominator of Eq. 1 ensures that the index
is bounded at 1 when the variability is small.

For most cells, monocular random-dot stimuli were also presented,
in trials interleaved with binocular stimuli. Blank stimuli were also
usually interleaved, where both eyes viewed a blank screen of the
same mean luminance as the random-dot patterns. These were used to
obtain an estimate of the spontaneous firing rate.

To allow a cell into the study, we required that binocular random
dots at the optimal disparity elicit a response of at least 10 spikes/s. To
proceed to quantitative analysis of the response’s shape, we further
required i) ANOVA indicates a significant (P � 0.05) main effect of

FIG. 2. Random-dot stereogram of type used in our experiments. Dots are
0.1° � 0.1° square. Circle indicates size of typical V1 receptive field for
comparison. Diameter is 1.2°, based on a subset of cells in which we obtained
the one-dimensional receptive field envelope using a long luminance-modu-
lating bar stimulus at the preferred orientation. The mean SD of Gaussians
fitted to receptive field envelopes was 0.3°, and we took 4 SDs as suitable
estimate of receptive field diameter.
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disparity; ii) the disparity discrimination index exceeds 0.375. The
second condition removes neurons with weak but significant disparity
tuning because these tend to produce noisy estimates in the quantita-
tive analysis that follows. Including these weakly tuned neurons did
not change any of the substantial results; it only increased the scatter.
To subject monocular spatial frequency data to quantitative analysis,
we required that i) the optimal drifting grating in that eye elicits at
least 10 spikes/s; ii) ANOVA indicates a significant (P � 0.05) main
effect of spatial frequency. We do not require tuning to be band-pass,
and our sample included a few neurons that showed a low-pass spatial
frequency tuning.

Fitting tuning curves

We summarized our tuning curves by fitting them with analytical
functions. If we fitted the function directly to the mean firing rates, we
would have to reduce the weight given to residuals at higher firing
rates, to take account of the higher variance there. As explained above,
we avoided this complication by, instead, fitting the square root of our
chosen fit function to the mean of the square-root firing rates. Given
that �firing rate has approximately constant variance, we could then
just minimize the sum of the squared residuals, without needing to
weight them differently.

SFTCs were fitted with Gaussians, in either log or linear frequency
space, whichever minimized the residuals. These had 4 free parame-
ters: frequency of the peak f0, standard deviation �, baseline and
amplitude above the baseline. The baseline was assumed to represent
the spontaneous firing rate; thus, it was not allowed to be negative.
The peak frequency was constrained to lie within the range of stim-
ulus frequencies. The amplitude was not allowed to exceed twice the
range of the response.

These fitted curves were used to extract a peak frequency, a low-
frequency cutoff, and a high-frequency cutoff, defined as the positions
where the tuning curve falls to half its maximum. Where the SFTC
was fitted with a Gaussian in linear frequency, with peak at f0 and
standard deviation �, the high and low cuts are f0 � ��ln 4. Where
the tuning curve was fitted with a Gaussian in log frequency, with
standard deviation � in log space, the high and low cuts are f0
exp(���ln 4).

Disparity-tuning curves were fitted with half-wave rectified one-
dimensional Gabor functions (the product of a sinusoid with an
exponential; cf. APPENDIX B). The original energy model predicts a
Gabor disparity-tuning curve, provided that the monocular receptive
fields are narrow-band Gabor functions differing only in their position
and phase. However, our main motivation for using Gabor functions
is that they provide a succinct description of most experimental tuning
curves (Cumming and Parker 1997; Ohzawa et al. 1990; Prince et al.
2002a). In the RESULTS section, we verify that our conclusions do not
depend on the use of a fitted Gabor. One-dimensional Gabors have 6
free parameters: the spatial frequency f and phase � of the carrier
cosine, the standard deviation �, amplitude A and center �0 of the
Gaussian envelope, and the baseline firing rate B about which the
sinusoid oscillates. Uncorrelated responses, if available, were in-
cluded in the fitting; the expected response to uncorrelated stimuli is
just B. �0 was constrained to lie within the range of stimulus dispar-
ities and the amplitude A was not allowed to exceed twice the
difference between the maximum and the minimum response. The
spatial frequency of the fit was not allowed to exceed half the Nyquist
limit (i.e., one-quarter of the maximum spatial sampling rate of the
data). Although these curves generally gave good descriptions of the
tuning curves, the parameters of the fitted Gabor must be interpreted
with care (see Prince et al. 2002b). When using these fits to summa-
rize some property of the tuning curve, we therefore used appropriate
measures applied to the fitted curve (illustrated by our measurement of
disparity peak frequency in the next section), rather than using the
parameters of the fit.

Disparity Fourier spectrum

The original energy model predicts that the disparity peak fre-
quency, the frequency at which the disparity modulation has most
power, should be the same as the preferred spatial frequency observed
with monocular gratings. In making this comparison, the disparity
must be applied at right angles to the cell’s preferred orientation. Most
previous work using random-dot stimuli in awake animals has em-
ployed only horizontal disparities. To enable a test of the energy
model prediction, all disparities in the present study were applied
orthogonal to the cell’s preferred orientation (Cumming 2002). It is
also important that the disparity tuning is measured with a broadband
stimulus such as random dots, to ensure that the disparity tuning curve
shape is not trivially determined by the stimulus. If disparity tuning
were measured with a grating, for instance, the periodicity of the
stimulus would guarantee a periodic response (Cumming and Parker
2000).

The disparity peak frequency is slightly different from the “dispar-
ity frequency”—a term used by two previous authors in related but
distinct senses. Ohzawa et al. (1997) used a bar as the broadband
stimulus to test this prediction in the anesthetized cat. They used the
term “disparity frequency” to mean the carrier frequency of the Gabor
fitted to the disparity tuning curve, which they then compared with the
monocular spatial frequency tuning. Note, however, that this carrier
frequency does not necessarily equal the disparity peak frequency.
Thus their finding that the carrier frequency of fitted Gabors was
systematically lower than the preferred spatial frequency in the dom-
inant eye is not necessarily at odds with the energy model. For
sufficiently narrow-band Gabor functions, the carrier frequency f and
disparity peak frequency coincide (APPENDIX B), but many of the
disparity tuning curves presented by Ohzawa et al. appear to be fairly
broadband (e.g., their Fig. 15). In this case, the disparity peak fre-
quency and the carrier frequency diverge. Which is higher depends on
the phase of the disparity-tuning curve (APPENDIX B). The disparity-
tuning curves presented by Ohzawa et al. display phases across the
spectrum: thus, both situations occur. Furthermore, for Gabors that are
not narrow-band, the fitted carrier frequency is often poorly con-
strained by data (Prince et al. 2002a; Fig. 6). For these reasons, it is
not clear that the data presented by Ohzawa et al. (1997) necessarily
violate the energy model.

Prince et al. (2002b) used the term “disparity frequency” to refer to
the peak frequency of the Fourier transform of the disparity-tuning
curve after subtraction of the mean, meaning that for these authors a
disparity frequency of zero is impossible by definition. The disparity
frequency of Prince et al. (2002b) was designed as a way of extracting
a measure of the spatial scale of disparity tuning that would work for
both band-pass and low-pass tuning curves. Neither sense of disparity
frequency provides the appropriate measure for comparison with
monocular spatial frequency tuning: hence our use of the disparity
peak frequency.

We compared two different ways of extracting the disparity peak
frequency. The first was completely model-independent; here we used
the response to uncorrelated stimuli as an estimate of the baseline
firing rate, subtracted that from the disparity tuning curve, and took
the continuous Fourier transform of the result (by trapezoidal integra-
tion). We also estimated the disparity spectrum from the Gabor
function fitted to the tuning curve. When performing the fit, the Gabor
function was half-wave rectified; that is, negative values of the fit
function were replaced with zeros for the purpose of evaluating the
residual (given that firing rates could not be lower than zero). When
obtaining the disparity spectrum, we used the unrectified Gabor, and
solved numerically for the peak and half-maximal points of the
Fourier spectrum.

Bootstrap resampling

To interpret scientific results, it is important to have an estimate of
significance, to be sure that features we observe in our data are not
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merely the result of the vagaries of finite sampling. Throughout this
study we have used bootstrap resampling (Efron 1979) to estimate
significances. Given a data set consisting of n samples of the random
variable, one generates a “new data set” by randomly selecting a
member of this data set n times (with replacement). This provides a
convenient, nonparametric way to estimate the distribution of some
function of a random variable, avoiding the normality assumptions
buried in many standard statistical tests. For resampling to be reliable,
n must be large. This was one motivation for presenting stimuli for
relatively short periods: it provided a large number of independent
samples. To increase n further, we pooled the data across all dispar-
ities (or spatial frequencies, for the grating stimuli) and resampled the
residuals. For this pooling to be valid, the SD must be the same at each
disparity, so, as before, we transformed each datum by taking its
square root. That is, for each disparity we calculated the mean of the
square root of the firing rate, and the residual difference between this
mean and the square root of the firing rate on each stimulus presen-
tation. We then pooled all these residuals into a single population. To
generate a resampled datum, we picked a residual at random from this
pool, added it to the mean square-root firing rate, and squared it to
obtain the resampled firing rate. We also explored resampling the data
for each stimulus condition separately and found that this gave closely
similar results. In the few cases where the results were different, the
method of resampling the residuals generally gave the wider confi-
dence interval. Because this yields more conservative estimates for
significance testing, resampling of residuals was adopted throughout.
This meant that the effective n was always �80 for the SFTCs and
always �200 for the disparity tuning. All quoted significances are at
the 5% level.

Classification as simple or complex

Within the energy model, complex cells are viewed as being made
up from the summed output of several simple cells (Eq. 3 below). Our
analysis holds for both simple and complex cells and our conclusions
do not depend on a classification of cells as either simple or complex.
For this reason we have not treated simple and complex cells differ-
ently, and hence avoided the complications of attempting to make the
classification in awake animals in the face of small eye movements.

Data set

We recorded monocular and binocular responses to random-dot
stimuli in 210 neurons, at eccentricities between 2° and 10°. Of these,
180 produced a maximum firing rate of at least 10 spikes/s; 138/180
were disparity-selective. Adequate data on spatial frequency tuning
were available for 101/138 disparity-selective cells, and in an addi-
tional 23 disparity-selective neurons we had data on spatial frequency
tuning but not monocular responses to random dots.

The energy model and our modified version

This study represents a critical comparison of the energy model
(Adelson and Bergen 1985; Fleet et al. 1996; Ohzawa 1998; Ohzawa
et al. 1990; Qian 1994) and our modified version of it, introduced to
explain the weaker response to anticorrelated stimuli (Read et al.
2002). In this section, we lay out the key features of both models and
explain how they differ. Detailed calculations are given in the APPEN-
DICES.

The building blocks of all the models considered in this study are
binocular subunits characterized by a receptive field in each eye,
which performs a linear operation on the retinal image in that eye. The
input from each eye, �L or �R, is the result of this operation (for
details, see APPENDIX C, Eq. C2). The distinctive feature of the energy
model is that the inputs from the two eyes are combined linearly: the
response of a binocular subunit is a function of the sum (�L � �R) of
the inputs from each eye separately. If this sum is negative, the

binocular cell is silent because it cannot signal firing rates below zero.
If this sum is positive, the energy model postulates that the binocular
cell outputs the square of this sum. Thus, writing C for the output of
the disparity-selective cell

C � �Pos	�L � �R
�
2 (2)

where Pos denotes half-wave rectification. A complex cell is assumed
to receive input from several of these half-squared linear binocular
subunits, and its response is assumed to be the linear sum of its inputs

C � �
j�1

n

�Pos	�Lj � �Rj
�
2 (3)

This is shown schematically in Fig. 1A. Binocular subunits (“BS”) are
shown receiving input from left and right eye receptive fields, which
for illustration are shown with different phases. Several of these
subunits feed into a single complex cell (“Cx”).

Our modified version (Read et al. 2002) differs from the energy
model in postulating that inputs from the two eyes are half-wave
rectified before being combined

C � �Pos	�L
 � Pos	�R
�
2 (4)

Figure 1B shows one physiologically plausible implementation of
this nonlinearity. In the figure, inputs from the left and right eyes
initially synapse onto monocular simple cells (“MS”), which impose
an output threshold, before being combined in a binocular subunit. If
the inputs are combined with an inhibitory synapse, as in the lower
binocular subunit in Fig. 1B, we obtain units like

C � 
Pos�Pos	�L
 � Pos	�R
��
2 (5)

(the additional Pos means that the cell does not fire when suppression
from the right eye exceeds excitation from the left). Once again,
complex cells are constructed from the sums of several binocular units
of the type given in Eq. 4 and Eq. 5 (Read et al. 2002). The distinction
between the two types does not matter in the energy model: there is no
need to explicitly include subtypes based on (vL � vR) as well as
(vL � vR), because (vL � vR) is equivalent to (vL � vR) with a phase
change of � in the right eye’s receptive field.

R E S U L T S

Overview

DISPARITY SELECTIVITY AND MONOCULARITY. We present evi-
dence that some cells receive purely suppressive input from
one eye. We show that this is inconsistent with the linear
binocular combination of the energy model, but can be ex-
plained in our nonlinear model.

SPATIAL FREQUENCY TUNING IN THE TWO EYES. Motivated by
the assumption of the original energy model that receptive
fields are identical up to phase, we investigate whether there is
evidence for differences in spatial frequency tuning between
eyes. We find that tuning in most cells agrees well, but a
minority show significant differences.

DISPARITY FREQUENCY AND SPATIAL FREQUENCY TUNING. If the
assumptions of the original energy model hold, then the dis-
parity frequency should equal the preferred spatial frequency in
the dominant eye. We show that this prediction is systemati-
cally violated, and that vergence movements cannot account
for the difference. However, this prediction applied only to the
original energy model, which included strong constraints on
the receptive field profiles in addition to linear binocular com-
bination.
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GENERALIZING THE ENERGY MODEL. We therefore generalize
the energy model to allow for receptive fields with different
phases, positions, and spatial frequency tuning (both across
subunits, and across eyes within a subunit). We derive a
constraint that even this generalized model must fulfill. We
show that the data systematically violate this constraint.

THRESHOLDING BEFORE BINOCULAR COMBINATION. We finally
show that our modified version of the energy model, in which
a threshold precedes binocular combination, can account for
the observations on disparity and spatial frequency tuning.

Disparity selectivity and monocularity

SOME CELLS RECEIVE PURELY SUPPRESSIVE INPUT FROM ONE

EYE. Cells that are sensitive to binocular disparity must re-
ceive information from both eyes. It is tempting to extrapolate
from this that the cells that are most sensitive to binocular
disparity must be those that respond most nearly equally to
input in either eye. However, previous investigators (Ohzawa
and Freeman 1986b; Poggio and Fischer 1977; Prince et al.
2002b; Smith et al. 1997) have found little support for this idea.
In agreement with these studies, we find no relationship be-
tween monocularity and disparity selectivity. Many cells that
respond nearly equally to monocular stimulation in either eye
are not disparity selective, whereas many cells that show little
or no response to monocular stimulation in one of the eyes
nevertheless show clear disparity tuning. Examples are shown
in Fig. 3 (see also Fig. 8). The response to monocular stimu-
lation is shown by the broken horizontal lines labeled L and R
(and marked with a leftward/rightward-point arrowhead re-
spectively: � and �). In duf096 (Fig. 3A), monocular stimu-
lation in the left eye evokes almost no response; in duf099 (Fig.
3B), it is the right eye that is silent. Yet the black dots show the
cells’ responses as a function of disparity (curve � fitted
Gabor); clearly both cells are selective to disparity, and so must
be receiving information from both eyes. Thus, it is important
to distinguish between two common uses of the term “monoc-
ular”: the classical sense, “responsive to monocular stimulation

in one eye and not the other,” must not be interpreted to mean
“receiving input from only one eye” (Ohzawa and Freeman
1986a,b; Smith et al. 1997).

One natural way to explain the phenomenon of disparity selec-
tivity in “monocular” neurons is to propose that the input from one
eye always has a net inhibitory effect, and thus no spikes are
produced by stimulation in that eye alone. In the absence of
complications such as response normalization (which could adjust
the response to monocular stimuli relative to binocular), such a
scheme makes two predictions. First, binocularly uncorrelated
dots should produce a weaker response than monocular dots in the
dominant eye (because adding dots to the other eye produces net
inhibition). This was the case for 86/138 disparity-tuned cells
(significant in 44). Second, the monocular response in the non-
dominant eye should not be significantly greater than the sponta-
neous response (it is rarely possible to observe a monocular
response less than spontaneous, given that the latter is so fre-
quently indistinguishable from zero); 30/138 disparity-selec-
tive neurons showed both these phenomena. In 9/30 cells, the
spontaneous response was significantly greater than zero, so
that if one eye had an inhibitory influence, it would be possible
to observe suppression of the spontaneous response when this
eye was stimulated. In 5 of these 9, the response to random-dot
stimulation in the nondominant eye was smaller than the spon-
taneous response. The cells shown in Fig. 3 are two examples.
The broken line labeled U and marked with a square (�) shows
the response to uncorrelated stimuli; in both cells this is below
the response to monocular stimulation in the dominant eye
(i.e., adding stimulation to the nondominant eye has reduced
the response). The broken line labeled S and marked with a
circle (E) shows the spontaneous rate, estimated from the
response to a blank screen: in both cells, the cell fires more to
a blank screen than to monocular stimulation in the nondomi-
nant eye. Such examples are clearly indicative of a predomi-
nantly inhibitory input from one eye. We conclude that in
many cells, stimulation in one of the eyes always has a sup-
pressive effect.

FIG. 3. Two tuned-inhibitory cells that show evidence of an inhibitory input from one eye. Stimulation in the nondominant eye
seems always to reduce firing rate: the response to monocular random dots in the nondominant eye is less than that to a blank screen,
whereas the response to binocularly uncorrelated random dots is less than that to monocular random dots in the dominant eye.
Disparity discrimination index � 0.61 for duf096 (A), 0.64 for duf099 (B). Filled circles (F) represent the mean firing rate as the
function of disparity; the black curve is the fitted Gabor. Horizontal lines represent responses to stimuli without disparity: line
labeled L and marked with leftward arrowhead � indicates response to monocular random dots in left eye (R�: right eye); U�

indicates response to binocularly uncorrelated random dots; SE indicates spontaneous rate (response to gray screen of same mean
luminance). All error-bars are �SE.
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THIS INDICATES A NONLINEARITY BEFORE BINOCULAR COM-

BINATION. It is important to note that this represents a sub-
stantial deviation from any model in which binocular summa-
tion is linear. By definition, a model with linear binocular
summation is of the form C � f(�L � �R), where f is an
arbitrary function and �L and �R represent the inputs from left
and right eyes, respectively. If f(�L) is never positive for any
value of the input �L, either positive or negative (no possible
stimulus in the left eye elicits a positive response), then f(�R)
can never be positive either, and so the cell would never
respond. In a linear model, if the cell responds at all, then
stimulation in each eye can exert either a suppressive or an
enhancing effect, depending on the stimulus. To obtain the
situation where one eye always exerts a suppressive effect, we
must postulate some nonlinearity before binocular combina-
tion, such as half-wave rectification followed by an inhibitory
synaptic connection. This is exactly what is proposed by our
modified version of the energy model. Looking at Eq. 5, C �
{Pos[Pos(�L) � Pos(�R)]}2, it is obvious that stimulation in the
right eye always has a suppressive effect. For monocular
right-eye stimulation, the response C is zero, and yet with
disparate binocular stimuli, this unit is disparity-selective. Fig-
ure 4 shows simulations of two subunits described by Eq. 5.
The solid line shows the disparity tuning curve. In A, the left
and right receptive fields are identical, so—because input from
one eye is inhibitory—the disparity tuning curve is of the
tuned-inhibitory class. In B, the left and right receptive fields
are 180° out of phase. When combined with the inhibitory
synapse in Eq. 5, this results in tuned-excitatory disparity
tuning. This demonstrates that an inhibitory synapse at binoc-
ular combination does not necessarily result in tuned-inhibitory
tuning. Thus, our thresholding model explains the existence of
cells that would classically be called “monocular” and yet are
disparity-selective.

A THRESHOLDING NONLINEARITY CAN EXPLAIN THE RELATIVE

AMPLITUDE OF MONOCULAR AND BINOCULAR RESPONSES. We
now investigate the extent to which this model can account
quantitatively for the relative amplitude of monocular and
binocular responses. Prince et al. (2002b) observed that the
response to binocularly uncorrelated dot patterns was often
close to the mean of the responses to monocular stimulation in
the two eyes, whereas the energy model predicts that it should
be their sum. Prince et al. suggested that this could be attrib-
utable to a normalization process that lowers the response to

binocular stimuli. However, our modification to the energy
model already allows us to build cells in which the uncorre-
lated response is the mean of the 2 monocular responses,
without incorporating any normalization. The horizontal lines
in Fig. 4 show the response to monocular stimuli (L�, R�) and
binocularly uncorrelated stimuli (U�). In both cases, the un-
correlated response is close to the mean of the monocular
responses, demonstrating that our model can explain this phe-
nomenon, for both tuned-excitatory and tuned-inhibitory cells.

These simulations portray something of an extreme case: in
both these examples, inhibition from the suppressive eye is
much stronger than excitation from the excitatory eye, so that
the response to monocular stimulation in the dominant eye, M,
is nearly twice the response U to uncorrelated stimuli. In fact,
2U is an upper bound for M: our model predicts that M can
never exceed 2U. The energy model has a similar upper bound:
it predicts that M can never exceed U. We have seen that the
energy model’s upper bound is violated by most cells (86/138).
We now investigate whether the upper bound predicted by our
model is similarly violated. Figure 5 shows the distribution of
M/U for the 138 disparity-selective cells in our data set. The

FIG. 4. Our new model, incorporating a
threshold linearity before binocular combi-
nation, can explain disparity selectivity in
classically monocular cells, and cells in
which the response to binocularly uncorre-
lated dots (U�) is close to the mean of re-
sponse to monocular stimuli (L�, R�), rather
than to its sum as predicted by energy model.
Both plots show simulations for single bin-
ocular subunit receiving inhibitory input
from right eye (Eq. 5); mean response over
100,000 different random-dot patterns. A:
monocular receptive fields are identical, so
the inhibitory synapse in Eq. 5 results in a
tuned-inhibitory cell. B: left eye’s receptive
field is inverse of right eye’s receptive field,
so with the inhibitory synapse this results in
a tuned-excitatory cell.

FIG. 5. Frequency histogram for ratio of response to random-dot stimula-
tion presented monocularly to dominant eye (M) to response to binocular
uncorrelated random-dot patterns presented binocularly (U). Dashed vertical
line marks M/U � 1, upper bound predicted by energy model; solid vertical
line marks M/U � 2, upper bound predicted by our modified version. Shading
indicates cells for which we can be 95% confident that ratio exceeds upper
bound: gray shows cells where 2.5% percentile exceeded 1, black where it
exceeded 2. Thus, gray � black regions indicate 44/138 cells that significantly
violate upper bound predicted by energy model; black regions indicate 4/138
cells that significantly violate upper bound predicted by our model.
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vertical lines mark the upper bounds predicted by the energy
model (dashed) and our model (solid). The mode of the distri-
bution is close to M/U � 1, so over half the cells exceed the
energy model upper bound. However, the distribution begins to
fall off after M/U � 2, so that the upper bound predicted by our
model is violated in only 23/138 cells. We used resampling to
estimate the 95% confidence interval for M/U. If this interval
lies entirely above 1, we can be 95% confident that the upper
bound predicted by the energy is violated; this was the case for
44/138 cells (32%), shaded gray in Fig. 5. If this interval lies
above 2, we can be 95% confident that the upper bound
predicted by our model is violated; this was so for only 4/138
cells (3%), shaded black in Fig. 5. We conclude that almost all
cells respond to monocular stimulation in the dominant eye at
less than twice the rate for uncorrelated stimuli, and can
therefore be accommodated within our modified model. Thus,
our model can explain the observed spectrum of monocular and
binocular response rates, without needing to invoke other
mechanisms such as contrast normalization.

Spatial frequency tuning in the two eyes

The original implementation of the energy model (Ohzawa
et al. 1990) assumed that all receptive fields have the same
spatial frequency and orientation tuning and bandwidth. They
differ only in their amplitude, their position, and phase, and
even so, the position and phase disparity between left and right
receptive fields of a single subunit is assumed to be the same
for all subunits. These constraints on the receptive fields have
been assumed by all implementations of the energy model we
are aware of (e.g., Fleet et al. 1996; Lippert and Wagner 2001;
Ohzawa et al. 1997; Qian 1994; Read 2002; Tsai and Victor
2003). We shall use the phrase original energy model to denote
Eq. 3 with these additional constraints on the receptive fields.

(Later, we shall consider a generalized energy model in which
many of these constraints are relaxed.)

The available evidence suggests that these constraints are
generally observed in simple cells (Anzai et al. 1999b; Ohzawa
et al. 1996). In complex cells, the situation is harder to assess.
Preferred orientation is observed to be closely matched be-
tween the two eyes (Bridge and Cumming 2001), supporting
the view that all receptive fields share the same orientation.
However, there is some evidence from the cat suggesting that
there may be a population of cells in which spatial frequency
differs between the two eyes (Hammond and Pomfrett 1991;
Ohzawa et al. 1996). In this section, we investigate the agree-
ment in spatial frequency tuning for our monkey data.

For 151 cells, the spatial frequency tuning to monocular
drifting sinusoidal luminance gratings at the cell’s preferred
orientation was probed in both eyes; 84 of these were suffi-
ciently responsive and selective to permit fitting in both eyes.
We defined the preferred spatial frequency to be the frequency
at which the Gaussian fitted to the tuning curve had its peak. To
ensure this is meaningful, we required the fits in each eye to
explain more than 60% of the variance of the tuning curve data.
Figure 6 compares the preferred spatial frequency in the two
eyes for the remaining 73/84 cells. The solid line shows the
identity; the dotted lines mark difference in SF tuning of 1
octave. Clearly, spatial frequency tuning is usually well
matched between eyes. The correlation coefficient is 0.87 (P �
10�5). Nonetheless, 25/73 cells showed a significant difference
(P � 0.05, by resampling) in preferred spatial frequency be-
tween the eyes; these are colored black in Fig. 6. There was no
correlation between the difference in preferred spatial fre-
quency and the difference in peak response between the two
eyes. The figure of 25 includes some cells where the difference
in preferred frequency was small (but turned out to be signif-

FIG. 6. Scatter plot of preferred spatial frequency in left eye
against that in right, on log axes. Preferred frequency is defined
by the peak of the Gaussian fitted to the monocular tuning curve
obtained with sinusoidal luminance gratings. Solid line shows
identity; dotted lines mark difference in spatial frequency (SF)
tuning of 1 octave. Filled symbols indicate 25 cells whose
preferred frequencies in left and right eyes differed significantly
(P � 0.05, resampling). Circles indicate cells from monkey
Duf, squares from monkey Ruf. Cells shown in Fig. 7 are
indicated. Two cells that had very low preferred spatial fre-
quencies fall outside the range shown in the figure.
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icant because the peak positions were robust under resam-
pling). However, for 6/25, the peak firing rates in the two eyes
occurred for gratings differing in frequency by over an octave.
Two examples are shown in Fig. 7. The arrowheads show the
response of the cell to monocular grating stimuli as a function
of the grating spatial frequency (L: �, R: ‹); the curves show
the fit. The 95% confidence interval for the peak of the fitted
function is shaded. The confidence intervals for the two eyes
do not come close, indicating significant and substantial dif-
ferences in spatial frequency tuning between the two eyes.
About 10% of cells showed evidence of such a difference.

The selection criteria applied in obtaining Fig. 6 exclude an
interesting class of cells in which the response in the nondomi-
nant eye was very weak, but was maximal at those frequencies
that produced the weakest responses in the dominant eye. Two
examples are illustrated in Fig. 8, A and B. On the face of it,
these cells show a severe mismatch in spatial frequency tuning,
with the nondominant eye being tuned to frequencies an order
of magnitude lower than the dominant eye. However, we
believe a more plausible explanation is that the spatial structure
of the receptive fields is really similar in the two eyes (as in the
vast majority of cells, Fig. 6), but that the nondominant eye
exerts a suppressive effect. This interpretation is supported by
the experiments with random-dot patterns. Both these cells are
disparity-selective, but also show virtually no response to
random dots in the nondominant eye (Fig. 8, C and D). Thus,
such cases are further evidence for purely inhibitory input from
one eye.

Disparity frequency and spatial frequency tuning

We now turn to possibly the most important prediction of the
energy model: the shape of monocular receptive fields deter-
mines the shape of the disparity-tuned response (Anzai et al.
1999b; Ohzawa et al. 1997). Because most cells do indeed
show similar spatial frequency and orientation tuning in the
two eyes, we shall assume in this section that the assumptions
of the original energy model hold true. Then, the original
energy model predicts that the disparity-tuning curve is simply
the cross-correlation of the receptive fields in the left and right
eyes.

For simple cells, which are single binocular subunits (Eq. 2),
this prediction can be tested directly. For complex cells, which
represent the sum of several binocular subunits (Eq. 3), the
disparity tuning curve is predicted to be the sum of the cross-
correlations of the receptive fields in the component subunits.
This makes the prediction hard to test in complex cells because
it is difficult to obtain the receptive fields of the component
subunits experimentally. Fortunately, provided all subunit re-
ceptive fields have the same preferred orientation, the compar-
ison can be made without a direct measurement of receptive
field profile. We simply need to obtain 1) the cell’s response to
binocular random-dot patterns as a function of disparity along
an axis orthogonal to this preferred orientation, and 2) the
cell’s response to monocular sinusoidal gratings oriented par-
allel to this preferred orientation, as a function of spatial
frequency. The energy model predicts that the shape of the
Fourier amplitude spectrum of the disparity tuning curve mea-
sured in 1) will be given by the monocular spatial frequency
tuning curves measured in 2). In particular, their peaks should
coincide: that is, the disparity peak frequency, defined as the
position of the peak in the Fourier amplitude spectrum, should
be the preferred spatial frequency of the cell. This key predic-
tion of the original energy model, which depends critically on
its linear properties, holds for both simple and complex cells.
Previous work (Ohzawa et al. 1997; Prince et al. 2002b) has
suggested that this prediction is not fulfilled, but, as discussed
above, these studies leave open a number of possible ways in
which the data could be reconciled with the energy model. We
carried out a detailed comparison, using bootstrap resampling
to estimate the significance of any discrepancy.

Figure 9 shows the comparison for 3 neurons, illustrating the
common patterns observed. The left-hand column shows the
disparity tuning curves. On the right, the Fourier amplitude
spectrum of the disparity-modulated component is compared
with the spatial frequency tuning in the dominant eye. For both
these quantities, two estimates are shown: one from the raw
data and one from the fitted function. The raw SFTCs are
shown with filled circles (F) in the plots on the right, whereas
the fits are drawn with the black curve. The disparity-modu-
lated component can be estimated from the raw data by sub-

FIG. 7. Two example cells (A: duf156; B: ruf127) that respond well to grating stimulation in either eye, but show a particularly
extreme difference between spatial frequencies evoking maximum response. Triangles show mean firing rate to monocular drifting
luminance gratings, as a function of spatial frequency. Error bars are �SE. Curves are Gaussians fitted to these data; peaks are
indicated with vertical lines. Shaded regions show 95% confidence interval for this peak (estimated by refitting resampled data sets).
Left eye: leftward open arrowheads �, dotted line; right eye: rightward filled arrowheads ‹, solid line.
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tracting the mean response to uncorrelated stimuli (horizontal
line labeled with the letter U and the symbol � in the left-hand
plots) from the mean response of the cell to random-dot ste-
reograms at different disparities [filled circles (F) in the plots
on the left]. The Fourier spectrum of this is shown on the right
with a dotted gray line [“FT-DMC (data)” in the legend].
Alternatively, the disparity-modulated component can be ob-
tained from the fitted Gabor (solid curve in the left-hand plots).
The Fourier spectrum of this is shown on the right with a
dashed gray line [“FT-DMC (fit)”].

In a few cases (Fig. 9A) the Fourier transform of the dispar-
ity-modulated component (FT-DMC) did closely resemble the
SFTC, but for the majority of cases there were substantial
discrepancies, of two types. First, the peak of the FT-DMC was
often at a lower frequency than the peak of the SFTC (Fig. 9B).
Second, the FT-DMC was often close to low-pass in form,
despite a clear band-pass SFTC (Fig. 9C).

We had 105 disparity-selective neurons that were suffi-
ciently responsive to gratings in the dominant eye, selective for
spatial frequency, and adequately described (�60% variance
explained) by the Gaussian fit. To avoid making the assump-
tion that all disparity tuning curves were well described by
Gabors, we first used a model-independent estimate of the
disparity peak frequency, using the response to uncorrelated
stimuli as an estimate of the baseline of the disparity tuning

curve, and taking the continuous Fourier transform of the raw
data. We compared this estimate of disparity peak frequency
with the SFTC peak frequency of the Gaussian fit, for the
105/112 cells in which the response to uncorrelated stimuli was
available and in which the Gaussian fitted to the SFTC ex-
plained �60% of the variance. The disparity peak frequency
was less than the SFTC peak frequency in 84/105 of cells [P �
10�9 under the null hypothesis that the estimated disparity
peak frequency is as likely to be above the SFTC peak fre-
quency as below it (binomial distribution)]. The frequency
difference was individually significant in 43/84 cells.

This model-independent method of extracting the disparity
peak frequency has two disadvantages. First, in about 10% of
cells, the disparity tuning curve appeared to be truncated by the
lower limit of 0 spikes/s. These cells may represent an energy
model unit followed by an output threshold. It is possible that
the discrepancy between the disparity peak frequency obtained
from the raw data, and the SFTC peak frequency, may reflect
distortions introduced into the Fourier spectrum by the thresh-
old. For these cells, a better estimate of the underlying response
may be gained from the unrectified Gabor corresponding to the
half-wave rectified Gabor fitted to the data (shown in Fig. 9A).
Second, because the Fourier spectra of raw data are usually
noisy and multimodal, it is hard to extract measures of band-
width. Again, this is solved by using the fitted Gabor.

FIG. 8. Two disparity-tuned cells (A, C: duf092; B, D: ruf065) that seem to show inhibitory influence from one eye. A, B: spatial
frequency tuning (symbols as in Fig. 7); C, D: disparity tuning (symbols as in Fig. 3). For ruf065.0, disparity-tuning curve is not
well fitted by a Gabor (fit explained �60% of variance); fit is therefore not shown. Disparity discrimination index � 0.58 for duf092
(C), 0.52 for ruf065 (D). For both cells, the maximum binocular response is less than the response to monocular stimulation in the
dominant eye. Thus, adding dots to the nondominant eye, at any disparity, always reduces the response.
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FIG. 9. Comparing disparity and spatial frequency tuning. Left: disparity-tuning curves (symbols as in Fig. 3). For ruf072 (A),
dashed curve shows unrectified Gabor, which dips below zero. Right: Fourier transform of disparity-modulated component of
disparity-tuning curve (FT-DMC; gray) compared with spatial frequency tuning curve (SFTC) in dominant eye (SFTC; black),
scaled to same peak value. Black dots: mean firing rate as function of spatial frequency; black curve: log-Gaussian fitted to these
data. Dotted gray line [“FT-DMC (data)”]: Fourier amplitude spectrum of raw disparity-tuning curve minus mean response to
uncorrelated stimuli. Dashed gray line [“FT-DMC (fit)”]: Fourier amplitude spectrum of fitted Gabor minus fitted baseline. A:
ruf072: FT-DMC resembles SFTC. B: duf065: FT-DMC appears shifted toward lower frequencies than SFTC. C: duf067: FT-DMC
is low-pass, SFTC is band-pass.
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For those 99 cells in which the Gabor fitted to the disparity
tuning curve explained �60% of the variance, we therefore
repeated the analysis using the estimate of disparity peak
frequency derived from the fit. The results are shown in Fig.
10A, which plots the disparity peak frequency against the
preferred spatial frequency in the dominant eye, both derived
from the fitted functions. The solid line marks the identity line;
according to the energy model, all points should lie on this line.
In fact, the SFTC peak frequency was greater than the disparity
peak frequency in 80/99 cells (P � 10�9, binomial), and the
difference was significant in 51/80 individual cells (resam-
pling; these are the filled symbols in Fig. 10A). Thus, we obtain
very similar results whether we use the fitted Gabor or the raw
disparity tuning curve.

We also examined the high and low cutoff frequencies of the
fitted functions. Figure 10, B and C plot the cutoff frequencies
for the disparity tuning curve against those for the SFTCs.
Again, the energy model predicts that all points should lie on
the identity line (marked with the solid line). In fact, the low
cuts differed significantly in 43/99 of cells, whereas the high
cuts differed in 67/99 (filled symbols). Once again these sig-

nificant differences nearly all reflect relatively more power at
low frequencies in the FT-DMC than in the SFTC.

In many cases, there is so little attenuation of the FT-DMC
at low frequencies that the low-cut frequency is not defined
(plotted as a low cut of zero). The discrepancy in the response
at very low frequencies is made clearer in Fig. 10D, which
compares the relative power at the lowest frequency tested
monocularly. In 77/99 cells, the FT-DMC contains more power
at these low frequencies than the SFTC (P � 10�6, binomial).
In 45/77 cases, this difference is significant (filled symbols). In
many cases, the disparity tuning curve is close to Gaussian in
form (relative power � 1; i.e., no attenuation at low frequen-
cies). That this occurs in the presence of a band-pass SFTC is
a dramatic deviation from the energy model. The band-pass
SFTC implies that the receptive fields of the subunits contain
both “ON” and “OFF” subregions. At a disparity equal to the
separation of the “ON” and “OFF” regions, the contributions
from the left and right eyes should be negatively correlated,
producing a response that is smaller than the response to
uncorrelated dots. These suppressive side lobes in the dispar-
ity-tuning curves are often not found. Prince et al. (2002b) also

FIG. 10. These 4 panels compare the Fourier spectrum of the disparity tuning curve (FT-DMC), after subtraction of the fitted
baseline, with the grating spatial frequency tuning in the dominant eye. In each case, the identity line is marked, and filled symbols
show cells where properties of disparity tuning curve differed significantly from those obtained with gratings (P � 5%, resampling).
Circles indicate cells from monkey Duf, squares from Ruf. All quantities were estimated from fits to data (99 cells). A: frequency
at which Fourier spectrum peaks. B, C: low cut and high cut, i.e., frequencies on either side of peak at which fitted spectrum falls
to half its maximum value. In A–C, one cell falls outside range of axes; in each case its FT-DMC values were higher than SFTC
values, but this difference was not significant. D: relative power at lowest frequency tested monocularly (i.e., power at this lowest
frequency, normalized by the power at the peak of the frequency spectrum).
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noted that many disparity-tuning curves were Gaussian in
form. However, those data were not clearly at odds with the
energy model for two reasons. First, disparity was applied
horizontally, regardless of receptive field orientation, so it
remained possible that suppressive side lobes would have
emerged if disparity had been applied orthogonally to the
preferred orientation. Second, their data on spatial frequency
tuning were not generally sufficient to exclude the possibility
of a substantial low-pass component in the monocular SFTC.
The present data eliminate both of these difficulties, and clearly
indicate a need for more complex processing than the original
energy model can provide.

VERGENCE EYE MOVEMENTS ARE UNLIKELY TO EXPLAIN THE

MISMATCH. One possible explanation of the mismatch be-
tween disparity tuning and spatial frequency tuning is that the
monkeys may be making small vergence movements. This
would have the effect of introducing jitter into the disparity of
each stimulus. Effectively, we would be summing several
disparity tuning curves of the form predicted by the energy
model, each with a random disparity offset. This tends to smear
out the sidelobes, shifting the peak of the disparity power
spectrum to lower frequencies. This process is illustrated in
Fig. 11. Consider an energy-model binocular subunit, whose
receptive fields in both eyes are identical, with no position
disparity, both having the profile shown in Fig. 11A. The thin
line in Fig. 11B shows the disparity tuning curve that would be
obtained for this subunit in the absence of vergence move-
ments. Now suppose the monkey makes random vergence
movements, so that the disparity of his actual fixation point
relative to the fixation target at any moment is a Gaussian
centered on zero. This means that the disparity-tuning curve
actually measured is the true curve convolved with this Gauss-
ian. The result is shown with the thick line in Fig. 11B. Figure
11C shows the effect on the Fourier amplitude spectrum of the
disparity-modulated component. The thin line shows the power
spectrum for the original tuning curve, and the thick line for the

observed version contaminated by vergence. The vergence has
had two effects: it has shifted the peak of the disparity power
spectrum toward DC, and it has greatly reduced the amplitude.
For clarity, therefore, the broken line shows the observed
disparity power spectrum scaled up to the same amplitude as
the uncontaminated one. The same effect would be obtained if
the neuron being recorded from represented the sum of several
subunits that differed in their position disparities.

Either of these possibilities might explain why, in 80/99
cells, the peak of the disparity power spectrum is at a lower
frequency than the preferred spatial frequency obtained with
gratings. To estimate the vergence jitter that would be neces-
sary to achieve this, we assume that the underlying disparity-
tuning curve is a Gabor with disparity peak frequency equal to
the preferred spatial frequency in the dominant eye, and that
the Gabor function fitted to the observed disparity-tuning curve
represents this underlying disparity tuning curve convolved
with a Gaussian distribution of vergence. In over half the cells
(48/80), the amount of vergence jitter needed to bring about the
requisite shift in frequency is larger than the SD of vergence
reported by the scleral search coils, even though search coils
clearly overestimate variability in vergence (Read and Cum-
ming 2003). It therefore seems unlikely that the animal’s
vergence jitter is large enough to explain the mismatch in peak
frequency in most cells.

Generalizing the energy model

It remains possible that combinations of subunits with dif-
ferent position disparities might be responsible for the lower
disparity frequency. However, even if this is the case, the
energy model places an upper limit on the power at any
frequency. This can be appreciated by inspecting Fig. 11. The
multiple subunits have shifted the peak toward lower frequen-
cies, but they have done this by removing power at high
frequencies rather than by adding power at any frequency. If

FIG. 11. Effect of vergence eye movements, or several subunits with different position disparities. A: receptive field profile: a
Gabor function yielding a spatial frequency bandwidth of 1.5 octaves. B: thin line shows autocorrelogram of this receptive field,
which is the disparity-tuning curve predicted by the energy model (Eq. C1). Heavy line shows the disparity-tuning curve that would
be obtained by combining output of many such subunits, as in Eq. D5, each with the receptive field profile shown but differing in
position disparity. To obtain the curve shown here, 1,000 subunits were used, with random-position disparity drawn from a
Gaussian with mean zero and SD equal to half the spatial period of the Gabor carrier. This simulates random jitter in monkey’s
vergence. C: compares Fourier power spectrum for a single subunit (thin line) and for 1,000 subunits (heavy line). Dotted line
shows 1,000 subunit result scaled up to same peak. For a single subunit, the disparity power spectrum peaks near the frequency
of the Gabor carrier. Adding more subunits with a scatter in position disparity removed power at high frequencies, shifting the peak
to lower frequency.
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multiple subunits are responsible for the mismatch between
disparity peak frequency and preferred spatial frequency, the
overall power in the disparity tuning should be greatly reduced.
We therefore generalized the energy model to examine the
possibility that such scatter in positions could explain our data.

In the original formulation of the energy model (Ohzawa et
al. 1990), all binocular subunits were assumed to have the same
phase disparity, position disparity, spatial frequency, and ori-
entation tuning. We now allow an arbitrary number of subunits,

with different phases, positions, and spatial frequency tuning
(both across subunits and across eyes within a subunit), includ-
ing monocular subunits and binocular subunits that are not
tuned to disparity. We shall, however, continue to assume that
all receptive fields have the same orientation, and the same
profile parallel to this orientation (see APPENDIX E). With this
much weaker set of constraints on the receptive fields, it is no
longer true that the disparity Fourier spectrum must have the
same shape as the spatial frequency tuning. However, it can be
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shown (APPENDIX E; Eq. E9) that the disparity power spectrum,
�D̃(f)�2, and the product of the monocular spatial frequency
tuning curves, LSF(f)RSF(f), must still satisfy the following
inequality, for every spatial frequency f:

LSF	 f 
RSF	 f 


LASFRASF

	
�D̃	 f 
�2

U 2 (6)

The monocular spatial frequency tuning curves have been
normalized to unit area by dividing by the area under each
curve, LASF and RASF. The disparity power spectrum has been
normalized by dividing by the squared response to uncorrelated
random-dot stereograms U2. This has the advantage of cancel-
ing out any differences in the overall response to sine gratings
and to random-dot stimuli (e.g., because random dots have less
contrast power in the cell’s spatial band-pass, or because of
stimulus-dependent change in width- or end-stopping). Be-
cause such effects apply equally to disparate and uncorrelated
stereograms, they would cancel out in Eq. 6. For the original
energy model, Eq. 6 holds with an equals sign.

This inequality allows us to detect whether the lower dis-
parity frequency can be explained by the presence of multiple
subunits with different positions, as in Fig. 11. Then, the shift
in the peak frequency would be achieved not by boosting the
disparity power at low frequencies, but only by removing
power at high frequencies. This would substantially weaken
the disparity modulation (cf. Fig. 11B), so that the inequality
Eq. 6 would be satisfied. If the inequality is violated, then
multiple subunits are not a sufficient explanation.

The same generalization allows for differences in spatial
frequency tuning between eyes. Our analysis in the previous
section [like that of Ohzawa et al. (1997)] considered only the
dominant eye, and assumed that the SFTC in the nondominant
eye differed only by a scaling of response magnitude. Yet our
results (Figs. 6 and 7) show that there is a significant minority
of cells in which spatial frequency tuning differs between eyes.
The inequality of Eq. 6, which includes terms for the spatial
frequency tuning in each eye, holds for the generalized energy
model even in this case.

The top row of Fig. 12 (A–C) examines Eq. 6 for one cell,
ruf030, which satisfied the energy model prediction reasonably
well. Figure 12A shows the SF tuning in the two eyes together
with the fitted functions; Fig. 12B shows the disparity-tuning
curve, with the 95% confidence interval at each disparity
shaded. Figure 12C compares the fitted grating curve
LSF( f )RSF( f )/LASFRASF (black) and disparity spectrum
�D̃( f )�2/U2 (gray). The disparity peak frequency is at 0.82,

whereas that of the grating curve is at 0.24. This difference was
significant, so the data are incompatible with the simplest form
of the energy model. Because the disparity peak frequency is,
atypically, higher than the SFTC peak frequency, this cannot
be explained by vergence eye movements. However, because
the inequality of Eq. 6 is not significantly violated at most
frequencies, the data are fairly compatible with our generalized
version of the energy model, incorporating many subunits with
different spatial frequency and/or disparity tuning. Note that
the odd-symmetric disparity tuning in this cell cannot arise
simply from a phase disparity of �/2 between receptive fields
whose properties are otherwise identical, as originally envis-
aged by Ohzawa et al. (1990), because this would require the
normalized curves in Fig. 12C to peak at the same frequency.
One possibility is that this cell receives input from one tuned-
excitatory subunit with a position disparity of 0° and one
tuned-inhibitory subunit with a position disparity of 0.5°, re-
sulting in the odd-symmetric curve. Such a scheme is allowed
within this generalized version of the energy model, but is
nevertheless very different from previous explanations of odd-
symmetric disparity tuning (DeAngelis et al. 1991; Ohzawa et
al. 1990). Some properties of such a model are discussed in
Read et al. (2002).

More typical results are shown in the bottom two rows of
Fig. 12. The cell in Fig. 12F is an example where the peak
frequencies (marked by vertical lines) are close, so that an
analysis only of the peak frequency would conclude that it
is consistent with the energy model. However, over a range
of low frequencies, the scaled disparity power spectrum is
significantly higher than is possible under the energy model.
The SFTCs indicate no response to a DC stimulus, so
according to the energy model the disparity-tuning curve
should have no DC component. In the energy model, the
disparity-tuning curve of a complex cell is the sum of the
disparity-tuning curves for the individual subunits. This
cannot produce a curve with a DC component that is absent
from all the subunits. The bottom row of Fig. 12 (G–I)
shows another example that severely violates the inequality.
The SFTCs peak at high frequencies: over 10 cpd. In con-
trast, the disparity-tuning curve has most power at DC, and
no power at all at 10 cpd. Once again, the power at DC is far
beyond what could be accounted for by multiple subunits.
The 3 example cells shown in Fig. 9 also violate the in-
equality.

To quantify the results across the entire data set, we used the
difference

FIG. 12. Comparison of spatial frequency and disparity tuning for 3 example cells. Left column (A, D, G): monocular spatial
frequency tuning curves (left eye: leftward open arrowheads �, dotted line; right eye: rightward filled arrowheads ‹, solid line).
Middle column (B, E, H): filled circles (F) show disparity tuning curve. Curve shows fitted Gabor; shaded region shows 95%
confidence interval for fitted functions. Broken horizontal lines show response to uncorrelated stimuli (upper line, �) and to blank
screen (lower line, E). In each case, symbols and error bars show mean � SE. Right column (C, F, I): black line shows product
of left and right spatial frequency tuning curves, normalized by area underneath each. Gray line shows Fourier power spectrum of
disparity tuning curve minus fitted baseline, normalized by square of fitted baseline. Shaded regions around curves show 95%
confidence intervals, estimated by fitting resampled data. Position of peak of each curve is marked with vertical lines. Generalized
energy model predicts that gray curve should always lie below black curve (Eq. 6). Top row (A, B, C): ruf030: a cell that is mostly
consistent with the energy model. At low frequencies, normalized power spectrum of the disparity tuning curve is not significantly
greater than the product of the monocular SFTCs, in accordance with the generalized energy model. (At high frequencies, the
inequality is in fact violated, so even this cell may not be entirely compatible with the energy model.) Middle row (D, E, F): ruf139:
the cell that violates a generalized energy model. At low frequencies, the normalized disparity spectrum (gray region in F) is
significantly higher than the normalized product of the SFTCs (dark region in F), in violation of Eq. 6. Note that an analysis only
of the peak frequency of these two curves would not have revealed this discrepancy. Bottom row (G, H, I): duf096: another cell
that violates the generalized energy model. SFTCs peak at high frequencies: over 10 cpd. In contrast, the disparity tuning curve
has most power at DC, and no power at all at 10 cpd.
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� �
LSF	 f 
RSF	 f 


LASFRASF

�
�D̃	 f 
�2

U 2 (7)

This is the difference between the black curve and the gray
curve in the right-hand column of Fig. 12 (C, F, I). The energy
model, generalized to include many subunits, predicts that �
should be positive or zero for all frequencies (Eq. 6); that is, the
black curve above the gray curve in Fig. 12, C, F, and I. Using
the functions fitted to the disparity and SF tuning, we evaluated
� at a range of frequencies. We used resampling to estimate the
95% percentile of this difference; if this percentile is negative,
we can reject the inequality of Eq. 6 with 95% confidence.

We had 83 disparity-tuned cells for which SFTCs were
available in both eyes, and for which all 3 fitted functions
explained more than 60% of the variance. For frequencies
lower than the peak of the product of the SFTCs, the hypoth-
esis � 	 0 could confidently be rejected for over half of the
cells. The significance of the rejection in individual cells was
often very high. At a frequency of 0.01 cpd, the hypothesis
could be rejected with 95% confidence for 47/83 cells, and
with better than 99.99% confidence for 13/83 cells. Figure 13
shows how the proportion of cells for which the energy model
can be rejected (i.e., � significantly less than zero) varies
depending on the frequency at which � is evaluated. To make
a meaningful definition of “low frequencies” across a popula-
tion with differing SF tuning, we express frequencies relative
to the peak. This shows clearly that, whereas at high frequen-
cies most cells appear consistent with the generalized energy
model, significant discrepancies emerge as we move toward
lower frequencies. Thus, although a more general version of
the energy model can explain the differences in the peak

frequencies previously reported (Ohzawa et al. 1997; Prince et
al. 2002b), the absolute power at low frequencies in the FT-
DMC still allows us to reject the energy model in over half the
cells. Note that this analysis also demonstrates that no amount
of vergence variability could explain the data in these cells. If
the vergence variability was large enough to account for the
necessary shift in disparity peak frequency, it would have
reduced the amplitude of disparity tuning below that observed.
We conclude that the disparity-selective responses of many V1
neurons are not compatible with the energy model, even after
it has been generalized to include multiple subunits with dif-
ferent SF and disparity tuning.

THE POSSIBLE SOURCES OF ERROR CANNOT EXPLAIN THE

MISMATCH. Spontaneous firing rates. An overestimate of the
area under the SFTC would yield excessively small values for
the normalized product of SFTCs, which might cause errone-
ous rejection of the energy model. This could occur if a
substantial spontaneous firing rate was added to the response
resulting from receptive field structure. However, the observed
spontaneous rates were almost always very low. For 211 of the
252 cells, blank stimuli, consisting of a uniform gray screen at
the mean luminance of the random dots, were interleaved with
the disparate random dots. The mean blank response, averaged
over these 211 cells, was 2.1 spikes/s. The mean response
exceeded 10 Hz in only 13/211 cells.

Orientation misalignment. Care was taken to ensure that
disparity tuning and SF tuning were measured along the same
axis, but of course this may not have been exactly orthogonal
to the receptive field orientation. Such a misalignment will
mean that Eq. 6 does not hold in general, and the effects will
depend on the monocular receptive field. For Gabor-receptive
fields that are longer in the direction parallel to the carrier
Gabor than in the direction orthogonal to it, such misalignment
always moves the peak of the product of the monocular SFTC
to lower frequencies, while having less effect on the disparity
frequency (APPENDIX F). Thus, for these respective fields, the
disparity frequency should be if anything higher than the
frequency of the peak of the product of monocular SFTCs, the
opposite of the observed pattern. Thus, it seems unlikely that
our results reflect any artifact of this kind.

Thresholding before binocular combination can explain the
mismatch

It is therefore clear that the energy model, either in its
original form or as generalized here, cannot account for the
data. More elaborate extensions of the energy model are
needed to reconcile it with experimental observations. We
previously (Read et al. 2002) extended the energy model by
adding thresholds before binocular combination (Eq. 4). We
introduced this modification to explain the reduced response of
V1 neurons to binocularly anticorrelated stimuli. We have
already seen that this same modification also explains the
phenomenon of disparity selectivity in classically “monocular”
cells. We now show that the same modification also explains
the existence of low-pass disparity tuning curves in cells that
have band-pass SF tuning.

Figure 14 compares disparity and SF tuning for the gener-
alized energy model (top row, A–C) and for our modified
version with two different sets of parameters (bottom two rows:
D–F, G–I). The layout is the same as in Fig. 12: the left-hand

FIG. 13. At low frequencies, over half of cells are incompatible with energy
model. The energy model predicts that � (Eq. 7) is nonnegative at every
frequency. For each of 83 cells, we evaluated � at a range of frequencies. The
solid curve shows the percentage of cells for which the energy model hypoth-
esis that � is nonnegative could be rejected at the 5% level (dotted line). For
low frequencies, the energy model can be rejected for around half the cells. We
used Gaussian/Gabor functions fitted to the data. SFTCs were assumed to be
zero outside the range of frequencies tested (even though the fitted curve does
not necessarily fall to zero, given that a baseline was included in Gaussian fit).
To make a meaningful definition of “low frequencies” across a population with
differing SF tuning, we evaluated � at 32 frequencies, of which the lowest was
always 0.01 cpd, whereas the 16th was the peak of the product of SFTCs
(marked “peak” in figure). Other frequencies were scaled at equal increments
in ln (frequency). The graph shows that, at frequencies below the SFTC peak,
the energy model can usually be rejected, because the disparity tuning contains
more power than expected on the basis of SF tuning (cf. Figs. 9 and 10).
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column shows the SFTCs obtained with grating stimuli, the
middle column shows the disparity tuning curve and the re-
sponse to uncorrelated random-dot patterns, whereas the right-
hand column compares the normalized Fourier power spectrum
of the disparity-modulated component (FT-DMC, gray curve)
and the product of the normalized SFTCs (black curve). We
have chosen an example in which the SF tuning is different in
the two eyes: the left eye is tuned to a SF of 2.5 cpd, and the
right eye to 3.5 cpd.

In the top row, we show results for a single binocular
subunit, combining left- and right-eye inputs linearly in accor-
dance with the energy model. Because there is only a single
subunit, the normalized FT-DMC is identical to the product of
the normalized SFTCs (Fig. 14C) [i.e., Eq. 6 holds with an
equals sign (cf. APPENDIX E)]. The inequality is thus satisfied.

The middle row, Figure 14, D–F, shows the same quantities
for a binocular subunit in which the inputs from left and right
eyes have been passed through a high-threshold nonlinearity
before being summed and squared. This has completely re-
moved the inhibitory side lobes that were present for the
energy model subunit in Fig. 14B, resulting in a low-pass
disparity power spectrum. The inequality of Eq. 6 is violated,
just as in real data.

The bottom row, Figure 14, G–I, shows a similar nonlinear
model, this time with an inhibitory synapse resulting in a
tuned-inhibitory-type disparity-tuning curve (given that the left
and right receptive fields are in phase). For a single subunit, the
SFTC in the inhibitory eye would be zero, so the product of the
SFTCs would be zero and the inequality would be severely
violated. Because it was rare for a completely silent SFTC to
be recorded in one eye, this would be a rather extreme exam-
ple. Instead, we make our model cell the sum of 2 binocular
subunits, with identical left and right receptive fields. In the
first subunit, the left eye is excitatory and the right eye inhib-
itory; in the second subunit, it is the other way around. Thus,
the response observed for grating stimuli in the left eye is
entirely attributable to the first subunit, whereas the response to
gratings in the right eye is entirely attributable to the second
subunit, although both subunits contribute to the disparity-
tuning curve. Thus, in our modified version of the energy
model, power present in the disparity-tuning curve does not
necessarily show up in the SFTC. This is why the disparity
power spectrum for this model cell rises well above the product
of the SFTCs at low frequencies (Fig. 14I). This behavior is
incompatible with the generalized energy model, but is com-
monly observed experimentally (Fig. 12, F and I). We con-

FIG. 14. Comparison of simulated spatial frequency and disparity tuning for 3 model cells. Left column (A, D, G): monocular
SFTCs (Left eye: dotted line; Right eye: solid line). Middle column (B, E, H): disparity-tuning curve (black curve) and response
to uncorrelated stimuli (broken line, U). Note that horizontal axis has different scale in B, E, and H. Right column (C, F, I): black
line shows product of left and right SFTCs, normalized by area underneath each. Gray line shows Fourier power spectrum of
disparity tuning curve about baseline, normalized by square of response to uncorrelated stimuli. Receptive fields are two-
dimensional Gabor functions, tuned to 2.5 cpd (left eye) and 3.5 cpd (right eye). Top row (A, B, C): energy model binocular subunit,
C � [Pos(vL � vR)]2. Middle row (D, E, F): same binocular subunit modified to include high threshold before binocular
combination: C � [�(vL) � �(vR)]2, where � represents a threshold function: �(x) � (x � 
) if x exceeds the threshold 
, and
0 otherwise. Value of threshold 
 was set so high that only 5% of monocular random-dot patterns evoked a response. Bottom row
(G, H, I): sum of 2 binocular subunits including same threshold nonlinearity as above, plus an inhibitory synapse: C �
[Pos{�(vL) � �(vR)}]2 � [Pos{�(vR) � �(vL)}]2. A pair of complementary subunits is chosen to give a monocular response in
both eyes (clearly, a single inhibitory subunit would violate the inequality even more dramatically, since the product of the spatial
frequency-tuning curves would be zero). In each case, the disparity-tuning curve represents the mean response to 100,000 different
random-dot patterns.
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clude that our modified version of the energy model provides
a better match to the data.

D I S C U S S I O N

The energy model of binocular complex cells has been
successful in qualitatively capturing several aspects of their
function. However, several quantitative predictions are not
borne out by experimental data. In this study, we document two
such discrepancies. We demonstrate that in each case, the
agreement with data is better if we modify the energy model by
adding threshold nonlinearities before binocular combination.

The first problem for the energy model is that there are many
cells in which input from one eye appears to be predominantly
inhibitory. The energy model is linear up to binocular combi-
nation, and this means that inputs from each eye can be both
positive or negative, depending on the particular stimulus. For
example, if a receptive field in one eye consists of a single ON

region, then a random-dot pattern in which mainly white dots
happen to fall on the receptive field will elicit an excitatory
response from this eye, whereas a pattern in which the recep-
tive field is covered predominantly with black dots will elicit
an inhibitory effect. Thus we cannot classify this eye as being
“excitatory” or “inhibitory.” However, previous workers have
noted cases where one eye appears to have a purely inhibitory
effect (Ohzawa and Freeman 1986a; Poggio and Fischer 1977).

We investigated this by carrying out a quantitative compar-
ison of the response rates to monocular and binocular random-
dot stimuli. In agreement with previous reports, we find that
many neurons show little or no response to stimulation in one
eye, despite exhibiting clear disparity selectivity when tested
with binocular stimuli. Indeed, in the small number of cells that
show significant spontaneous firing, stimulation in the non-
dominant eye often reduces the response below the spontane-
ous level. We also find that in many cells that respond well to
random-dot patterns in the dominant eye, adding dots to the
nondominant eye reduces the response. The lack of this second,
critical piece of evidence may explain why the challenge posed
to the energy model by monocular disparity-selective neurons
has so far been ignored. Further support for the idea of inhib-
itory input from one eye is provided by our study of SFTCs
with grating stimuli. Spatial frequency tuning in most eyes is
well matched between eyes, and for some of the cells where the
peak frequencies appear mismatched, the data suggest that the
underlying receptive field structure may be identical in the two
eyes, but that one eye has an inhibitory effect. This is impos-
sible in the energy model.

The observation of cells in which one eye has a net inhibi-
tory effect implies a nonlinear operation before binocular com-
bination. We previously proposed modifying the energy model
to incorporate such a nonlinearity: half-wave rectification fol-
lowed by an inhibitory synapse (Read et al. 2002). This mod-
ified version of the model can explain our observations; we
present simulations of classically “monocular” cells that are
nevertheless tuned to disparity. The same modification enables
us to construct cells in which the response to uncorrelated
stimuli is close to the mean of the responses to monocular
stimuli in the two eyes, as often observed experimentally,
rather than fixed at the sum of the monocular responses, as
required by the energy model. We conclude that this modified
version of the energy model is a better explanation of the data.

The second discrepancy investigated in this study is the
mismatch between disparity frequency and SF tuning (Ohzawa
et al. 1997). In the original energy model, the disparity peak
frequency—loosely, the frequency of the undulations in the
disparity-tuning curve—should be the same as the preferred
spatial frequency observed with monocular sinusoidal lumi-
nance gratings. In fact, the disparity peak frequency is system-
atically found to be lower than predicted by the energy model.
Crucial to this demonstration was the use of disparities applied
at right angles to the preferred orientation of the cell. Previous
work in monkeys using only horizontal disparities failed to
make clear this failure of the energy model (Prince et al.
2002b).

We considered the possibility that differences in SF tuning
between the eyes are responsible for this discrepancy. Al-
though the energy model in its original form assumes identical
SF tuning in left and right eyes, we found a few clear examples
of excitatory inputs from both eyes with different SF tuning, as
previously reported in the cat (Hammond and Pomfrett 1991).
The energy model can easily be generalized to take such
interocular differences into account. If the eyes differ in SF
tuning, then the disparity peak frequency should be located at
the peak of the product of the tuning curves from left and right
eyes. (Note that this implies that the disparity peak frequency
is always in between the preferred spatial frequencies in the
two eyes.) However, we showed that even this generalized
version of the energy model must obey an inequality relating
SF tuning to disparity tuning. This inequality was violated by
most of the cells in our data set: their disparity-tuning curves
had more spectral power at low spatial frequencies than was
possible even in the generalized energy model, given the
observed response to grating stimuli.

However, the additional power at low spatial frequencies
can be explained with our modified version of the energy
model. Half-wave rectification before binocular combination
removes the side lobes in disparity-tuning curves from band-
pass receptive fields, shifting power to lower frequencies and
explaining how a low-pass disparity-tuning curve can be ob-
served alongside band-pass SF tuning. In addition, allowing
purely inhibitory input from one eye means that subunits can
contribute to the observed disparity tuning without affecting
the SF tuning observed in one eye. Thus, in our modified
model, the SF tuning is decoupled from the disparity tuning.
This offers an explanation of why the correlation between
disparity frequency and spatial frequency predicted by the
energy model is not observed.

Thus, in all the areas where we have compared the energy
model and our modified version, the latter has agreed more
closely with the data. In addition, the modified version also
explains the weaker disparity tuning observed with anticorre-
lated stimuli (Cumming and Parker 1997; Livingstone and
Tsao 1999; Ohzawa et al. 1990). This does not constitute a
proof that binocular combination is nonlinear. It is possible that
all of the discrepancies noted here and elsewhere (e.g., Cum-
ming and DeAngelis 2001) could be reconciled with linear
binocular summation if sufficiently complex subsequent pro-
cessing is postulated (perhaps incorporating contrast normal-
ization and multiple binocular subunits with different output
nonlinearities). Also, there may be individual neurons in which
the original energy model remains a better description than our
modified version. If it is true that binocular complex cells
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receive input from many binocular subunits, there may be a
mixture of both mechanisms at work, with some binocular
subunits receiving essentially linear input from both eyes and
others receiving thresholded input, thus explaining the contin-
uum of observed properties.

However, we propose that the most straightforward solution
is to postulate that binocular combination is not linear in most
neurons. With this one modification to the energy model, the
key characteristics of disparity selectivity in striate cortex can
be economically reproduced. This suggests we are close to an
accurate mechanistic description of how this novel property of
the visual cortex is produced.

A P P E N D I X A : F O U R I E R T R A N S F O R M S

We denote Fourier transforms with tildes. For example, if �(x, y) is
a receptive field function, �̃(f̃, 
̃) represents its Fourier transform,
where

�̃	 f̃, 
̃
 ��
��

��

dx�
��

��

dy�	x, y
 exp
2�if̃	x cos 
̃ � y sin 
̃
�.

This expresses the Fourier spectrum in polar coordinates, where the
angle 
̃ represents the orientation of each Fourier component relative
to the x-axis and f̃ represents the spatial frequency of each Fourier
component. (We denote these with tildes to distinguish them from the
orientation and spatial frequency of the receptive field, or of the
stimulus, which we shall encounter later.) We shall sometimes need
the Fourier spectrum in terms of the frequency components orthogo-
nal and parallel to the x-axis, fx � f̃ cos 
̃ and fy � f̃ sin 
̃. We denote
this �̃C(fx, fy), where the superscript C stands for Cartesian

�̃C	 fx, fy
 ��
��

��

dx�
��

��

dy�	x, y
 exp
2�i	 fxx � fyy
�

The Fourier transform is in general a complex quantity. We shall use
its absolute magnitude, ��̃( f̃, 
̃)� and phase � � arg �̃( f̃, 
̃). The
squared magnitude ��̃( f̃, 
̃)�2 gives the Fourier power spectrum.

A P P E N D I X B : D I S P A R I T Y T U N I N G C U R V E S

We fit experimental disparity-tuning curves with one-dimensional
Gabors

D	�
 �
A

��2�
exp��

	� � �0

2

2�2 � cos 	2� f 	� � �0
 � �
 (B1)

where � is disparity, D(�) is the disparity-modulated component of the
tuning curve (i.e., after the subtraction of the baseline), f is the spatial
frequency f and � the phase of the carrier cosine, � is the standard
deviation and �0 the center of the Gaussian envelope, and A is the
amplitude. The Fourier power spectrum of this one-dimensional Ga-
bor is

�D̃	 f̃ 
�2 �
A2

2
exp	�4�2�2� f̃ 2 � f 2�
	cosh �8�2�2f f̃ � � cos 2�
 (B2)

For narrow-band disparity tuning curves, �2f 2 
 1, this reduces to

�D̃	 f̃ 
�2 �
A2

4
exp	�4�2�2� f̃ � � f ��2
 (B3)

so the disparity peak frequency coincides with the Gabor carrier
frequency f. For Gabors that depart sufficiently from the narrow-band
approximation, the disparity peak frequency may differ from the
Gabor carrier frequency, since the second term in Eq. B2, the Gauss-
ian multiplied by cos (2�), becomes nonnegligible. If cos (2�) � 0

(closer to even symmetry than odd symmetry), the disparity peak
frequency is less than the carrier frequency; if cos (2�) � 0 (closer to
odd symmetry), it is greater.

A P P E N D I X C : M O N O C U L A R S P A T I A L F R E Q U E N C Y

T U N I N G F O R A H A L F - S Q U A R E D - L I N E A R

B I N O C U L A R S U B U N I T

The binocular energy model (Ohzawa et al. 1990) is based on
binocular subunits characterized by a receptive field in each eye:
�L(x, y), �R(x, y). The response of the binocular subunit to a particular
stereogram is the square of the sum of the inner product of the image
in each eye with that eye’s receptive field

C � �Pos	vL � vR
�
2 (C1)

where the symbol v stands for the inner product (sometimes loosely
called the convolution)

vL ��
��

��

dx�
��

��

dyIL	x, y
�L	x, y
 (C2)

where IL(x, y) is the image presented to the left eye, expressed relative
to the mean luminance of the screen (so positive values of IL represent
bright features, and negative values dark features).

We consider how such a subunit responds when presented with a
monocular sinusoidal grating of spatial frequency fg oriented at an
angle 
g away from the optimal orientation, drifting with a temporal
angular frequency �g. We define the retinal coordinate system such
that the x-axis is orthogonal to the optimal orientation of the subunit.
Then, the grating stimulus is

I	x, y
 � Ig cos 	2�fgx cos 
g � 2�fgy sin 
g � �g � �gt
 (C3)

where Ig is the maximum luminance of the grating relative to the mean
luminance of the screen.

The instantaneous response of the subunit at time t is

C	t
 � I g
2��̃	 fg, 
g
�2�Pos	cos 	�g � �	 fg, 
g
 � �gt

�

2

where ��̃( fg, 
g)�2 and �( fg, 
g) are, respectively, the Fourier power
and phase of the receptive field function in the stimulated eye at the
spatial frequency and orientation of the grating; we have chosen to
express the orientation of Fourier components relative to the optimal
orientation. The unit’s mean response averaged over a stimulus tem-
poral cycle is

�C� �
I g

2

4
��̃	 fg, 
g
�2 (C4)

If we set 
g � 0, then this expression gives the mean response of the
cell as a function of the spatial frequency fg of an optimally oriented
grating. This is therefore the model prediction for the shape of our
experimental SFTCs. Later, it will be convenient to express the
Fourier power spectrum in Cartesian coordinates

�C� �
I g

2

4
��̃C	 fg, 0
�2 (C5)

Equation C5 represents the predicted spatial frequency tuning curve in
terms of the Fourier power spectrum of the receptive field, in Carte-
sian coordinates. Below, we shall combine this with the predicted
disparity tuning curve to derive a powerful constraint on the response
of any generalized energy model cell.

A P P E N D I X D : D I S P A R I T Y T U N I N G C U R V E F O R A

H A L F - S Q U A R E D - L I N E A R B I N O C U L A R S U B U N I T

We now consider the response of the binocular subunit to binocular
random-dot stereograms. The energy model is built from half-squared
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linear subunits, C � [Pos(vL � vR)]2, which respond only when the
sum of inputs from the two eyes, (vL � vR), is positive. However, with
random-dot patterns, any image pair is as likely to occur as its
photographic negative, and so the cell responds on average half the
time. This is very convenient because it means that, in considering the
mean response of the cell averaged over many thousands of random-
dot patterns, we can drop the half-wave rectification and treat the
subunit as if it were simply summing and squaring its inputs, provided
that we also divide by 2. Thus, in deriving the disparity tuning, we can
imagine that the response of the subunit is C � (vL � vR)2/2. When
such a model is stimulated with random-dot patterns with disparity �
along the x-axis (i.e., orthogonal to the preferred orientation), the
disparity-modulated component of its response is given by

D	�
 � �vLvR�	�
 ��
��

��

dxdy�L	x, y
�
��

��

dx�dy��R	x�, y�
�I	x, y
I	x� � �, y�
�

(D1)

where the angle brackets represent averaging over the ensemble of all
possible random images. Consider the analytically tractable case
where the images are white noise: that is, each pixel is independently
colored either black or white with equal probability, so that the
product of the luminance of pixels at different positions averages to
zero. This is not the same as the random-dot patterns used in our
stimuli, but simulations suggest that it gives very similar answers
when averaged over a large number of patterns. For white-noise
stimuli, we may approximate the term inside angle brackets in Eq. D1
by a Dirac delta function

�I	x, y
I	x� � �, y�
� � I RD
2 �2�Dirac	x� � � � x
�Dirac	y� � y
 (D2)

where IRD is the luminance of a white pixel (and �IRD of the black
pixel) relative to the gray level of the screen, and �2 is the area of a
pixel. Then Eq. D1 becomes

D	�
 � I RD
2 �2 �

��

��

dxdy�L	x, y
�R	x � �, y
 (D3)

By standard techniques of Fourier analysis, the Fourier spectrum of
the disparity-modulated component of the cell’s response D̃(fx) is

D̃	fx
 � I RD
2 �2 �

��

��

dfy�̃L
C	 fx, fy
�̃R

C*	 fx, fy
 (D4)

where fx and fy are the frequencies orthogonal and parallel to the
preferred orientation, respectively, �̃C(fx, fy) is the Fourier transform
of the receptive field expressed in Cartesian axes in which x is
orthogonal to the preferred orientation, the suffixes L and R denote left
and right eyes, and * denotes complex conjugation.

The response of a complex cell is modeled as the sum of n of the
binocular subunits of Eq. C1

C � �
j�1

n

�Pos	vL j � vRj
�
2 (D5)

Because Fourier transforms are linear, the Fourier spectrum of the
disparity tuning curve is just the sum of n terms as in Eq. D4. To find
the Fourier power spectrum for n subunits, we multiply this sum by its
complex conjugate to obtain

�D̃	 fx
�2

� IRD
4 �4 �

j�1

n �
k�1

n �
��

��

dfy �
��

��

df �y��̃Lj
C 	 fx, fy
��̃Rj

C 	 fx, fy
��̃Lk
C 	 fx, f �y
��̃Rk

C 	 fx, f �y
�

� cos 	��j	 fx, fy
 � ��k	 fx, f �y

 (D6)

where ��j( fx, fy) is the difference between the Fourier phases of the
left and right receptive fields in the jth subunit, at the frequency
component indicated. In general ��j( fx, fy) depends on frequency, but
if the receptive fields are narrow-band Gabors, it is constant and equal
to �� � �L � �R, the phase disparity between the Gabor receptive
fields.

It will be convenient to normalize the Fourier power spectrum by
the response to monocular random images. The mean response to
white noise in the left eye is

L �
I RD

2 �2

2 �
j�1

n �
��

��

dxdy��Lj	x, y
�2 �
I RD

2 �2

2 �
j�1

n �
��

��

dfxdfy��̃Lj
C 	fx, fy
�2

(D7)

and similarly for the right eye, where the last step has used Parseval’s
theorem to replace the square integral of the receptive field function
with the integral of its Fourier power spectrum. Then, from Eqs. D6
and D7 we obtain

�D̃	 fx
�2

4LR
�

¥j�1
n ¥k�1

n ���
�� dfy ���

�� df �y��̃Lj
C 	 fx, fy
��̃Rj

C 	 fx, fy
��̃Lk
C 	 fx, f �y


��̃Rk
C 	fx, f�y
� cos 	��j	fx, fy
 � ��k	fx, f�y



¥j�1
n ���

�� dfxdfy��̃Lj
C 	 fx, fy
�2 ¥k�1

n ���
�� df �xdf �y��̃Rk

C 	 f �x, f �y
�2

(D8)

As we now show, this normalized Fourier spectrum can be compared
with normalized spatial frequency tuning curves to test the general-
ized version of the energy model.

A P P E N D I X E : I N E Q U A L I T Y R E L A T I N G

M O N O C U L A R T U N I N G C U R V E S T O F O U R I E R

P O W E R S P E C T R U M O F D I S P A R I T Y T U N I N G

C U R V E

We consider the model of Eq. D5, C � ¥j�1
n [Pos(vLj � vRj)]

2. We
restrict ourselves to the case where all receptive fields (for all sub-
units, in both eyes) are Cartesian-separable in the same coordinate
frame, so that every receptive field �(x, y) can be written as the
product of a function of x only and a function of y only. The x-function
is arbitrary, but we require the y-function to be the same for all
receptive fields, and to have zero Fourier phase. One example is if all
the receptive fields are Gabors with the same orientation and the same
extent parallel to the preferred orientation (but note that Gabor recep-
tive fields are not required). Orientation tuning is assumed to be the
same in all subunits, but SF tuning is allowed to differ both across
eyes in a single binocular subunit, and across subunits. Even though
we have referred so far only to binocular subunits, this framework also
includes monocular subunits as a special case: we simply set the
x-function in one eye to zero, so that the subunit contributes a term
[Pos(vL)]2 or [Pos(vR)]2. Non-disparity-selective subunits can be rep-
resented by the sum of two monocular terms: [Pos(vL)]2 � [Pos(vR)]2.
Thus, this formulation is extremely general.

Because we have assumed separability, the Fourier transform of
each receptive field can be written, in Cartesian form, as �̃Lj

C ( fx, fy) �
�̃Lj

x ( fx)�̃Lj
y ( fy) and so forth, where the subscript Lj indicates that this is

the left-eye receptive field of the jth subunit. Using the results of
APPENDIX C (Eq. C5), the monocular spatial frequency tuning curves
obtained with optimally oriented drifting gratings in the left and right
eyes, respectively, are

LSF	f
 �
I g

2

4
��̃y	0
�2 �

j�1

n

��̃Lj
x 	 f 
�2, RSF	 f 
 �

I g
2

4
��̃y	0
�2 �

j�1

n

��̃Rj
x 	 f 
�2

(E1)

where Ig is the luminance modulation amplitude of the grating and f
its spatial frequency. We remove the dependency on grating lumi-
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nance by normalizing both tuning curves, dividing by the area under
the spatial frequency tuning curve

LASF �
I g

2

4
��̃y	0
�2 �

j�1

n �
��

��

df ��̃Lj
x 	 f 
�2 (E2)

Notice that this integration is over all frequencies, both positive and
negative (i.e., for gratings drifting in both directions). Our experimen-
tal tuning curves are expressed as a function of positive frequencies
only; the estimate of LASF is therefore twice the area under an
experimental tuning curve.

The product of the normalized tuning curves is

LSF	 f 
RSF	 f 


LASFRASF

�
¥j�1

n ��̃Lj
x 	 f 
�2 ¥k�1

n ��̃Rk
x 	 f 
�2

¥j�1
n ���

�� df ��̃Lj
x 	 f 
�2 ¥k�1

n ���
�� df ���̃Rk

x 	 f �
�2
(E3)

We now use the simplifying assumptions of separability in the
rather unwieldy expression (Eq. D8) derived in APPENDIX D for the
Fourier power spectrum of the disparity-modulated component of the
cell’s response to binocular white noise, normalized by the monocular
responses. The integrals over y cancel out top and bottom, whereas the
Fourier phase depends on the x-function only, because we assumed
that the y-function has zero Fourier phase (e.g., is a Gaussian). We
then obtain

�D̃	 f 
�2

4LR
�

¥j�1
n ¥k�1

n ��̃Lj
x 	 f 
��̃Rj

x 	 f 
��̃Lk
x 	 f 
��̃Rk

x 	 f 
� cos 	��j	 f 
 � ��k	 f 



¥j�1
n ���

�� df ��̃Lj
x 	 f 
�2 ¥k�1

n ���
�� df ���̃Rk

x 	 f �
�2

(E4)

Now consider the difference between the normalized Fourier power
spectrum, Eq. E4, and the product of the normalized left and right
monocular tuning surfaces, Eq. E3

�LSF	 f 
RSF	 f 


LASFRASF

�
�D̃	 f 
�2

4LR � �
j�1

n �
��

��

df ��̃Lj
x 	 f 
�2 �

k�1

n �
��

��

df ���̃Rk
x 	 f �
�2

� �
j�1

n �
k�1

n ���̃Lj
x 	 f 
	2	�̃Rk

x 	 f 
	2 � 	�̃Lj
x 	 f 

�̃Rj

x 	 f 

�̃Lk
x 	 f 

�̃Rk

x 	 f 
	

� 2	�̃Lj
x 	 f 

�̃Rj

x 	 f 

�̃Lk
x 	 f 

�̃Rk

x 	 f 
	 sin2 ���j � ��k

2
�� (E5)

where we have used a trigonometric identity to replace the cosine in
Eq. E4 with the sine of a half-angle.

The right-hand side of Eq. E5 is clearly unaffected by interchanging
the summation indices j and k. We write it out twice, interchanging the
indices the second time. It then becomes apparent that the terms other
than the sine terms form a perfect square, so we can write

2�LSF	 f 
RSF	 f 


LASFRASF

�
�D̃	 f 
�2

4LR � �
j�1

n �
��

��

df ��̃Lj
x 	 f 
�2 �

k�1

n �
��

��

df ���̃Rk
x 	 f �
�2

� �
j�1

n �
k�1

n ����̃Lj
x 	 f 
��̃Rk

x 	 f 
� � ��̃Lk
x 	 f 
��̃Rj

x 	 f 
��2

� 4	�̃Lj
x 	 f 

�̃Rj

x 	 f 

�̃Lk
x 	 f 

�̃Rk

x 	 f 
	 sin2 ���j � ��k

2
�� (E6)

It is now clear that every term in the sum on the right-hand side of this
equation is the square of a real quantity, and therefore nonnegative.
The sum itself must therefore yield a nonnegative number. The sums
on the left-hand side must yield a nonnegative number for the same
reason. We conclude that, for every spatial frequency f

LSF	 f 
RSF	 f 


LASFRASF

	
�D̃	 f 
�2

4LR
(E7)

Equality holds when the receptive fields in each eye have the same
Fourier amplitude spectrum for all the subunits, and when the Fourier
phase disparity between left and right eyes is the same for all subunits.
This is the case, for example, in the original form of the energy model
(Ohzawa et al. 1990); even-symmetric disparity-tuning curves were
obtained by setting the phase disparity within every subunit to be zero,
and odd-symmetric by setting it to �/2.

One practical problem with Eq. E7 is that it does not take account
of any gain control mechanism that boosts responses to monocular
stimulation relative to binocular stimulation. On expanding the
squared term in Eq. D5, it is apparent that the model’s mean response
to binocularly uncorrelated random-dot stimuli is given by the sum of
its mean responses to monocular random-dot stimuli

U � L � R (E8)

Prince et al. (2002b) tested this prediction of the energy model and
found that, in fact, the uncorrelated stimuli were lower than predicted
by the model. Instead of being equal to the sum of the left and right
responses, as in Eq. E8, the uncorrelated response was close to their
average, Uobs � (Lobs � Robs)/2 (the subscript obs denoting “ob-
served”). A similar result is found in our present data, and can be
explained by our modified version of the energy model. However, it
can also be reconciled with the original energy model if we postulate
a form of contrast normalization that tends to boost the response to
monocular stimulation. This could be a divisive normalization in
which the unnormalized response of each cell is divided by the total
response from a pool of neighboring cells. We can model this simply
by dividing the output of the model in Eq. D5 by the total contrast of
the images presented to left and right eyes. This halves the uncorre-
lated response relative to the monocular responses, leading to the
correct relationship Uobs � (Lobs � Robs)/2. Thus, combining the
energy model with a divisive normalization mechanism can explain
this feature of the data.

However, this means that we cannot use the observed response to
monocular random dot patterns in Eq. E7, given that the quantities L
and R in Eq. E7 need to be the responses to left and right monocular
random-dot stimulation before any contrast normalization, and we do
not have access to this experimentally. We therefore recast Eq. E7
using the response to binocularly uncorrelated stimuli U. The energy
model (before response normalization) states that U � L � R. It then
follows from (L � R)2 	 0 that U2 	 4LR. Thus

LSF	 f 
RSF	 f 


LASFRASF

	
�D̃( f )�2

U2 (E9)

The right-hand side involves the ratio of responses to two binocular
stimuli and is thus unaffected by a normalizing mechanism that boosts
monocular responses. In fact we also examined the inequality of Eq.
E7, which gave similar results.

In summary, for a significantly generalized version of the energy
model, we have derived a useful upper limit on the normalized power
spectrum of the disparity-tuning curve. The normalized disparity
power at any frequency cannot exceed the normalized response to
monocular drifting gratings at that frequency. This holds for a model
of the same form as that proposed by Ohzawa et al. (1990), but
generalized to allow any number of subunits that may differ in their
spatial frequency tuning, in the phase of their receptive fields, in the
position of their receptive fields on the retina, and in the position and
phase disparity between left and right receptive fields. The only
property that is not allowed to vary between subunits is the orientation
of the receptive fields and their extent along this axis. The upper limit
on disparity power holds even in the presence of response normaliza-
tion mechanisms that scale the responses to grating stimuli relative to
the responses to random-dot patterns, or which scale the responses to
monocular stimuli relative to the responses to binocular stimuli.
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A P P E N D I X F : E F F E C T O F S T I M U L U S

M I S A L I G N M E N T

Here we examine the consequences of using a stimulus orientation
that does not exactly match the orientation of the receptive field under
study. The results apply to the model of Eq. D5, C � ¥j�1

n [Pos(vLj �
vRj)]

2, restricted to the case where all receptive fields are narrow-band
Gabor functions with identical spatial frequency and orientation tun-
ing (i.e., differing only in phase and position on the retina), and where
the position and phase disparity between left and right receptive fields
is the same for all subunits. This is the form of the energy model used
by all previous investigators that we are aware of (e.g., Fleet et al.
1996; Ohzawa et al. 1990; 1997; Qian and Zhu 1997). Because, for
Gabors with a spatial frequency bandwidth of less than about 2
octaves, the Fourier power spectrum is independent of position or
phase, Eq. D6 simplifies to

�D̃	 fx 
� � I RD
2 �2n�

��

��

dfy��̃C	 fx, fy
�2 (F1)

whereas the left and right monocular spatial frequency tuning curves
are identical and equal to

LSF	 fx
 � RSF	 fx
 �
I g

2

4
n��̃C	 fx, 0
�2 (F2)

As before, the equations are for disparities along the x-axis, and for
the SFTCs obtained with gratings oriented parallel to the y-axis.
However, we now allow for the possibility that the y-axis is not
aligned along the true preferred orientation of the cell—for instance,
because of experimental error in assessing this true orientation. The
power spectrum ��̃C(fx, fy)�

2 of this cell is shown in Fig. F1. The SFTC
(Eq. F2) is simply a slice through this surface, along the fx axis. The

Fourier spectrum of the disparity-tuning curve, on the other hand, is
given by the line integral of this surface along lines parallel to the
y-axis (Eq. F1). Referring to Fig. F1, and using the symmetry of the
Gabor power spectrum, it is apparent that the peak of the disparity
power spectrum will occur at the horizontal frequency f0 cos 
0, where
f0 and 
0 are the spatial frequency and orientation of the Gabor,
respectively. In contrast, it can be shown that the peak of the mon-
ocular SFTC will occur at

fx �
��

2

���
2 cos2 
0 � ��

2 sin2 
0�
f0 cos 
0 (F3)

where �� and �� describe the extent of the Gabor, respectively,
parallel and orthogonal to its preferred orientation. It follows that,
provided �� � ��, misaligning the stimuli will cause the measured
monocular SFTCs to peak at a lower frequency than the power
spectrum of the disparity-tuning curve. Thus, at least for the class of
model considered here, such misalignment cannot be responsible for
the observation that the disparity frequency is usually lower than the
preferred monocular spatial frequency.

A P P E N D I X G : G L O S S A R Y O F S Y M B O L S U S E D I N

T H E A P P E N D I C E S

C firing rate of model cell (e.g., Eq. C1)
� disparity along an axis orthogonal to recep-

tive field orientation
D(�) disparity-modulated component of response

to binocular random-dot patterns (Eq. D1)
D̃( f ) Fourier amplitude spectrum of the disparity-

modulated component of the disparity
tuning curve (Eq. D4)

FIG. F1. Contour plot of Fourier power spectrum for Gabor function oriented at 18° to vertical, tuned to frequency 0.2 cpd,
spatial frequency bandwidth 1.5 octaves, and orientation bandwidth 30° (both full-width at half-maximum of power spectrum).
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f spatial frequency (cycles per degree)
fg spatial frequency of grating stimulus (Eq.

C3)
I(x, y) image luminance, relative to mean, as a

function of retinal position (e.g., Eq. C3)
IL(x, y), IR(x, y) left and right retinal images
Ig, IRD maximum luminance of grating/random-dot

pattern relative to the mean screen lumi-
nance (cf. Eqs. C3 and D2)

j index used to enumerate subunits feeding
into a cell (Eq. D5)

L, R mean response to monocular random-dot
patterns in left, right eye (Eq. D7)

LSF( f ), RSF( f ) monocular spatial frequency tuning curve
(i.e., response as a function of frequency
to drifting gratings in left, right eyes; Eq.
E1)

LASF, RASF area under monocular SFTCs (Eq. E2)
Pos half-wave rectification: Pos(x) � x if x � 0,

�0 otherwise
�(x, y) receptive field function
�̃( f̃, 
̃) Fourier transform of receptive field (polar

coordinates; f̃, 
̃ are the spatial frequency
and orientation of each Fourier compo-
nent)

�̃C( f̃x, f̃y) Fourier transform of receptive field (Carte-
sian coordinates; f̃x, f̃y are the components
of spatial frequency orthogonal and par-
allel to the preferred orientation)

�̃x( f̃x), �̃y( f̃y) Fourier transform of one-dimensional recep-
tive field profiles along axes orthogonal
and parallel to the preferred orientation


g orientation of grating stimulus relative to the
preferred orientation of the cell (Eq. C3)

U mean response to binocularly uncorrelated
random-dot patterns (Eq. E8)

vL, vR inner product (convolution) of retinal image
with receptive field in left eye, right eye
(Eq. C2)

x, y retinal coordinates, in a frame where the
y-axis is the preferred orientation of the
cell
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