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Stereopsis has traditionally been considered a complex visual ability, restricted
to large-brained animals. The discovery in the 1980s that insects, too, have
stereopsis, therefore, challenged theories of stereopsis. How can such simple
brains see in three dimensions? A likely answer is that insect stereopsis has
evolved to produce simple behaviour, such as orienting towards the closer
of two objects or triggering a strike when prey comes within range. Scientific
thinking about stereopsis has been unduly anthropomorphic, for example
assuming that stereopsis must require binocular fusion or a solution of the
stereo correspondence problem. In fact, useful behaviour can be produced
with very basic stereoscopic algorithms which make no attempt to achieve
fusion or correspondence, or to produce even a coarse map of depth across
the visual field. This may explain why some aspects of insect stereopsis
seem poorly designed from an engineering point of view: for example,
paying no attention to whether interocular contrast or velocities match. Such
algorithms demonstrably work well enough in practice for their species, and
may prove useful in particular autonomous applications.

This article is part of a discussion meeting issue ‘New approaches to 3D
vision’.
1. Introduction
Gaining information about the 3D structure of the world from two-dimensional
retinal images is a major challenge for any visual system. It has long been
appreciated that our binocular vision aids with this task [1–4], but it was gener-
ally assumed that this occurred through sensing one’s vergence: the rotation
made by the two eyes so that both are fixating a given object. It was not until
1838, when Wheatstone published a description of his stereoscope in a previous
volume of this publication [5], that scientists realized depth perception can be
enhanced by comparing the slightly different views of the same object in the
two eyes, independent of any additional information arising from knowledge
of eye posture. This ability is known as stereoscopic vision or stereopsis [5].

Perhaps because it was recognized so late, our thinking about stereoscopic
vision seems to have been more than usually anthropocentric: ‘heavily influ-
enced by the complex neuronal principles realized in higher vertebrates’ [6].
A common early view was that stereopsis was indeed ‘confined solely to
man and to a few of the higher animals in whom the eyes are placed side by
side’ [7]. This assumed link between stereopsis, front-facing eyes and a preda-
tory lifestyle has been persistent and influential, though there is little evidence
to support it [8]. Front-facing eyes do indeed seem to be associated with noctur-
nal visual predators [9,10], but stereopsis is far more widespread, while on
theoretical grounds, lateral eyes are arguably better for stereopsis, since a
wide baseline improves range and precision. A more principled early assump-
tion was that stereopsis must be restricted to mammals with a partial
decussation of the optic nerve, since information from both eyes is then avail-
able to each cortical hemisphere [11]. On this basis, the ophthalmologist
Edward Treacher Collins inferred stereopsis in the horse long before that was
demonstrated empirically [12], suggesting that ‘binocular stereoscopic vision
… must be of the greatest assistance to it in the estimation of size and distance
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in jumping’ [13]. Many of the selective advantages suggested
for stereopsis in humans would be useful to other species:
manual dexterity and tool use [11,13], arboreal locomotion
[13,14], bipedal locomotion [15], accurate perception of the
ground plane [15–17] and/or visual predation [9,10,13],
whether by enabling the precise judgement of distances
and/or by breaking camouflage [18]. Indeed, we now know
that as well as existing in lateral-eyed mammals such as
horses, sheep and mice [12,19–22], stereopsis is also found
in many animals with a full initial decussation, such as
barn owls, falcons and toads [23–25]. Most recently, it has
now also been demonstrated in two widely different invert-
ebrate taxa: insects and cephalopods [26–28]. Thus,
stereopsis appears to be extremely widespread in the
animal kingdom. Its distribution indicates that it must have
evolved independently multiple times, suggesting that it is
valuable in a wide range of ecological niches [8,29,30].

Biological forms of depth perception contrast strikingly
with current machine approaches. In current mobile auton-
omous devices, depth perception is most often achieved by
teleceptive active sensing, where energy generated by the
device is transmitted into the environment and then received
back without contact, for example using structured light,
LIDAR, radar or ultrasound. However, in the animal kingdom,
passive sensing using ambient light is far more common. This
is clearly not because organic systems are incapable of evol-
ving teleceptive active sensing. Active sensing using
ultrasound or electrolocation has evolved in several taxa
[31,32], but only where vision is not usable due to turbid
water (e.g. marine mammals, fish) or lack of light (e.g. bats).
This suggests that in biological systems, adequate distance
information can be provided by passive vision, avoiding the
higher energy costs of active sensing. Clearly, it would be
highly beneficial to mobile autonomous devices, especially
those where power consumption is a key constraint, to be
able to replicate the depth sensing performance of biological
visual systems, and this must include stereopsis.

Most current machine stereo algorithms are modelled more
or less explicitly on human stereo vision. Even the benchmarks
developed to evaluate them, such as the accuracy of a depth
map extracted from a single pair of stereo-images [33], are
inspired by human vision. Praying mantis stereopsis, for
example, detects the disparity between regions of the scene
where things are changing [34,35], and thus would fail such
a benchmark completely. Human stereopsis gives detailed
and highly precise information about relative depth in the cen-
tral 15° or so of our visual field; it can reveal objects which are
perfectly camouflaged in the monocular image by detecting
depth discontinuities at their edges [18]; and it can support
complex percepts such as multiple layers of transparency
[36]. This highly sophisticated form of stereopsis is challenging
and computationally expensive to achieve.

Given the recent increase in knowledge of non-primate
stereopsis, it is timely to seek inspiration from forms of
stereopsis very different from our own. In this paper, I
want to use recent knowledge about insect stereopsis to chal-
lenge the idea that stereopsis requires sophisticated
algorithms which derive a projective transformation between
image-points in left and right eyes and use this to deduce a
depth map across the visual field. Evolutionarily, all that is
required is useful behaviour. So, there may be more efficient
mappings from retinal images to useful behaviour, which do
not require the computation of disparity or depth. As
discussed in the introduction to this volume, there is a long
tradition of such an ‘active vision’ approach, aiming for a
‘direct coupling of perception and action, without an explicit
3D intermediary’ [37]. But in the context of stereopsis, ‘with-
out an explicit 3D intermediary’ has tended to mean making
inferences about scene properties (e.g. surface slant) directly
from disparity [38–40]. Little attention has been paid to an
even more basic approach, where even disparity is not
explicitly encoded.

In this paper, I will begin with a fairly detailed review of
the conventional approach, in which disparity is encoded in
the activity of a population of disparity sensors, each tuned
to a particular disparity and visual direction. I will discuss
the challenges of achieving stereo correspondence and bin-
ocular fusion, distinguishing between disparity sensors
which achieve ideal, strong, weak or no correspondence. I
will consider how local mechanisms have to interact across
wider regions of the visual field in order to achieve reliable
correspondence, and briefly review how this problem is
approached in machine stereo algorithms and what we
know about how it happens in the human brain. In the
second part of this paper, I will contrast this with two differ-
ent forms of stereopsis inspired by insect vision. One is
conceptually similar to previous proposals [6,41–43] regard-
ing praying mantis predatory strikes, which was tested for
the first time in our recent paper [44]. The other was pro-
posed recently as a simple way to include stereo
information when selecting a target [8], and is tested for the
first time in this paper. Neither of these algorithms achieves
stereo correspondence or binocular fusion of multiple objects,
or even a computation of binocular disparity. The algorithms
do exploit disparity, but they do not estimate disparity uncon-
founded with other stimulus dimensions. Nevertheless,
simulation results suggest that they suffice to produce useful
stereoscopic behaviour, such as preferentially orienting towards
the nearer of two competing targets. Both algorithms are
inspired by the praying mantis and replicate key aspects of its
behaviour, justifying the claim that the behaviour is indeed
useful. Both algorithms would need further modifications to
fully account for mantis behaviour. The aim here is not so
much to provide a complete account of praying mantis vision,
as to demonstrate that these very basic, non-correspondence
stereo algorithms suffice for useful behaviour.
2. Stereopsis and correspondence
Figure 1a illustrates the basic geometry of binocular stereop-
sis, while figure 1b introduces a convenient remapping used
throughout this paper, where the visual directions in each
eye are represented as Cartesian coordinates. The point
marked with the orange star projects to azimuth αL* in the
left eye and αR* in the right. This is shown in the two-dimen-
sional retinal images, figure 1c; cross-sections through these
retinal images are also shown in figure 1b, rotated to align
with the axes there. On the main axes of figure 1b, the star
is drawn at a position corresponding to αL* on the red αL
axis and αR* on the green αR axis. Its visual direction can
be defined as the average of the two, αH* = (αR* + αL*)/2. As
the star is close to the observer, the angle αR* is substantially
more positive than αL*, so it has a large disparity δ* = (αR*−
αL*). The horizontal blue line in figure 1b marks all locations
with this disparity.
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Figure 1. Geometry of stereopsis in headcentric coordinates, appropriate for fixed eyes. (a) A horizontal cross-section through the eyes and the space in front of the
animal, at zero elevation. The purple shaded region shows the binocular overlap, i.e. the region of space visible to both eyes. This is triangular if the field of view for
each eye extends further temporally than nasally. The orange star marks an example point on an example surface. The azimuthal angles αR, αL indicate how far
each location is from the direction ‘straight ahead’ in each eye. We define the headcentric azimuth to be the average of these: αH = (αR + αL)/2, while the disparity
is their difference: αR− αL. The angles marked with * show the value of these angles for the point marked with the star. (b) The same space replotted in terms of
the angular location, so that the Cartesian axes are the azimuth in each eye. The red, green arrows mark the axes of αL, αR, respectively. The vertical axis is
headcentric disparity δ = αR− αL, and the horizontal axis is proportional to headcentric azimuth or visual direction. This runs right to left as a consequence
of our coordinate system: we use a right-handed coordinate system in which the Z-axis points out in front of the animal and Y points vertically upwards. Positive
azimuth is an anti-clockwise rotation about the Y-axis. In this coordinate system, points within the binocular overlap have positive disparity: larger for nearer objects,
and falling to zero for points at infinity. The dashed circles represent the spatial receptive fields of sensors which are tuned both to disparity, and to visual direction
(azimuth and, in a 3D model, elevation). (c) Two-dimensional retinal images (i.e. showing both azimuth and elevation). The star is assumed to be at zero elevation
in both eyes, and its azimuth in each eye is shown.
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Figure 1 is appropriate for an animal whose eyes are fixed
in place on the head, like an insect, where vergence cannot con-
tribute to depth perception [45]. The area shaded purple
represents the binocular overlap. Each location in this region
of space, e.g. the one marked by the orange star, corresponds
to a different pair of visual directions in each eye: (αR,αL).
Thus, if we can identify pairs of retinal locations which are
viewing the same object, we can derive that object’s location
in the 3D space surrounding the animal.

The challenge, of course, is identifying pairs of retinal
locations which are viewing the same object. This correspon-
dence problem is a major area of research in both computer
vision and visual neuroscience [33,46–49], to the extent that
the distinguished computer scientist Takeo Kanade is said
to have identified the three most important problems in
computer vision as ‘correspondence, correspondence, corre-
spondence!’ [50]. Stereo correspondence algorithms aim to,
for a given point in the left eye, either find the matching
point in the right or classify the left-eye point as unmatched,
e.g. due to monocular occlusions. This produces a disparity
map across the scene.
(a) Local disparity sensors and different types of local
correspondence

The first step of essentially all stereo correspondence algor-
ithms is to establish some local cost function, which
measures how well the left and right images I match within
a small window W around the points under consideration.
The small dashed circles in figure 1b each represent one
such window, each centred on a particular pair of locations
(αR,αL) in right, left eyes. I will use the term ‘local disparity
sensor’ to refer to a window plus some way of assessing
the degree of correspondence between image-patches, i.e.
how well the left and right image-patches match. That is, a
local disparity sensor performs some function combining
the left and right images and windows, so as to produce a
scalar value for a given image-pair.

Bioinspired and machine stereo algorithms differ in how
they assess correspondence. In elucidating these differences,
it will be useful to categorize local disparity sensors as
implementing ideal, strong, weak or no correspondence,
depending on how sensitive their output is to the degree of
match between left and right image-patches.
(i) Ideal local correspondence
I will define a disparity sensor doing ideal correspondence as
one that produces a pure measure of how well the two image-
patches match. All matching image-patches elicit the maxi-
mum response, unconfounded by other image properties
such as contrast or whether the patch contains particular
features. Non-matching image-patches elicit a lower response.
(ii) Strong local correspondence
A disparity sensor doing strong correspondence is sensitive to
the degree of match, but this is confounded with other prop-
erties. Unlike an ideal disparity sensor, different perfectly
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matching images may not elicit the same response. But mis-
matching image-patches elicit a smaller response even if
they are intrinsically equally attractive. So for example a
sensor doing strong correspondence may give a stronger
response when viewing a face in both eyes, than when view-
ing a house in both eyes. But even if it happens to respond
equally well to a house in both eyes as to a face in both
eyes, to qualify as doing strong correspondence, it must
respond less well when presented with a house in one eye
and a face in the other.

(iii) Weak local correspondence
Now consider a disparity sensor where this is not the case: if
a binocular house and binocular face give the same response,
then a dichoptic house/face will also give this same response.
Such a disparity sensor clearly does not qualify as performing
strong correspondence. However, it may still qualify as doing
weak correspondence if it responds more on average to match-
ing images, when one considers matching versus non-
matching pairs drawn from the ensemble of all ecologically
relevant images.

(iv) No local correspondence
A disparity sensor where there is no difference even on aver-
age between matching and non-matching images does not
qualify as doing correspondence.

Having defined these terms, let us see how the different
types of disparity sensor produce different types of corre-
spondence. Let us represent both images and windows by
vectors: IL,R for the images in the two eyes and WL,R the
window functions. The machine stereo literature generally
uses binary windows, i.e. the vector elements of W are 1
inside the window and 0 elsewhere, and element-wise (Hada-
mard) multiplication of the image with the window, which I
denote W�I. Common local cost functions are the sum of
absolute differences, �jW�

LIL �W�
RIRj, sum of squared differ-

ences, �jW�
LIL �W�

RIRj2 and normalized correlation,
(W�

LIL):(W
�
RIR)=jW�

LILjjW�
RIRj [51] (the minus signs in front

of the first two metrics are just to ensure that all three metrics
measure goodness of match, not badness). These can be
viewed as the output of different types of local disparity
sensor. The negative sum of absolute or squared differences
are zero for all matching image-patches and less than 0 for
non-matching, while normalized cross-correlation is 1 for
all matching image-patches and less than 1 for non-matching.
Thus, all three satisfy the criteria for ideal correspondence: all
matching image-patches elicit the maximum response,
unconfounded by contrast, etc., while non-matching image-
patches elicit a lower response. Thus, machine stereo is
based overwhelmingly on ideal local correspondence.

In current models of biological stereopsis, the disparity
sensor is a binocular neuron and the window functions
WL,R represent its left and right receptive field functions.
These are not binary but are usually Gabor-like functions
including both positive and negative values. The response
of the neuron is assumed to be some function of the inner
product of the image with the window function, W:I.

The simplest bioinspired models have considered sensors
that do not implement correspondence at all, such as purely
linear binocular mechanisms computing (WL:IL +WR:IR)
[52–54]. A sensor like this has a preferred disparity defined
by the monocular receptive fields, and it is sensitive to the
disparity of an isolated target. However, it does not show
strong correspondence because in general, there are multiple
images which elicit the same monocular responses, and the
sensor responds equally to any pairs of these, whether or
not they match. Furthermore, it does not even show weak
correspondence because, as shown for a toy example in
figure 2a, on average it responds the same for matching as
for non-matching images. This means it cannot show dis-
parity tuning in cyclopean stimuli like dynamic random-dot
patterns, which effectively compute the mean response to
many images with identical monocular statistics but different
degrees of binocular match. Even if we make the monocular
computation more general, ( fL(IL)þ fR(IR)) where the func-
tions fL and fR are may be nonlinear, the same problem
applies.

However, adding an output nonlinearity after binocular
combination can enable such a sensor to perform weak corre-
spondence. The stereo energy model, introduced to describe
neurons in cat visual cortex [55], achieves this. It is built
from binocular simple cells that compute jWL:IL +WR:IRj2.
The squaring output nonlinearity makes the binocular
simple cell sensitive to correspondence on average, produ-
cing disparity tuning with dynamic random-dot patterns.
Figure 2b provides a simple example to give intuition about
why this occurs; see appendix D of [56] for a formal proof
that this model produces disparity tuning (and that the dis-
parity tuning curve obtained with dynamic noise patterns
is approximately proportional to the cross-correlation of the
receptive field functions). Other output nonlinearities, for
example thresholding, produce a similar response. However,
the energy model simple cell still shows only weak corre-
spondence, because the cell’s response is unchanged by
swapping one monocular image for a different one which
produces the same monocular activation even though it
does not match binocularly.

Combining several such energy-model simple cells pro-
duces an energy-model complex cell, which starts to move
towards strong correspondence. Intuitively, this is because
as more simple cells are added, it becomes progressively
more challenging to swap in a different monocular image
which produces the same activation in all units. The large
response of V1 neurons to their preferred disparity [57–59]
and their lack of response towards ‘anti-correlated’ stimuli
with artificially low matches [60] has recently been modelled
by a convolution model combining very many simple cells
[61]. Repeated iterations of this process may also explain
the properties of neurons in higher areas such as IT, where
the response to anti-correlated stimuli is nearly abolished
[62]. However, no biological neurons have been yet identified
that implement ideal correspondence.

(b) Perceiving depth via a population of disparity
sensors

In machine algorithms, there is typically no fixed set of dis-
parity sensors. The disparity between left and right
windows is usually a continuous variable input to an ideal
correspondence function, which is adjusted until the best
match is found. In adaptive-window machine algorithms,
the size of the matching windows is also varied in response
to the scene structure, aiming to make the windows large
enough to avoid ambiguity in, for example, densely textured



1 2 3

1 2 3 4

2W
R

∙I
R

WL∙IL WL∙IL

3 4 5

3 4 5 6

WL∙IL + WR∙IR WL∙IL + WR∙IR

linear unit:
same average response for matching

as for non-matching
no correspondence

2

4

6

matching:
mean = 4

non-matching:
mean = 4

1 2 3

2

1 4 9 16

2 9 16 25

3 16 25 36

energy unit:
greater average response for

matching than for non-matching
weak correspondence

matching:
mean = 18.7

non-matching:
mean = 16.7

3

4 5

3 4

5 9

16 25

9 16

25

4

16

36

2

(a) (b)

Figure 2. Toy example to show intuitively why a purely linear sensor (a) does not do correspondence, while a squaring output nonlinearity (b) converts it to doing
weak correspondence. This is for a highly reduced stimulus ensemble where there are only three possible values of the monocular inner products: 1, 2, 3, which for
simplicity we will assume to have equal probability. Neither of these units does ideal correspondence, because they respond more to non-matching images for which
the inner products are 2 and 3 than to matching images for which the inner products are both 1. The linear unit is completely insensitive to correspondence.
However, the energy unit shows weak correspondence, in that on average across all images, matching images evoke a stronger response than non-matching
images. Note that a threshold can have a similar effect. For example, if one thresholded the linear unit such that responses less than 4 are set to 0, the
mean response to non-matching images would be <{0,4,5} > = 3, while that to matching images would be <{0,4,6}> = 3.3. Units which respond differently
to matching than to non-matching patterns show tuning to image disparity, since image-patches whose disparity equals that of the unit’s receptive fields match,
while image-patches with different disparity do not.
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surfaces, while keeping them small enough that the disparity
is approximately constant over a window [63,64].

In biological models, it is usually assumed that local dis-
parity sensors correspond to a population of disparity-tuned
neurons, like that represented by dashed circles in figure 1b.
For each visual direction, there are many sensors, each
tuned to a different disparity. The available sensor disparities
are thus discrete, depending on the population properties.
Window (i.e. receptive field) sizes may vary with lumi-
nance/contrast adaptation state, but there does not seem to
be adaptive-window variation depending on scene disparity.
The estimated scene disparity at each direction is encoded by
the preferred disparity of the most active sensor. As a conse-
quence, the resolution of primate stereopsis is low, limited by
the available receptive field sizes [65–68].

The vision scientist Walls [69] argued that binocular
single vision is essential and intimately linked to stereopsis:
any animal with binocularity must ‘see the object singly
with two separate eyes [i.e.] they must have fusion of the
two images of the object’ (requiring correspondence), and
‘have parallactic localization of the object in space’, since
‘[Animals] would gain absolutely nothing from binocularity
if they saw the object diplopically’. I shall argue below that
this assumption is unwarranted.

However, it is worth noting that even a population of bio-
logical disparity sensors, which as we have seen do not achieve
ideal correspondence, still implements Walls’ binocular single
vision in sufficiently simple situations. For example, the object
in figure 3a appears to the right of the midline in the left eye
and to the left in the right eye. However, the disparity sensor
it activates has its cyclopean location on the midline. Thus,
the brain can successfully perceive a single object straight
ahead, instead of two objects on either side of the midline.

Figure 3c,d shows a slightly more complex situation in
which two objects are present, represented by a black
square and a white pentagon. Let us assume that the
particular disparity sensors under consideration have weak
correspondence and are activated when both receptive fields
see the black square or when both see the white pentagon,
but not when one eye sees the black square and one eye sees
the white pentagon. (As a concrete example, suppose that in
both eyes W.I =−2 for the black square and +2 for the white
pentagon, and that the disparity sensors compute
jWL:IL þWR:IRj2). In this case, as shown in figure 3d, only
the two disparity sensors encoding the spatial locations of
the two objects become active: both at the same depth, one
on either side of the midline. Thus for this example also, the
population successfully implements both binocular fusion
and depth perception. However, this depends critically on suc-
cessful local correspondence—that is, that only the two sensors
corresponding to the location of the physical object become
active. For biological sensors, this is certainly not guaranteed.
(c) Local versus global correspondence
If the disparity sensors are not able to distinguish between
the two objects, four disparity sensors would become active
instead of two, as shown in figure 4a,b, and so four objects
would presumably be perceived—a form of double vision
which Walls argued [69] would be devastating to the organ-
ism. To some extent, this situation can be avoided by more
sophisticated local correspondence. However, in complex
real-life scenes, there are often many small patches which
are close to identical on the retina though created by different
objects. In this situation, even if the local correspondence is
ideal, many disparity sensors would become active, as in
figure 4a,b. This is a real problem for both machine and
biological stereopsis.

To successfully achieve correspondence, fusion and
binocular single vision, we can impose various constraints
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visual fields extend further medially than temporally, the binocular overlap region (shaded purple) is a truncated diamond in the Cartesian representation.
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which take account of the wider pattern of matches across
several different sensors. For example, Marr & Poggio [72]
postulated excitatory connections between sensors tuned to
the same disparity (horizontal yellow lines in figure 4b,c),
and inhibitory connections between sensors with receptive
fields in the same location in one eye (oblique blue lines).
This builds in a preference for smoothness (gradual change
in disparity with azimuth) and uniqueness (each retinal
location is assigned only one disparity). The influential early
stereo algorithm PMF [70] used a disparity gradient limit to
achieve a similar result, while a recent stereo vision system
using event-based sensing and spike-based neuromorphic
hardware [71] has each disparity sensor receiving feed-for-
ward excitation from a ‘coincidence neuron’ tuned to the
sensor disparity, but feed-forward inhibitory input from all
other coincidence neurons tuned to the same cyclopean pos-
ition (vertical blue lines in figure 4b,c). In machine stereo
algorithms, this is usually achieved in an energy-minimization
framework [33,51]. I will refer to all such interactions as imple-
menting ‘global correspondence’, because they occur over a
wider area than the window used by the local disparity
sensor, although in biological systems ‘long-range’ might be
more accurate than ‘global’, since the interactions may not
extend over the whole visual field. These ‘global’ interactions
ensure that the initial activation of figure 4b results in the
final activity of figure 4c: the pair of local disparity sensors
which reciprocally excite each other remain active, while the
pair they inhibit are suppressed.

(d) Complications of mobile eyes
So far, this discussion of biological stereopsis has not
addressed a major complication affecting mobile-eyed ani-
mals like ourselves: the binocular overlap region moves in
space. To reflect this, we need to modify figure 1 as shown
in figure 5, replacing headcentric azimuth α with retinotopic
azimuth ϕ, measured relative to the fovea. The binocular
overlap region is now shaded in two different colours, with
the pinker shade representing positive retinal disparities
(closer than the geometrical horopter) and the bluer shade
representing negative. With this modification, we can now
consider retinotopic disparity sensors in exactly the same
way as we have so far considered headcentric disparity sen-
sors. The mapping from retinal disparity to location in
space is now more complex, requiring a knowledge of eye
posture as well as retinal location, but this will not affect
our discussion of correspondence.

(e) Primate stereopsis
Perhaps as a consequence of our mobile eyes, humans have at
least two forms of stereoscopic vision, variously described as
contour/coarse/transient/qualitative/headcentric, versus
cyclopean/fine/sustained/quantitative/retinotopic [73–80].
The coarse, contour form of stereopsis operates over a wide
range of disparities, but requires obviously identifiable mon-
ocular stimuli, such as a vertical bar in each eye. It may exist
predominantly to enable vergence eye movements, ensuring
both eyes fixate on the same object and thus enabling our
fine, cyclopean stereopsis.

This is required because cyclopean stereopsis works only
for a small range of disparities, of order a few degrees,
around the central 20° or so of the visual field. This limit
presumably reflects the computational cost of such smart
stereopsis, which makes it unfeasible to implement it across
the entire binocular overlap region. Within its limited
range, cyclopean stereopsis operates in arbitrary images,
including those in which there are no recognizable monocu-
lar images. Monocular occlusions are readily recognized
and incorporated into the depth percept. We are poor at
reconstructing metric depth from purely stereoscopic infor-
mation [39,81], apparently because our visual system does
not extract a precise estimate of eye posture, as would be
needed to recover metric depth [82–84]. We do however
seem to acquire a dense disparity map across much of the
central visual field, with extremely high resolution in depth,
although relatively low resolution in visual direction [65–68].

Thus for a more accurate picture of primate cyclopean
stereopsis, we should replace the population of disparity sen-
sors in figure 1b with something closer to that shown in
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figure 6a. The disparity sensor windows are not uniform, as
sketched in figure 1b, but are smaller and more numerous
closer to fixation and become larger and sparser further
away, making our depth perception less precise there
[46,85–87]. The windows are also now drawn as ellipses, to
indicate that the sensors are more narrowly tuned to disparity
than to direction [55,88].
( f ) Additional processing required for correspondence
For accurate stereo correspondence as in human cyclopean
stereopsis, the initial combination of left and right images
via local disparity sensors is just the beginning. We have
already discussed the need for global mechanisms
(figure 4c). Figure 7 shows the four main processing steps
widely recognized in current machine stereo algorithms
[33,51]. Similarly in primate stereopsis, an initial encoding
of disparity in primary visual cortex (V1) undergoes exten-
sive subsequent processing in further brain areas [46,48].
Our perception of depth is believed to reflect activity at the
end of this process, perhaps in inferotemporal cortex [62].
The processing seems to reduce the responses to false
matches (image-patches which are superficially similar but
do not in fact correspond to the same point in space), contains
specialized mechanisms for depth discontinuities, slant and
curvature, and presumably also identifies monocular occlu-
sions [89–94]. Similarly it seems clear that something like
the global interactions discussed above do occur, but not
exclusively within V1 itself [95]. For example, repeating pat-
terns like sinusoidal gratings offer exactly the same local
matches at disparities which are integer multiples of their
spatial period λ (figure 8). The response of V1 neurons
depends only on the local stimulus within the receptive
field [96]. The +1λ stimulus shown in figure 8a thus activates
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V1 neurons tuned not only to +1λ, but to other multiples of λ,
representing ‘ghost matches’ which are locally indistinguish-
able from real objects (figure 8b). However, humans (and
monkeys, [97]) perceive this stimulus at the unique disparity
indicated by its edges, +1λ, presumably reflecting activity in a
downstream area where the purely local activity of V1 has
been modified by more global processing (figure 8c). Intrigu-
ingly, the precision of depth judgements for such gratings
reflects the usual low sensitivity associated with the relatively
large disparity +1λ, rather than the high sensitivity found for
judgements at the horopter [98], suggesting that the visual
system is unable to exploit the activity of the high resolution,
zero disparity local sensors active in V1.
(g) Summary
In summary, then, despite important differences, primate
cyclopean stereoscopic vision contains many conceptual
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similarities to an engineered dense stereo computer algor-
ithm. Most importantly, at Marr’s highest ‘computational’
level [99], both aim to solve the correspondence problem so
as to achieve a map of disparity across a wide area of the
visual field. At the algorithmic level, in both cases this
begins with a computation of the match between local
patches of the left and right images, which is subsequently
refined to take into more global information from across the
image, apply constraints, identify occlusions, propagate dis-
parity across ambiguous regions and so on. This is a
challenging and computationally costly process. In compu-
ters, stereoscopic vision is famously computationally costly,
and much current effort is directed to ways of achieving it
in real-time on constrained resources [100]. In primate
brains, stereoscopic vision involves a complex network of
many different brain areas [46,48]. This complex and sophis-
ticated form of stereopsis has dominated research in the
computing, psychology and physiological literatures.
 oc.B

378:20210449
3. Stereopsis without correspondence
I now consider what can be achieved by much simpler forms
of stereopsis. Both these are inspired by praying mantis, the
only insect to date in which stereopsis has been proven, nota-
bly in a beautiful series of papers by Rossel [6,28,101–103].
The praying mantis is a visual ambush predator, capturing
prey with a ballistic strike of its spiky forearms. It uses
stereopsis to detect when a prey item is in range. Before
attacking, mantids make head saccades to fixate targets; in
the words of Michael Land, ‘it is this primate-like behaviour
that makes them seem so sinister.’ [104] These head saccades
also show sensitivity to stereoscopic distance [103].

Intriguingly, the different properties of stereo-guided
strikes and stereo-guided saccades suggest that these are con-
trolled by distinct neural populations [103]. Head saccades can
be triggered over a wide range of distances and eccentricities.
Monocular and binocular targets attract saccades at the same
rate, which could be taken as implying that binocular infor-
mation is not used. However, if binocular targets are near
enough to have different angles in the two eyes, the head sac-
cades towards the average position—apparently fusing the
locations [6]. Furthermore if there are two targets, equal in
angular size and attractiveness but at different distances, man-
tids are more likely to saccade towards the nearer one [102]. If
targets are artificially presented with a vertical disparity, man-
tids saccade towards the average vertical position, even if the
vertical disparity is large [102].

This behaviour is quite different from the stereoscopically
guided prey capture. There, strikes are extremely unlikely to
be made towards monocular stimuli [105,106]. Strikes are not
triggered towards stimuli with more than around 15° of ver-
tical disparity [102]. Strikes are triggered mainly for a small
range of distances and eccentricities: around 2–7 cm distance
and within 20° of the midline [28].

As Rossel noted, these different behaviours suggest that
mantids, like humans, possess at least two distinct forms of
stereopsis [103]. To stretch the analogy further, in both
species, one stereo system seems to be suitable for getting
the eyes into the right position (turning to fixate the target,
in the case of mantis saccades) and the other for subsequent
depth perception (releasing the strike).
In the next two sections, I will sketch out possible designs
for both systems. First, for the form of stereopsis guiding sac-
cades, I will use a population of binocular neurons
implementing ( fL(I)þ fL(J)). Each neuron is tuned to a par-
ticular visual direction (azimuth and elevation, since this is
a 3D model), and to a particular disparity. However, since
binocular combination is linear, these neurons do not
implement even weak correspondence, and since there is
only one neuron for each visual direction, they cannot
encode a map of disparity across the visual field, as in
figure 1b. Nevertheless, I will show that they can produce
the behavioural fusion and bias towards stereoscopically
nearer objects shown by mantids. Second, for triggering
strikes, I will use a single binocular neuron which does
implement weak local correspondence. Despite being the
only binocular neuron in the system, it can replicate effects
traditionally explained by global correspondence. Although
these systems were inspired by praying mantis stereopsis,
they are not intended to offer a compete account of mantis
stereopsis, but rather to demonstrate how apparently stupid
algorithms can suffice for useful stereoscopic behaviour.

(a) Stereoscopically guided head saccades
We first consider a stereoscopic system suitable for guiding
head saccades, ensuring that, in a situation where multiple
suitable targets are visible, mantids are more likely to fixate
the one that is nearest.

(i) A simple two-layer network
The basic idea behind thismodelwas described in a recent paper
[8] and is sketched in figure 6b. I argued that linear combination
of inputs from left and right eyes, followed by a winner-take-all
step, could produce useful stereoscopic behaviour, such as turn-
ing towards the nearer of two potential prey items. The key to
producing this behaviour was to have disparity-dependent
synaptic weights from the monocular inputs onto the binocular
neurons encoding direction. This toy model was two-dimen-
sional (only zero elevation was considered); it received
monocular input from eight locations in each eye, and chose
one of five possible directions within the binocular zone. I
showed (fig. 13 of [8]) that with hand-coded synaptic weights,
the model made sensible decisions in four example situations.

I now instantiate this model more rigorously in three dimen-
sions with synaptic weights learnt by training, and test it in a
wider range of situations. The stereoscopic network consists of
just two layers, the second fully connected to the first. In the
second layer, each unit represents the direction (azimuth and
elevation) of a head saccade. The saccade actually made corre-
sponds to the direction encoded by the maximally active unit.
In the first layer, each unit represents location (azimuth and
elevation) in one of the two eyes. The activity in the first layer
thus represents the result of earlier monocular processing
which has identified potential prey items, for example the
target-tracking algorithm described in [107]. This is not included
in the model since our purpose is to evaluate the stereoscopic
network. In this model, the output of the monocular stage is rep-
resented by bright target objects on a dark background, which
form the input to the stereoscopic network (figure 9).

The output layer is fully connected to the units in the input
layer. A head saccade is triggered in the direction encoded by
the maximally active output unit. If the most active output unit
is the one encoding zero, the head stays where it is.
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This simple two-layer network was trained on 100 000
example visual scenes, each containing four spherical objects.
For each scene, the ‘correct’ head-rotation was defined to be
the one which would fixate the nearest object. The diameter
of the objects was scaled with distance, such that they all sub-
tended 10° from the midpoint between the two eyes, forcing
the network to use disparity rather than angular size as a dis-
tance cue. Figure 10a–d shows the weights following training,
for two units in the output layer. The pseudocolour rep-
resents weights into the chosen unit from input units
representing left (AB) or right (CD) retina. The weights are
mainly zero, except in the vicinity of the direction encoded
by the output unit (black cross), where there is a yellow
smudge representing a region of excitatory weights. Notably,
this excitatory region is offset in the two eyes. This is made
clearer in figure 10e,f, which shows the total weight,
summed over elevation, as a function of retinal azimuth; the
black line represents the headcentric azimuth encoded by
the output unit. In each case, there is strong excitation from
the left-eye input units when αL< αH, and weaker inhibition
when αL > αH; whereas there is strong excitation from the
right-eye input units when αR > αH, and weaker inhibition
when αR < αH. This matches the geometry shown in figure 1:
for nearby objects, αL < αH < αR. The vertical structure seen in
the second example, figure 10b,d,f, reflects another feature of
the geometry: that eccentric nearby objects project to different
elevation-latitudes on the two retinae, and thus the retinal dis-
parity has a non-zero vertical component in our chosen
coordinate system [108]. (This natural or epipolar retinal verti-
cal disparity must not be confused with non-epipolar vertical
disparity artificially applied to the stimulus, as in [102].)

Thus, the network has learnt a pattern of disparity-depen-
dent synaptic weights similar to those hand-coded in the
earlier toy model (cf. fig. 12 of [8]). The disparity-dependent
weights seen in figure 10 mean that a nearby object, with
αL < αH < αH, will generally excite the relevant output unit
more strongly than a distant object with the same value of
αH. A nearby object can produce strong excitation from both
retinae, whereas a distant object of the same size will produce
weaker excitation and some inhibition as well. We now examine
how well this enables the network to perform in practice.
(ii) The network has learnt binocular fusion and a preference for
nearer objects

Figure 11b shows results of a simulated experiment designed
to mimic work by Rossel [103] which showed that mantids
preferentially turn to fixate the nearer of two objects with
identical eccentricity and angular size (figure 11a). Even
though the objects are closer together in the simulation (4
and 8 cm from the head, rather than 4 and 14 cm), the
model shows much stronger preference for the nearer object
than the mantis, with virtually all saccades directed towards
the nearer object. Note that the model also shows the same
behavioural binocular fusion as the mantis. The centre of
the nearer object projects to αL =−22° and αR =−8°, yet
head saccades are made to αH =−15° ± 1.6° (mean ± s.d.),
i.e. towards the cyclopean location.

Figure 12 quantifies performance across a range of such
experiments, with targets again at ±15° azimuth but differing
in size and distance. In figure 12a, the targets always both
subtend 10°, but differ in distance. A ‘correct’ choice is
defined as a saccade in the azimuthal direction of the
nearer object (so, leftwards for points above the identity
line, where the left target is closer). The model chooses the
correct locations almost always when the target distances
differ by more than 20% or so. Due to the particular pattern
of weights learnt, this model displays a slight bias to choose
the righthand target when the targets are both very close.

In figure 11b, the targets are fixed at 8 and 4 cm distance,
but the plot shows results for varying diameters and thus
angular sizes. When the nearer target subtends less than 6°,
it is ignored and the larger, further target is always—
wrongly—chosen (blue strip across bottom of panel). This
also happens when the nearer target is much smaller on the
retina: e.g. if the nearer target is 10° and the further target
is 25°, the larger, further target is always wrongly chosen.
However, the large expanse of yellow shows that the
system is fairly robust to such size-based errors: unless
the size difference is extreme, the system consistently picks
the nearer target even if this appears smaller on the retina.

(iii) Model versus mantis
This model was inspired by praying mantis head saccades,
but does not fully account for observations. For example, I
noted above that when shown a target with non-epipolar ver-
tical disparity, mantids saccade to the average of the vertical
monocular locations. The present network usually, instead,
chooses one of the two locations. This could suggest that
the saccade direction represents the vector average of activity
in the output layer, not its peak; separate winner-take-all
steps could occur to select a target in each eye individually,
though this would still need to be sensitive to disparity (i.e.
to the choice of targets in the other eye) in order to produce
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the observed stereoscopic sensitivity. Thus, the mantis
network is likely more complex than this simple model.

The point of this model is to provide an existence proof
that a simple two-layer stereoscopic network can produce
useful behaviour. To emphasize the extreme simplicity, I
made the units entirely linear, rather than building the
second layer from ReLU (rectified linear units), for example.
In this case, this does not change the network performance,
since the identity of the most active output unit would be
unchanged by setting units with negative activity to zero
(and since the inputs to the network are excitatory). How-
ever, it emphasizes that the binocular units in the output
layer are not implementing even weak correspondence.
The only nonlinearity occurs at the decoding level, where
the population is read out so as to produce a single
behavioural output.
(b) Stereoscopically guided striking behaviour
We now turn to the second form of mantis stereopsis: that
which triggers a strike when an object is in the catch range.
(i) A single disparity sensor
We recently showed that essentially all aspects of mantis
stereoscopic strikes could be accounted for by a model incor-
porating just a single disparity sensor [44], as sketched in
figure 6c. The model incorporates early monocular processing
with low-pass spatial filtering to represent the sparse omma-
tidial spacing, and high-pass temporal filtering followed by
rectification. This creates sensitivity to temporal change
regardless of sign, as appears to be the case for mantis
stereo [34,35]. The key features relating to stereopsis are illus-
trated in figure 13. A binocular neuron or ‘disparity sensor’
has a receptive field in each eye, positioned somewhat
nasally. The inputs to the binocular neuron from each eye
are given by the inner product of the receptive field functions
with the processed stimuli, after the early monocular filter-
ing. The receptive field functions have an excitatory-centre/
inhibitory-surround structure, as has been observed for
mantis binocular visual neurons [109,110]. This makes them
size-tuned: they respond best to stimuli which are large
enough to just cover the central excitatory region, without
extending into the inhibitory surround.
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Figure 12. Model’s preference to fixate near targets. Colour represents the proportion of trials on which the model made a saccade towards the nearer of two
targets. The two targets were to left and right of the animal, at azimuth ±15°. (a) Targets varied in distance as shown on the axes, but their physical size was
adjusted so that both targets always subtended the same angle (10°) on the retina. (b) The distances were fixed at 8 cm, 4 cm for left, right targets, respectively.
These plots were generated by file AssessPerformance.m. (Online version in colour.)
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This means that the optimal stimulus is an object of the
optimal angular size, straight ahead of the mantis at the dis-
tance corresponding to the disparity of the receptive fields
(smaller dashed circle in figure 13, in the lozenge-shaped
yellow region of space where points project to excitatory
regions in both eyes). This stimulus fully stimulates the excit-
atory region of both eyes’ receptive fields, without producing
any inhibition. By applying an expansive output nonlinearity,
such that doubling the monocular inputs more than doubles
the output of the binocular neuron, and using a threshold to
prevent any response to weak inputs, we can ensure that the
neuron responds only to near-optimal stimuli. For example,
we can set the threshold such that the neuron does not
respond to a stimulus visible in only one eye.

Figure 14, reproduced from [44], shows how a model
animal would respond to targets with a range of sizes and
distances, if its probability of striking at any moment is pro-
portional to the instantaneous activity of this simple
binocular neuron. The three dashed lines compare data
from real mantises. Remarkably, this very simple, single-
neuron model is able to reproduce the qualitative features
of real mantis behaviour. The most strikes are elicited for
stimuli of approximately 10° diameter, approximately
2.5 cm from the animal. The number of strikes falls off very
rapidly with changes in distance (halving or doubling the dis-
tance produces less than half the number of strikes), and less
rapidly with changes in size (halving or doubling the size
reduces the number but not by half). The model even repro-
duces the interaction between size and disparity: larger
angular sizes are preferred when stimuli are more distant
(the opposite direction from that which would produce a
constant preference for physical size, in centimetres). In the



binocular
neuron

left eye

right eye

Figure 13. Properties of a binocular ‘disparity sensor’ with centre/surround monocular receptive fields. Top-down view of an animal, showing left and right eyes. On
the left, we show one-dimensional cross-sections through the retinal receptive fields feeding into a binocular neuron, and on the right we project the receptive fields
out into the space in front of the animal. Red, green lines mark the centre of the monocular receptive fields in each eye. In each eye, yellow colour-codes a central
excitatory region and blue an inhibitory surround region. The monocular receptive fields are thus tuned to stimuli of a given angular size. In space, yellow regions are
those which project to the excitatory regions in both eyes, blue to inhibitory in both eyes, and green those which project to the excitatory region of one eye’s
receptive field and the inhibitory region of the other. The optimal stimulus is indicated by the smaller dashed circle: this object falls in the central excitatory region
in both eyes without stimulating any inhibitory region. The two larger dotted circles mark positions where two large objects could cause a ‘ghost match’ by
producing the same image in each eye as the optimal stimulus (as well as a second image due to the other object). However, because these objects produce
excitatory stimulation in only one eye, while inhibiting the other, they do not activate the binocular neuron. The dice and arrow leading from the binocular
neuron to an image of the mantis fore-arm indicates that activity in the binocular neuron controls the probability that the mantis strikes. (Online version in colour.)
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Figure 14. Size and disparity tuning of the model sketched in figure 13,
reproduced from [44] but correcting an error in the empirical results as
plotted in that publication. Solid lines show the mean number of strikes eli-
cited from the model animal by a moving target at the distance indicated by
the colour, and with the diameter indicated on the horizontal axis. Dashed
lines show corresponding empirical results with praying mantises [111]. In
the model, the mean number of strikes elicited by each trial is taken to
be proportional to the time-averaged activity of the binocular neuron.
(Online version in colour.)
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model, this occurs because of false matches made between
the leading and trailing edges of the moving target (see
[44] for details).

The model also reproduces mantis behaviour for stimuli
with vertical disparity. This non-epipolar disparity cannot
occur in real stimuli. Mantids strike as normal for stimuli
with a small amount of non-epipolar vertical disparity, but
cease responding once the vertical disparity exceeds around
15° [102]. Notably, this limiting vertical disparity is indepen-
dent of target diameter, i.e. it does not depend on the degree
of overlap between a target in the left eye and a target in the
right. The model reproduces this behaviour; the limiting
vertical disparity is set by the size of the receptive field
excitatory-centre, and is thus independent of the stimulus
diameter.
(ii) Global correspondence and the ‘ghost match’ geometry
This single-sensor model also displays surprisingly sophisti-
cated behaviour when presented with more than one target.
As shown in figures 13 and 15a, two identical large, distant
objects can create the same local monocular retinal images
as a single near object, although they also present a second
stimulus in each eye.

We refer to this illusory nearby object as a ‘ghost match’
rather than a false match, since the retinal images are
indeed perfect local matches [8]. Dragonfly larvae which
hunt stereoscopically can be misled into striking at two dis-
tant objects, out of the catch range, as if they perceive a
single near object corresponding to the ghost match [112].
Praying mantids too sometimes strike at such ghost matches,
but the strike rate is around half what it is when for a single
object with this disparity [44].

The single-sensor model reproduces this behaviour [44],
thanks to its centre/surround receptive fields. As shown in
figure 13, the distant objects necessarily extend into the inhibi-
tory surround region in one of the eyes. Thus, they lie in regions
of space shaded green, where points project into the excitatory
region of one eye’s receptive field, but the inhibitory region of
the other. Whereas a real object at the catch range causes the
binocular disparity sensor to receive excitation from both
eyes and no inhibition, the ghost object necessarily produces
both excitation and inhibition, reducing the probability of a
strike from 70% for a real object to 20% for the ghost (table 4,
[44]). Thus, this model produces behavioural results reminis-
cent of global correspondence, but the underlying
mechanism is different. Whereas global correspondence
involves excitatory and inhibitory connections between dis-
parity sensors at different locations, cf. figure 4c, here there is
only a single disparity sensor, and the excitatory and inhibitory
connections are frommonocular neurons onto the lone binocu-
lar neuron, as illustrated in figure 15b,c.
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Figure 15. ‘Ghost match’ geometry. Two identical distant objects ( purple dots) create the same local retinal image as a single, smaller, nearer object (black dot),
plus a second image in each eye. BC: Model containing a single disparity sensor. The excitatory and inhibitory connections onto this from the monocular images have
a similar effect to the connections between pairs of disparity sensors in figure 4c, in that they prevent the sensor from being activated by the ghost match. (Online
version in colour.)
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Figure 16. Schematic drawing showing model proposed by Kral & Prete [42]
for mantis stereo-guided strikes. LGMD, lobula giant movement detector;
DCMD, descending contralateral movement detector. Redrawn from fig.
3.15 of [42]. (Online version in colour.)
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(iii) Model versus mantis
The model discussed here is very similar in concept to one
sketched by Kral & Prete [42], sketched in figure 16, which
also consists of a single disparity sensor. They postulated a
pair of monocular lobula giant movement detectors
(LGMD), which respond preferentially to preylike stimuli
moving at a particular speed. These synapse, via a descend-
ing contralateral movement detector (DCMD) onto a motor
neuron. Strikes are triggered when activity in the motor
neuron exceeds a threshold. Kral and Prete argued that ‘a
single pair of LGMD–DCMD complexes can explain how
mantids identify, locate and strike at prey when it is centred
in the visual field.’ They offer this model in opposition to
the idea that ‘mantids use binocular disparity to judge the
distance of an object’, or that mantids make ‘an explicit com-
parison of retinal images or calculation of retinal disparity’. I
would argue that their model, like ours, does ‘use’ (is sensi-
tive to) binocular disparity: the preferred disparity reflects
the receptive field locations of left and right LGMDs. Further-
more, the threshold proposed for the motor neuron is a
nonlinear operation implementing weak local stereo corre-
spondence, which I would argue is a form of comparison
of retinal images. However, we certainly agree that a single
sensor cannot extract retinal disparity unconfounded by
other stimulus dimensions. Concerning physiological corre-
lates, the model of Kral and Prete postulates no binocular
neurons in the mantis brain, with binocular information com-
bined only in the thoracic motor ganglion. We now know that
mantis brain contains multiple classes of disparity-sensitive
binocular neurons, including some sending feedback to ear-
lier visual areas [109,110]. Thus, the full circuitry actually
subserving mantis stereopsis is in fact more complex than
any of the models discussed in this paper.

As shown above, the single-sensor model gives a good
account of current data on mantis striking behaviour, includ-
ing the preference for size, vertical and horizontal disparity,
and the lack of response to ghost matches. If so much is
achieved by a single disparity sensor, why does the mantis
brain have more than one? Most obviously, mantids do not
strike solely at objects directly ahead of them. Having mul-
tiple disparity sensors, at different azimuths and elevations,
could enable the animal to trigger strikes targeted towards
the appropriate direction [113]. Secondly, a single disparity
sensor necessarily confounds size and disparity, and indeed
other stimulus dimensions like contrast or speed: for example
in figure 14, the sensor is activated equally by a target at the
preferred size but sub-optimal distance as by a target of sub-
optimal size but preferred distance. Rossel [6,101] has pro-
vided compelling evidence that mantids do not confound
size and disparity in this way. For example, when disparity
indicates that a virtual object is very close, mantids may
switch from attacking to defensive strikes [6]. Detailed
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Figure 17. Mantids tailor strike trajectories according to stereoscopic dis-
parity, for a given angular size. Reproduction of figure 3b from [101]
showing data for a single mantis. The origin is the centre of the mantis
head and the y-axis indicates the direction of the target. Curves show the
path of the femur tip, each curve averaged over 30 strikes, for targets at
stereoscopic distances of 25, 35, 45, 55 mm. The target was physically
always at 55 mm with an angular diameter of 20°; nearer distances were
simulated with prisms. Fifty-five millimetres is out of range and so no
prey contact occurred during any of the strikes. I have superimposed the aver-
age strike rates for each distance, taken from of fig. 5 of [101]. These are the
average over six animals, and it is not known whether these included the
animal whose strike trajectories are plotted here.

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20210449

15

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 J

an
ua

ry
 2

02
3 
measurements in one mantis showed that it systematically
adjusted its strike trajectory depending on disparity, even
when size is fixed ([101], figure 17). Importantly, the extent
of the strike trajectory increases monotonically with distance,
while the strike rate varies non-monotonically, which is not
consistent with the idea that a single sensor is controlling
both behaviours. This behaviour could be accounted for by
multiple disparity sensors with different preferred disparities
(and perhaps also sizes). The strike would be triggered by
whichever sensor was most strongly activated and the
strike trajectory would reflect the properties of the sensor
triggering it.

Note, however, that even a population of many such dis-
parity sensors could not encode a disparity map like that in
figure 1b. The inhibitory surround zones, which produce the
size tuning and inhibit the response to ghost matches, would
also suppress responses to extended surfaces. Rather, this
very simple form of stereopsis is suitable for judging the dis-
tance of large, isolated objects. Consistent with this, mantids
strike only when prey is isolated in the temporal domain,
e.g. via its motion or by change in luminance. In other
words, mantis stereopsis likely works because early monocu-
lar temporal filtering extracts suitable targets from a complex
scene, even though in the luminance domain prey may be per-
fectly camouflaged against the background [27,34,35]. There is
no evidence that mantids perceive disparate objects in stimuli
such as dynamic random-dot stereograms, where there is
no monocular temporal difference between target and
background, as humans and monkeys do.
4. Discussion
In this paper, I first discussed stereopsis as it is generally
understood in the psychology and computing literature. Its
aim is to achieve binocular single vision and a detailed map
of disparity across a wide region of the visual field. This
requires solving the stereo correspondence problem and is,
therefore, extremely challenging. All neurally inspired
attempts to model such an algorithm have proposed multiple
disparity sensors for every visual direction, each tuned to a
different disparity and sensitive to the degree of local match
between image features at that disparity, as sketched in
figure 6a. Physiological studies of vertebrate stereopsis have
identified such neuronal populations in the visual cortex of
monkeys, cats and mice, and in the visual wulst of owls
[47,114,115]. These neurons show at least weak local correspon-
dence, since they modulate their firing depending on the
disparity of random-dot patterns. Thus, this general approach
seems to be extremely widespread among the vertebrates.

I then considered two very different forms of stereopsis,
both inspired by behavioural and neurophysiological findings
in the praying mantis. First, I considered a system suitable for
stereoscopically guided head saccades. This involved a popu-
lation of binocular neurons, each tuned to a different location
in the visual field but all with the same broad preference for
near disparities, as sketched in figure 6b. In the model, I delib-
erately made these neurons insensitive to the local match
between left and right images; their activity is simply the
sum of their inputs, with no boost for matching inputs such
as is provided, for example, by a squaring nonlinearity
[55,59] (figure 2). These design decisions—no matching
metric, only one disparity sensor at a given location, all sensors
tuned to a similar disparity—seem extremely stupid by the
standards of conventional stereo algorithms.

However, I showed that this simple system suffices for the
kind of stereoscopic sensitivity seen in mantis head saccades.
It demonstrates a marked preference to select the nearer of
two competing targets, even when these subtend the same
angular size (figure 11b). Performance is certainly not perfect,
but it may be as good as is required. Real mantids only show
a bias to fixate nearer objects; when the angular sizes are
equal, they fixate the more distant object around one-third
of the time ([103], figure 11a).

As noted, this system is not implementing even weak
stereo correspondence, since it is completely insensitive to
the degree of match. Yet the model also behaves as if it has
binocular single vision: head saccades are made towards
the midpoint of the left and right images. However, this ‘be-
havioural fusion’ does not mean that the model is actually
implementing binocular fusion or single vision as humans
experience it. In the model, a disparate object activates mul-
tiple binocular neurons, reflecting its different locations in
left and right eyes. So, if the neural correlate of perception
is activity in the binocular layer, then objects would be per-
ceived in multiple directions, and yet useful behaviour is
still produced, contradicting Walls [69]. If on the other
hand the neural correlate of perception is the output of the
final winner-take-all step that selects only a single visual
direction for a saccade, then the winning object is perceived
singly—but only a single object is perceived at all. This is
similar to an earlier suggestion by Rossel [6] that mantis
stereopsis ‘allows only one object to be perceived at a time’.
The crucial difference is that in this model, the object selection
occurs at a binocular level. In Rossel’s proposal, each optic
lobe independently selects the most attractive object visible
to the ipsilateral eye [6]. This monocular selection cannot
account for the bias to select the stereoscopically closer of
two otherwise identical targets (figure 12).



Table 1. Comparison between primate and insect stereoscopic systems. Many of the answers are currently unclear, and in particular those regarding insect
stereopsis represent my current best guess rather than a well-evidenced fact.

property
primate contour
stereopsis

primate cyclopean
stereopsis

insect stereopsis for
orienting to targets

insect stereopsis for
striking at targets

purpose control vergence acquire scene depth

structure

control head saccades trigger predatory strikes

operates on image luminance

contrast

image luminance

contrast

image temporal change image temporal change

effect of anticorrelation inverts depth

percept

destroys depth

percept

no effect no effect

weak stereo correspondence probably yes, in V1 maybe not yes, in several classes of

neurons

strong stereo correspondence no yes, in higher brain

areas

no probably not

binocular single vision and

global correspondence

no yes (within limits of

fusion)

no no

works with static images yes yes no no

breaks camouflage no yes no no
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Next, I considered a system suitable for triggering preda-
tory strikes when prey is in the catch range. Here, we could
assume that the head-saccade system has already ensured
that the prey is already roughly directly ahead of the
animal. For triggering strikes, greater accuracy is required,
since mantids rarely strike at monocular stimuli or at prey
which is out of their catch range [6,28,105,106]. Here, we
found that we did need a disparity sensor which achieves
weak correspondence: our model fitted a strong expansive
output nonlinearity (raising to the power of 5). As well as
greatly enhancing the response to optimal stimuli, this also
boosts the average response to matching stimuli, relative to
non-matching stimuli with the same average monocular
value. This is formally very similar to the binocular simple
cell, the building-block of current models of primate stereop-
sis. However, monocular processing before binocular
combination renders the mantis disparity sensor insensitive
to properties of the stimulus which are fundamental to pri-
mate stereopsis, such as the direction of local motion or the
sign of contrast (bright versus dark) [34,35]. This again
seems very poor design from the point of view of primate
stereopsis and conventional machine stereo.

That said, the proposed stereo-guided strike system does
implement at least a weak form of stereo correspondence. It
also seems fair to argue that it achieves a form of binocular
single vision for isolated objects, if we assume that activation
of a disparity sensor triggers a percept of a single object at the
visual direction represented by the disparity sensor, i.e. on
the midline in our example, rather than the individual mon-
ocular images to left and right of the midline (cf. Figure 15).
However, this system can hardly be said to ‘solve’ the corre-
spondence problem. Behaviour which might appear to
indicate something more sophisticated, such as not striking
at the ghost objects which mislead dragonfly larvae, can be
accounted for simply by the inhibitory receptive-field sur-
rounds of the single disparity sensor. Because this model
seeks only to estimate the probability that an isolated, large
(10–30°) object exists at a given distance, it does not need to
work with multiple objects and so can largely bypass the
stereo correspondence problem [6,41–43,103].

Although, as noted above, the two models presented here
are certainly a simplication of mantis stereopsis, it, therefore,
seems that praying mantids may not possess a crude, low-
resolution version of vertebrate stereopsis—a version of
figure 6a with fewer, larger disparity sensors, operating on
temporally filtered inputs rather than image contrast.
Rather, current evidence is consistent with something even
more basic, as sketched in figure 6b,c. Table 1 makes an
attempt to compare and contrast the two stereoscopic systems
found in primates and insects. This should be regarded as a
set of ‘current best guesses’ intended to stimulate future
work and discussion, rather than as a list of established facts.

One claim sometimes made is that the forms of stereopsis
proposed here are ‘not really stereopsis’. Clearly, this is a
matter of definition. Some researchers have emphasized the
qualia associated with human stereopsis (e.g. ‘a compelling
perception of solidity or three-dimensionality, a clear sense
of space between objects and a phenomenal sense of realism’,
[116]), but it is unclear how to test for this in non-human
species or in machines. I prefer to define stereopsis as ‘the
ability to gain information about the 3D structure of visual
scenes by comparing information collected separately and
simultaneously from different lines of sight to the same
region of space’ [30]. This definition in terms of information
processing, rather than perceptual qualia, makes it more suit-
able for application beyond humans. The definition is
designed to be broad enough to include such different situ-
ations as: a machine stereo algorithm producing a metric
distance map [49]; human cyclopean stereopsis, which may
produce fine-grained information about scene structure but
recover distance only up to an affine transformation [39];
neural signals which trigger vergence but are never con-
sciously perceived; da Vinci stereopsis based on occlusions
[117]; the system governing mantis head saccades, which
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may not extract distance at all but only produce a bias
towards stereoscopically closer objects [6]; or even monocular
stereopsis in species whose eyes permit that, for example the
mantis shrimp Squilla [45]. These very different applications
all rely on the same underlying geometrical principle, and
it is helpful to have a common word to describe them.

Regardless of how well the two systems considered in this
paper turn out to describe mantis stereopsis, they demonstrate
the importance of considering simpler forms of stereopsis
[6,41–43]. In particular, they demonstrate that a network can
map directly from retinal inputs to stereoscopically informed
behaviour, without requiring an intermediate stage at which
disparity is extracted, let alone a geometrical reconstruction
of a 3D scene. This possibility has been ignored in the psychol-
ogy literature, because humans have the perceptual experience
of a disparity map across large regions of the visual field; for
example, we perceive surfaces and depth boundaries in
random-dot stereograms. However, it is possible that human
vision may also exploit the simpler approaches discussed
here, e.g. in the control of vergence eye movements, or in
qualitative stereopsis whichmay reflect ‘the operation of a dis-
tinct neural mechanism designed to provide crude depth
estimates for diplopic stimuli’ [118,119]. The correspondence-
free approach should also be considered in applications
where computing power is limited, e.g. autonomous aerial
vehicles. Several studies have demonstrated the value of
stereopsis in controlling drone flights, e.g. [120–124], but all
have a stagewhere they explicitly compute disparity. Skipping
this step may enable more efficient stereoscopically guided
control of behaviour.
5. Methods
Simulation details for the model of stereoscopically guided strik-
ing behaviour are available in [44]. Simulation details for the
model of stereoscopically guided head saccades follow.

(a) Coordinate systems
We need to translate between different coordinate systems,
including a world-centred coordinate system W, a head-centred
coordinate system H and coordinate systems for left and right
eyes, L and R. We will represent locations in space by column
vectors, using superscripts to indicate the object whose location
is being described and subscripts to show the coordinate
system being used. For example, vector PH

W represents the pos-
ition of the head in the world-centric coordinate system. In this
paper, the head does not move position but remains at the
origin, so PH

W ¼ O, but we will write the equations for the general
case. The head’s position is defined to be the location of the mid-
point between the two eyes, which are a distance I apart. In the
simulations, I = 1 cm.

The rotation matrixMH
W specifies the pose of the head relative

to the world-centred axes. We define this using azimuth-
longitude aH

W and elevation-latitude kHW (Fick coordinates),
where again the sub- and superscript indicate that these are
the azimuth and elevation of the head relative to the world-
centred axes. Thus we have

MH
W ¼

cosaH
W 0 sinaH

W
0 1 0

� sinaH
W 0 cosaH

W

2
4

3
5

1 0 0
0 cos kHW sin kHW
0 � sin kHW cos kHW

2
4

3
5 ð5:1Þ

Note that we apply the elevation first, then azimuth, which is
what makes these Fick coordinates. The rotation matrixMW

H is the
inverse ofMH

W, and describes the orientation of the world-centred
coordinate frame as seen from the head-centred frame. Similarly,
PW
H ¼ �MW

HPH
W is the origin of the world-centred coordinate

frame in head-centred coordinates.
The nodal points of the left, right eyes are at

PL,R
W ¼ PH

W + 0:5IMH
WX

where the + holds for the left eye and − for the right, I is the
interocular distance, andX ¼ [1,0,0]T, where T indicates transpose.

The gaze vector g defines where the head is pointing. In
headcentric coordinates, this is the Z-axis:

gH ¼ Z ¼ [0,0,1]T

and in world-centric coordinates this is rotated to reflect the
head’s azimuth and elevation:

gW ¼ MH
WgH
(b) Turning the head to fixate an object
An object with world-centric coordinates Po

W ¼ ½X,Y,Z�T has
headcentric coordinates

Po
H ¼ MW

H (Po
W � PH

W) ¼ MW
HPo

W þ PW
H

The head-centred elevation and azimuth of the object are ao
H

and koH, defined by

Po
H ¼ Zo

H

cos koH sinao
H

sinkoH
cos koH cosao

H

2
4

3
5 ¼ Zo

HM
o
HZ ð5:2Þ

where Zo
H is the distance of the object from the head and where

the rotation matrix Mo
H is

Mo
H ¼

cosao
H 0 sinao

H
0 1 0

� sinao
H 0 cosao

H

2
4

3
5

1 0 0
0 cos koH sinkoH
0 � sin koH cos koH

2
4

3
5

To fixate this object, the head must adopt a new posture H0,
such that

MH0
W ¼ MH

WMo
H ð5:3Þ

That is, the rotation matrix describing the new posture H0 is
the previous matrix postmultiplied by a matrix describing the
azimuth and elevation of the object as viewed from the original
head posture. The head position remains the same, i.e. PH0

W ¼ PH
W.

With the head rotated into the coordinate frame H0, the object
now lies on the gaze vector, directly in front of the head.

Equation (5.3) defines the new world-centric head azimuth
and elevation, aH0

W and kH
0

W, in terms of the previous values aH
W,

kHW and the azimuth and elevation of the object as originally
seen in the previous head-pose, ao

H, k
o
H.

This has a particularly simple form in the two-dimensional situ-
ation. If for example the head rotates azimuthally but its elevation
remains zero, equation (5.3) reduces to aH0

W ¼ aH
W þ ao

H. This makes
sense since if an object is currently, say, 20° to the left ðao

H ¼ 20�Þ
then to fixate it, the head needs to rotate 20° to the left. In this
paper, we consider a fully 3D model in which the head can
change both azimuth and elevation, so the simplification does
not apply and we, therefore, use the general equation (5.3).
(c) Retinal images
We assume that the eyes are fixed on the head. We assume that
each point on the retina—each ommatidium, as it would be in
the case of an insect eye—represents a particular visual direction
relative to the nodal point of that eye. Again, we encode this
direction using azimuth-longitude αL,R and elevation-latitude
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Figure 18. Example scene used for training. There are four objects, with headcentric azimuth-longitudes −40°, 31°, −17°, 29° and elevation-latitudes 52°, 4°, 0°,
−54°, at distances of 3.7, 6.0, 7.8, 9.0 cm, respectively. Their diameter scales with their distance such that all subtend the same size, 10°, at the origin. (a)
perspective view of the scene. X, Y, Z are the world-centric axes. The red and green disk mark the left and right eyes. The blue line is the gaze vector, here
aligned with the Z-axis. The yellow line points from the origin to the closest object. (b) The left and right retinal images superimposed. Red, blue show the
objects in left, right retinas. The yellow cross marks the headcentric azimuth and elevation of the nearest object. For correct behaviour, given this input, the
most active unit in the output layer should be the one closest to this. In both panels, we are viewing from behind the head so the X and azimuth axes increase
towards the left. This figure was generated by Make3DscenesConstAngSize_Fig.m. (Online version in colour.)
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κL,R, where the subscript L,R encodes the eye. The visual axis of
both eyes, i.e. the line corresponding to zero azimuth and zero
elevation, are defined to be parallel to the head’s gaze vector g.
This means that the eyes and head have the same rotation
matrix: MW

L ¼ MW
R ¼ MW

H . As before, an object with world-cen-
tric coordinates Po

W projects to retinal azimuth and elevation
(ao

L,k
o
L) in the left eye,

Po
L ¼ MW

L (Po
W � PL

W) ¼ Zo
L

cos koL sina
o
L

sinkoL
cos koL cosa

o
L

2
4

3
5 ð5:4Þ

where Zo
L is the distance of the object from the left eye.

In the figures, we represent the two retinae as flat planes with
horizontal and vertical axes representing azimuth-longitude and
elevation-latitude, just as a Mercator projection represents the
Earth on a wall-map. Equation (5.4) specifies how points in
space project onto the retinae. In our model, the monocular
input layers consist of 51 × 51 units for each retina, equally
spaced in azimuth and elevation from −70° to +70° with a
spacing of 2.8° between units.

When we present simulated scenes to the network, we first
project them onto the left and right retinae according to equation
(5.4), and then trim/downsample to the spacing of the retinal
units (cf. Figure 18b).

(d) Network structure and training protocol
The retinal images form the input layer of our network, with
51 × 51 × 2 = 5202 units each representing a particular retinal
location (αL,R,κL,R). The output layer consists of the saccade-direc-
tion units, each representing a particular headcentric direction
(αH,κH), cf. Figure 9. We chose the same spacing as for the
retina, i.e. 51 azimuths and 51 elevations, each equally spaced
between ±70° with spacing 2.8°. The output units are linear
units with weights and a bias. To compute a loss function, we
applied a softmax function to the output layer and computed
the cross-entropy loss for classification. The correct classification
was defined to be the output unit representing the headcentric
direction of the nearest visible object, as explained next.

We train the network by presenting simulated scenes consist-
ing of a small number of spherical objects. These are projected
onto the left and right retina according to equation (5.4).
Figure 18 shows an example training scene (a) and the resultant
retinal images (b). The closest object is at the top right, marked in
yellow. The red and blue blobs indicating its projection in left,
right images respectively are offset by a large amount, reflecting
its proximity; distant objects project to the same locations in both
eyes. Note that due to the Fick coordinates we have chosen, there
is a vertical as well as a horizontal disparity [108]; this is just
learnt and makes no difference to the behaviour of the model.
The Fick (azimuth-longitude, elevation-latitude) coordinates
also explain why the spheres at the top and bottom of the
image appear elongated in the flattened representation of the
retinal image, for exactly the same reason as Greenland appears
elongated in the Mercator projection.

For training, we generated 100 000 noise-free scenes like the
example in figure 18 (Matlab file Make3DscenesConstAngSize.m
in the code repository). Each scene contained four spherical objects
with azimuths and elevations generated independently from a
normal distribution with mean 0° and s.d. 45°. Distances were gen-
erated independently from a uniform distribution over the range 1–
11 cm. Diameters were scaled so that each sphere subtended 10° at
the origin. Since the model retinas extended only to ±70° eccentri-
city, it was possible for some spheres to be out of view. For
classification, the correct output unit was defined to be that repre-
senting the headcentric direction closest to that of the nearest visible
object (strictly, the nearest object whose centre was visible). If no
objects were visible, the correct unit was that representing (0,0),
so that the head would stay in its current position.

To train the network, we used the function trainNetwork
from the Matlab Deep Learning Toolbox with stochastic gradient
descent with momentum, an initial learning rate of 0.05, a mini
batch size of 128, and eight epochs with shuffling every epoch
(Matlab file TrainBeast.m in the code repository). Examples of
the trained weights are shown in figure 10. Bias was also trained
but non-zero bias was learnt only for the output unit encoding
no action (αH = ηH = 0°), since this was the default action when
no inputs were present. After training, bias was an order of
magnitude larger for this unit than for any other unit.

Data accessibility. Matlab code is available at https://doi.org/10.25405/
data.ncl.19487414.v1 [125].
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