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Abstract

Primary visual cortex is often viewed as a ‘‘cyclopean retina’’, performing the initial encoding of binocular disparities
between left and right images. Because the eyes are set apart horizontally in the head, binocular disparities are
predominantly horizontal. Yet, especially in the visual periphery, a range of non-zero vertical disparities do occur and can
influence perception. It has therefore been assumed that primary visual cortex must contain neurons tuned to a range of
vertical disparities. Here, I show that this is not necessarily the case. Many disparity-selective neurons are most sensitive to
changes in disparity orthogonal to their preferred orientation. That is, the disparity tuning surfaces, mapping their response
to different two-dimensional (2D) disparities, are elongated along the cell’s preferred orientation. Because of this, even if a
neuron’s optimal 2D disparity has zero vertical component, the neuron will still respond best to a non-zero vertical disparity
when probed with a sub-optimal horizontal disparity. This property can be used to decode 2D disparity, even allowing for
realistic levels of neuronal noise. Even if all V1 neurons at a particular retinotopic location are tuned to the expected vertical
disparity there (for example, zero at the fovea), the brain could still decode the magnitude and sign of departures from that
expected value. This provides an intriguing counter-example to the common wisdom that, in order for a neuronal
population to encode a quantity, its members must be tuned to a range of values of that quantity. It demonstrates that
populations of disparity-selective neurons encode much richer information than previously appreciated. It suggests a
possible strategy for the brain to extract rarely-occurring stimulus values, while concentrating neuronal resources on the
most commonly-occurring situations.
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Introduction

It is commonly accepted that in order for a neuronal population

to encode the value of a quantity x, it must contain cells tuned to a

range of values of x. Thus for example the retina can encode

information about the wavelength of light because it contains three

different types of cones with different tuning to wavelength, and

the primary visual cortex can encode feature orientation because it

contains neurons tuned to a range of orientations. This is

unproblematic because natural images contain a wide range of

light wavelengths and object orientations. However, the same

argument applied to stereo vision produces some more challenging

conclusions.

The expected vertical disparity in natural viewing depends on

position in the retina, with opposite signs in opposite quadrants of the

visual field. The range in vertical disparities encountered at a given

position depends on a number of assumptions about eye movement

and scene statistics, but all attempts to estimate it agree that it is

extremely narrowly distributed compared to horizontal disparity

[1,2,3]. Thus, if disparity sensors in the brain were to reflect disparity

in the natural world, we would expect the distribution of two-

dimensional disparity tuning at a given retinotopic location to be

highly elongated, virtually one-dimensional, with a wide range of

horizontal disparity and a narrow range of vertical disparity,

centered on the value expected for that retinotopic location. Yet,

vertical disparities which hardly ever occur in normal visual

experience can still have demonstrable effects on perception in the

lab [4,5], and there is evidence that stereo matching occurs in all 2D

directions, vertical as well as horizontal [6]. Thus, the brain clearly

can extract unusual vertical disparities, on relatively local scales

[7,8,9]. This has led to the conclusion that the brain must contain

neurons tuned to a range of vertical disparities, including highly

unusual ones, on the assumption that otherwise, these disparities

could not be perceived [10,11,12].

Motivated by this, a number of physiological studies have

examined two-dimensional disparity tuning in cortical neurons in

monkey primary visual cortex (V1). Near the fovea, most disparity-

tuned neurons are tuned to vertical disparities which are not

significantly different from zero, given the confidence interval on

the measurement [13]. In the visual periphery, neurons tuned to

non-zero vertical disparities have been reported [10,11,12].

Unfortunately, these studies only reported disparity in head-

centric coordinates, which can differ substantially from retino-

centric disparity [14]. For example, it is perfectly possible for a
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neuron tuned to a substantial head-centric vertical disparity, say

0.3u, to be tuned to a vertical disparity of 0u on the retina [3].

Thus, the published data do not enable us to draw any conclusions

about 2D disparity tuning on the retina. Furthermore, these

studies did not report the retinal location of individual neurons,

making it impossible to assess whether a range of vertical disparity

tuning is found at a single retinotopic location.

Given this lack of data from physiology, theoretical consider-

ations become important. A clear understanding of how, in

principle, neurons could represent two-dimensional disparity is

essential for guiding future physiology experiments. We recently

argued [15] that a population of model binocular neurons like that

shown in Figure 1, tuned to a range of horizontal disparities and

orientations but all tuned to zero vertical disparity on the retina,

nevertheless encodes information about the vertical disparity of the

stimulus. This original model only extracted the magnitude, not

the sign, of the local vertical disparity, and we later demonstrated

that this was inconsistent with human psychophysics [16].

However, this model did not make optimal use of the information

available in the population. In the present paper, I show that this

population of disparity sensors does contain information about

both the magnitude and the sign of the vertical disparity at that

point in the retina, even if all neurons in the population are tuned

to the same vertical disparity. With an appropriate decoding

technique, information about the two-dimensional disparity can be

deduced from activity in this one-dimensional population. This

result is of interest in its own right as a theoretical demonstration

that it is possible to extract the value of a quantity from a neuronal

population, all of whose members respond optimally to the same

value of that quantity. From the point of view of understanding

stereo vision, it means that two-dimensional disparity may be

represented far more efficiently than previously appreciated.

Methods

Overview
The essential insight guiding this paper is relatively trivial.

According to the stereo energy model of disparity-selective neurons

[17,18], cells with obliquely-oriented receptive fields will also have

obliquely-oriented disparity tuning surfaces, like the one illustrated

in Figure 2A. This cell’s optimal disparity is marked with a red

circle. It has zero vertical component, i.e. the cell responds best to

zero vertical disparity. Figure 2B shows two cross-sections through

this surface, corresponding to vertical disparity tuning curves for two

different horizontal disparities, as indicated by the vertical lines in

Figure 2A. At the optimal horizontal disparity (red curve), the cell

responds best to zero vertical disparity. But at horizontal disparities

away from the optimum (e.g. purple curve), the cell’s response is

reduced, but is now tuned to a non-zero vertical disparity. Thus,

while the cell in Figure 2 is ‘‘tuned to zero vertical disparity’’ in that

its optimum 2D disparity has zero vertical component, when it is

probed at horizontal disparities on either side of the optimum, it

responds best to vertical disparities on either side of zero. This

suggests that, given cells tuned to a range of orientations and

horizontal disparities, one could potentially extract the stimulus

orientation, horizontal disparity and vertical disparity. Of course, it

may not be quite that simple. In order to use the cells’ tuning to

vertical disparity away from the optimal horizontal disparity, one

has to know what the horizontal disparity is. Extracting this may be

hard in the presence of vertical disparity, since then none of the cells

in the population is tuned to the correct stimulus disparity. Also,

because the tuning to vertical disparity occurs only at sub-optimal

horizontal disparities, the neuron’s activity is weaker, so more

subject to noise. Thus, this intuitive idea has to be rigorously tested

by simulation. This is what is achieved in this paper.

The simulations consist of two neuronal populations: one

encoding population, which takes left and right retinal images and

performs the initial encoding of binocular disparity, and one

decoding population, which estimates the disparity of the stimulus.

The encoding population is like that in Figure 1: it consists of a set

of neurons tuned to a range of horizontal disparities, orientations

and spatial frequencies, but all tuned to the same vertical disparity.

Figure 1. A neuronal population which explicitly encodes
horizontal, but not vertical, disparity. The shaded region represents
the space of two-dimensional disparity on the retina [14]. The purple
disks represent the preferred 2D disparity of an idealized population
of disparity sensors. Although these sensors form a one-dimensional
population, all tuned to zero vertical disparity, they can nevertheless
encode two-dimensional stimulus disparity, e.g. the stimulus disparity
represented by the green dot, which has both a horizontal and a vertical
component. (Cf figure 1 of Serrano-Pedraza & Read [16].)
doi:10.1371/journal.pcbi.1000754.g001

Author Summary

Because our eyes are set apart horizontally in our head, the
images they see are mainly offset horizontally. However,
small vertical disparities also occur, and can have a
measurable effect on perception, showing that they must
be detected by the visual system. The trouble is that
encoding a two-dimensional quantity is much more
expensive for neuronal systems than encoding a one-
dimensional quantity. This paper shows that, for two-
dimensional disparity, the brain could potentially take
advantage of a major simplification. This strategy would
avoid the need to build neurons tuned to a range of vertical
disparities at each retinotopic location. For example, at the
centre of the visual field, vertical disparities are almost
always zero. The brain could make sure all its neurons at this
location respond best to zero vertical disparity, ensuring
best performance for the most common disparities. But the
brain would still know what the vertical disparity actually
was, which would be useful on rare occasions where it was
not zero, e.g., when the eyes are misaligned. This is an
interesting example because usually, neuronal populations
which are all tuned to the same value of a quantity cannot
encode that quantity (e.g., a retina with only one type of
cone cell cannot encode color).

Implicit Encoding of Vertical Disparity
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For simplicity, I shall set this vertical disparity to be zero, which is

appropriate for the parafoveal region.

The encoding neurons are based on the stereo energy model [17],

normalized so as to report the effective local binocular correlation

[15,19,20]. The activity of this population is then decoded by a

separate, higher-level population, using a template-matching

approach like that of Tsai & Victor [21]. The synaptic weights

from the encoding to the decoding population store the mean

response of the population to stimuli with a range of different two-

dimensional disparities. To estimate the two-dimensional disparity

of a test image, I simply calculate the correlation between the

population response to the test image, and the stored average

population response for each known 2D disparity. The stimulus

disparity is taken to be that giving the highest correlation, i.e. the

best match to the mean response.

Disparity encoding
Receptive fields. The monocular receptive fields were

Gabor functions varying in their preferred orientation h, spatial

frequency f, receptive field size s, receptive field phase w, and

position on the retina (Figure 3). The two receptive fields of a

given binocular neurons always had the same orientation,

frequency and size, but could differ in their phase and position,

reflecting the properties of real neurons in primary visual cortex

[22,23,24,25,26]. Thus, the model binocular simple cells in

general had both position and phase disparity [22]. All model

binocular simple cells were tuned to the same cyclopean position,

which was the origin. That is, the mean of the receptive field

centers in the left and right eyes was (0,0) for all cells.

The aim of this study is to demonstrate that vertical disparity

can be implicitly encoded by a population of neurons that are all

tuned to a single vertical disparity. Here, I choose this single

vertical disparity tuning to be zero, reflecting the vertical disparity

expected at the fovea, (0,0). At other retinotopic locations, a

different value would be appropriate, reflecting the expected

vertical disparity at that location [14]. The particular value chosen

is not important to the demonstration, only the fact that it is the

same for all neurons in the population. Including phase disparity

in the model makes this slightly more complicated, since for

neurons tuned to non-vertical orientations, phase disparity adds

both a horizontal and a vertical component to the preferred

disparity. To deal with this, each neuron is given a position

disparity chosen to cancel out the component introduced by the

phase disparity. Thus, even in considering a single neuron, there

are several different meanings of disparity to distinguish. In this

paper, Dxenc will indicate the preferred horizontal disparity of an

encoding neuron, i.e. the horizontal disparity which elicits its

maximum firing rate (the preferred vertical disparity of all

encoding neurons is Dyenc = 0). Dw indicates the phase disparity

of an encoding neuron. Finally (Dxpos,Dypos) indicates the two-

dimensional position disparity, chosen to be

Dxpos~Dxenc{Dw: cos h=(2pf ), Dypos~{Dw sin h=(2pf ): ð1Þ

For sufficiently narrow-band cells, this ensures that the neuron is

tuned to the desired horizontal disparity of Dxenc, and to zero

vertical disparity.

The left and right eye receptive fields of the binocular simple

cell tuned to orientation h, frequency f, receptive field size s, phase

w and horizontal disparity Dx are then

rL x,y; h, f ,w,Dw,Dxencð Þ

~ exp {
x’2Lzy’2L

2s2

� �
cos 2pfx’Lzwz

Dw

2

� �

rR x,y; h, f ,w,Dw,Dxencð Þ

~ exp {
x’2Rzy’2R

2s2

� �
cos 2pfx’Rzw{

Dw

2

� �
ð2Þ

Figure 2. Cells with obliquely oriented 2D disparity tuning surfaces are tuned to non-zero vertical disparities at non-optimal
horizontal disparities. A: 2D disparity tuning surface. The preferred 2D disparity is marked with a red circle: it has no vertical component. B: 1D
disparity tuning curves showing neuron’s response to vertical disparity, at the horizontal disparities marked with the red and purple lines in A. At the
non-optimal horizontal disparity (purple curve), the neuron responds best to non-zero vertical disparities.
doi:10.1371/journal.pcbi.1000754.g002

Implicit Encoding of Vertical Disparity
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where x9 and y9 are retinal coordinates offset to the centre of the

receptive field, and rotated to line up with the cell’s preferred

orientation:

x’L,R~z x+
Dxpos

2

� �
cos hz y+

Dxpos

2

� �
sin h

y’L,R~{ x+
Dxpos

2

� �
sin hz y+

Dxpos

2

� �
cos h

taking the + signs for x9L, y9L, and the 2 minus signs for x9R, y9R,

and where the position disparity (Dxpos,Dypos) is as specified in

Equation 1.

The population included a range of values for preferred

orientation h, spatial frequency f, receptive field size s, phase w,

phase disparity Dw and horizontal disparity Dxenc , as follows:

Orientation h: 6 values, 260u, 230u, 0u, 30u, 60u and

90u. 90u is horizontal, 0u is vertical.

Phase w: 2 values, 0 or p/2 (this is all that is needed to

achieve a phase-invariant complex cell)

Horizontal position disparity Dxenc: 21 values, 210 to 10

pixels in steps of 1 pixel.

Spatial frequency: 5 values, 0.200, 0.112, 0.0707,

0.0420, 0.0250 cycles per pixel, corresponding to spatial

periods l of 5.00, 8.41, 14.14, 23.81, 40.00 pixels.

Receptive field size s was set equal to 0.35l.

Phase disparity Dw: 5 values, 0, 6p/4 and 6p/2.

Thus, there were 6626216565 = 6300 binocular simple cells.

These values were chosen to maximize physiological plausibility

while giving reasonable simulation run-times. The different

parameters have different effects on the model’s performance.

Self-evidently, sensitivity to a range of horizontal disparities is

essential. The model’s ability to extract the sign of vertical

disparity depends on neurons tuned to oblique orientations

(Figure 2). A range of spatial frequencies is not required for the

model to extract vertical disparity in principle, but does improve

the range of vertical disparity magnitudes over which the model

performs well. For small vertical disparities, neurons tuned to high

spatial frequencies are most sensitive to the disparity. For large

vertical disparities, it is neurons tuned to low spatial frequencies

which are most informative, since only these have receptive fields

large enough to detect the disparity. A range of phase and phase

disparity is not necessary for the model to work in principle, but

helps to improve the model’s accuracy [27].

Stereo energy model. The output from each receptive field

was taken to be the inner product of each eye’s image I(x,y) with

the corresponding receptive field:

vL h,f ,w,Dw,Dxencð Þ~
ð

dx

ð
dyrL x,y; h, f ,w,Dxencð ÞIL x,yð Þ

and similarly for vR. I(x,y) represents the contrast of the image at

the point (x,y) relative to the mean luminance: positive values

represent bright pixels, and negative values dark ones. In the

standard energy model [17,18,28,29], the response of binocular

simple cells would be

S~v2
Lzv2

Rz2vLvR:

It will be convenient to split this into monocular and binocular

terms:

M~v2
Lzv2

R

B~2vLvR

Energy-model complex cells, which are invariant to stimulus

phase, are built by summing the response of binocular simple cells

tuned to different phases:

E h, f , Dw, Dxencð Þ

~
X

M h, f , w, Dw, Dxencð ÞzB h, f , w, Dw, Dxencð Þf g: ð3Þ

Figure 3. Example receptive fields in the two eyes. The columns show the 5 different spatial frequencies, f; the receptive field envelope s was
set to 0.25/f. The two rows show 2 different phases w: top row, even phase (w= 0), bottom row, odd phase (w=p/2). h and Dx are chosen randomly in
each plot from the values included in the population. Matlab code to generate this figure is Protocol S1.
doi:10.1371/journal.pcbi.1000754.g003

Implicit Encoding of Vertical Disparity
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As noted in the previous section, my population of simple cells

includes only two values of phase, 90u apart. This produces the

same results as summing over large number of simple cells with

randomly-scattered phase, and is thus a widely-used short-cut in

simulating complex-cell responses [28,30,31].

The stereo energy, E, represents something close to the cross-

correlation function between the filtered, windowed images. The

problem with using this to extract stimulus disparity is that it

reflects not only the degree of similarity between the shifted left-

and right-eye images, but also their monocular contrast energy.

Thus an energy-model unit may respond strongly either because it

is genuinely tuned to the stimulus disparity, or because both its

monocular receptive fields happen to contain features which drive

them well – whether or not those features match between the eyes.

This makes it difficult to extract stimulus disparity from the stereo

energy computed in Equation 3.

Effective binocular correlation. To overcome this, I based

my template-matching on the response of normalized correlation

detectors [15,19,20]. These are based on the stereo energy model,

but are normalized so that their response ranges between +1 (when

the left and right images are identical), and 21 (when the left

image is an inverted version of the right). This is achieved by

dividing the binocular terms of the energy-model complex cell by

the monocular terms:

C h,f ,Dw,Dxencð Þ~

P
w

B h, f ,w,Dw,Dxencð Þ
P
w

M h, f ,w,Dw,Dxencð Þ ð4Þ

Physiologically, this could be computed by combining the outputs

of energy-model neurons with phase-disparities p apart. If two

neurons are identical except that their phase-disparities are p
apart, then if the first neuron computes E = (M+B), the second will

compute (M2B). M and B are then available from the sum and

difference of this pair of neurons. Thus the simulations implicitly

use the full range of phase disparity, even though only phase

disparity in the range [2p/2,+p/2] is explicitly simulated.

The quantity C computes the correlation coefficient between

filtered, local regions of the left and right eye’s images [27]. It can

be thought of as the effective binocular correlation experienced by

that cell, and takes values in the range [21,1]. To avoid any later

confusion, note that this correlation is quite distinct from the

Pearson product-moment correlation coefficient used below to

assess how well population activity elicited by a test stimulus

matches a template.

I view the population of binocular correlation detectors, C(h,

f,Dw,Dxenc), as performing the initial encoding of disparity within

my model. Recall that there are 6 different orientations, 5 different

frequencies, 5 different phase disparities and 21 different

horizontal disparities, so the population C(h, f,Dw,Dxenc) consists

of 3150 different correlation-detectors.

Normalizing the stereo energy E so as to obtain the effective

binocular correlation C removes the confounding effect of

monocular contrast, making it much easier to extract the stimulus

disparity from peaks in the population activity. C has the useful

property that it is exactly equal to 1 when the stimulus disparity

matches the cell’s preferred disparity. This is true for any pair of

stereo images, irrespective of spectral content etc, provided only

that the left eye’s image is related to the right eye’s image by

exactly the same offset relating left and right receptive fields.

Under these circumstances, vL(h, f,w,Dw,Dxenc) = vR(h, f,w,Dw,Dxenc)

for all h, f,w,Dw,Dxenc; 2vLvR is then the same as vL
2+vR

2, and it

follows immediately that C = 1.

Noise. As Figure 2 makes clear, these neurons become

effectively tuned to non-zero vertical disparities only when

stimulated at their non-optimal horizontal disparity. Thus, in

this model, vertical disparity is encoded only by neurons firing at

below their optimal rate. Given this, it becomes important to be

sure that this signal would not be lost in noise in a real neuronal

population. To incorporate realistic neuronal noise, I convert the

correlation C, which can take values [21,1], into an observed

spike count, which is necessarily positive or zero. First, I define the

mean spike count, Rm, as Rm = U(1+C), where U is the mean

number of spikes elicited by a binocularly uncorrelated stimulus.

Rm is in the range [0,2U], where 2U is the mean number of spikes

a perfectly binocularly correlated stimulus elicits from neurons

tuned to its disparity. I model neuronal noise as a Poisson process

[32,33]. Thus, the actual number of spikes elicited by the stimulus

on any given presentation is R, where R is a random variable

drawn from a Poisson distribution with mean Rm.

The effective level of neuronal noise then depends on the value

chosen for U. This will depend on the neurons’ maximal firing rate

and the length of time assumed to be available for the judgment. If

we assume that the firing rate for the optimal disparity is 100Hz

[34] and that the neuronal response is averaged over a 160ms

window (since humans can discriminate temporal changes in

disparity up to ,6Hz, [35]), this suggests that the most active

neurons might fire 16 spikes in the time available for a disparity

judgment, yielding an estimate of around 8 spikes for U. Since the

variance of Poisson noise is equal to its mean, larger values of U

produce lower noise, and smaller values would mean greater

neuronal noise. In fact, as I discuss below, the model is extremely

resilient to neuronal noise. To demonstrate this, the results

presented here use U = 1. This means that the average neuron fires

only 1 spike in the time available for a perceptual judgment,

resulting in a very large amount of neuronal noise (coefficient of

variance 70% for even optimally-tuned neurons).

Variation in the stimuli also contributes an additional effective

source of noise. In this model, a stereo stimulus where left and

right images are related simply by a shift will always produce an

effective binocular correlation of C = 1 in neurons tuned to the

disparity of the stimulus. However, neurons which are not tuned to

the stimulus will produce a correlation which is on average less

than 1, but whose precise value depends on the particular

properties of the image, e.g. where the regions of high and low

contrast happen to fall in relation to the receptive fields. When it

comes to estimating the disparity of a single image, this stimulus-

driven variation in response has the same deleterious effect as

neuronal noise. If the stimulus disparity has a vertical component,

it will stimulate none of the neurons optimally, meaning that C will

be less than 1 (thus variable) for all neurons, and the neurons will

be firing at a lower rate (thus subject to more Poisson noise). Thus,

both sources of noise are larger for stimuli with vertical disparity.

Disparity decoding
Storing templates. The first step was to generate many

examples of the population’s response to stimuli of known

disparity. These ‘‘template’’ stimuli were uniform-disparity

random noise patterns. Each pixel in the left eye’s image, IL,

was given a random value drawn from a Gaussian with zero mean

and unit standard deviation. The right eye’s image, IR, was offset

horizontally and/or vertically from the first eye’s image, and new

random pixels were generated to fill the gap (Figure 4).

I produced random noise images with different horizontal and

vertical disparities Dxstim and Dystim. Dxstim and Dystim both ranged

from 210 to 10 pixel in steps of 1 pixel, making a total of 441

different two-dimensional stimulus disparities. At each of these 441

Implicit Encoding of Vertical Disparity
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stimulus disparities, I generated 500 random image-pairs, each

generated with a different random seed j, making a total of

220,500 test stereograms.

For each image-pair (Dxstim,Dystim, j ), I calculated the effective

binocular correlation as described in Equation 4. I converted this

to a mean spike count, and averaged this over 500 different

random images, to obtain

W h, f ,Dw, Dxenc; Dxstim, Dystimð Þ

~SU 1zC h, f , Dw, Dxenc; Dxstim, Dystim, jð Þ½ �Tj :
ð5Þ

W is the mean number of spikes produced by sensors tuned to

orientation h, frequency f, phase disparity Dw and horizontal

disparity tuning Dxenc, when averaged over many different

presentations of many different noise images with the same 2D

stimulus disparity (Dxstim,Dystim). The averaging over different

presentations of the same image removes the neuronal noise, while

the averaging over different images removes stimulus-dependent

noise. I envisage this as representing the information stored in the

system as a result of visual experience.

Template matching. The disparity of an unknown test

stimulus can then be estimated by comparing the response of the

population to that particular test image with the stored, average

response elicited by stimuli with known two-dimensional disparity.

The stimulus is taken to have the 2D disparity whose stored

activity profile best matches the current activity [21].

Let Rtest(h, f, Dw, Dxenc) be the number of spikes fired by the

encoding population to the particular test image under consider-

ation. Remember that this neuronal population includes cells

tuned to 6 different orientations h, 5 different frequencies f, 5

different phase disparities and 21 different horizontal disparities

Dxenc, so Rtest(h, f, Dw, Dxenc) is a set of 3150 individual spike-

counts. To estimate the disparity of the test stimulus, I compare

the population’s response to the test image, Rtest(h, f, Dw, Dxenc),

with the stored mean spike-counts, W, for each of the 441 template

stimulus disparities. That is, for each possible two-dimensional

disparity (Dxdec, Dydec) (subscript ‘‘dec’’ for decoding), I calculate

the Pearson correlation coefficient, r(Dxdec, Dydec), between the

set of 3150 spike-counts obtained for this particular test image,

Rtest(h, f, Dw, Dxenc), and the set of 3150 values stored in

W(h, f, Dw,Dxenc;Dxdec, Dydec):

r Dxdec, Dydecð Þ

~Corr Rtest h, f , Dw, Dxencð Þ,W h, f , Dw, Dxenc;Dxdec, Dydecð Þð Þ

where Corr(a,b) represents the usual Pearson product-moment

correlation coefficient between a and b:

r Dxdec,Dydecð Þ~ SRtestWT{SRtestTSWT½ �
std Rtestð Þstd Wð Þ ð6Þ

where the sum S, averages ,. and standard deviations std

are all taken over h, f, Dw, Dxenc, while holding Dxdec and Dydec

constant.

I shall always use the word Pearson when referring to this

correlation, in order to avoid possible confusion with the effective

binocular correlation computed by the encoding neurons,

Equation 4. In the figures, I shall use a ‘‘jet’’ colormap (running

from blue-green-red) to represent spike-counts based on effective

binocular correlation, and a ‘‘hot’’ colormap (black-red-yellow-

white) to represent Pearson correlation.

To model the lack of sensitivity to disparity in anti-correlated

stereograms [36,37,38,39,40], I finally set any negative correla-

tions to zero, computing

P Dxdec,Dydecð Þ~tr Dxdec,Dydecð Þs ð7Þ

where vw indicates halfwave rectification: vxw= x for x.0,

and zero otherwise.

The two-dimensional disparity of the test stimulus is then taken

to be the values (Dxdec, Dydec) which maximizes the halfwave-

rectified Pearson correlation P(Dxdec,Dydec).

Matlab code (The Mathworks, Natick, MA; www.mathworks.

com) to run the simulations and generate most of the figures is

available as Supplementary Material (although due to the size of

the neuronal populations, running all the simulations presented in

this paper takes weeks). Details of which functions to use are given

in each figure legend. Other functions called by this code are

grouped together in the file Protocol S11.

Figure 4. Example image-pair. These have horizontal disparity 2 pixels and vertical disparity 1 pixel. For clarity, these images are just 969 pixels;
the actual images used in the simulations were 81681 pixels. The colored dot marks corresponding pixels in the left and right images; the pink arrow
shows the disparity vector. Matlab code to generate this figure is Protocol S2.
doi:10.1371/journal.pcbi.1000754.g004
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Results

All members of the neuronal population are tuned to
zero vertical disparity

First, it is important to establish that – despite their wide range

in phase disparity, position disparity and orientation – all the units

in our encoding population genuinely are tuned to zero vertical

disparity. To this end, Figure 5 shows two-dimensional disparity

tuning surfaces for 15 example members of the model population

of 3150 neurons. Disparity tuning surfaces like this have been

measured for real neurons by Cumming [13], Durand et al,

[10,11] and Gonzalez et al [12]. Each panel in Figure 5 shows the

disparity tuning surface for a different model neuron in the

encoding population. The pseudocolor represents the mean

number of spikes fired by that neuron to stimuli with a given

disparity, averaged over many different random noise images. All

the neurons shown have the same spatial frequency, f = 0.071cyc/

pix, and preferred horizontal disparity, Dxenc = 6pix. The three

rows show neurons tuned to different orientations: vertical, oblique

and horizontal, as specified to the left of each row. The five

columns show neurons with different phase-disparities Dw, as

labelled at the top of each column. The phase disparity controls

the symmetry of the disparity tuning surface: odd-symmetric for

Dw = 6p/2, even-symmetric for Dw = 0, intermediate for

Dw = 6p/4. As described in the Methods, phase disparity shifts

the preferred disparity in a direction orthogonal to the neuron’s

orientation. Model neurons in the encoding population were given

just the right amount of position disparity (Equation 1) to cancel

this out and place their peak sensitivity in the region expected for

normal vision. This 2D position disparity (Dxpos,Dypos) is indicated

above each panel. When there is no phase disparity (Dw = 0,

middle column), the position disparity is simply equal to the

desired disparity tuning, here (6,0). Elsewhere, the model neurons

have to be given additional amounts of vertical and/or horizontal

position disparity in order to bring the preferred 2D disparity back

to the desired value. The white cross in each panel marks the

stimulus disparity which elicited the highest response from that

neuron, averaged over the 500 images. In every case this is very

close to (6,0), indicating that the position disparity specified in

Equation 1 has had the desired effect. This was true for all 1350

neurons in our population, as well as the 15 examples shown in

Figure 5, demonstrating that Equation 1 achieves its aim of

making all neurons in the encoding population respond best to

zero vertical disparity.

Vertical disparity is implicitly encoded in the pattern of
activity across the population

We now move to considering how stimulus vertical disparity is

encoded within this population. To do this, instead of plotting the

mean response of individual neurons to stimuli with different

disparities, as was done in Figure 5, we now plot the mean

response of many neurons to stimuli with a given disparity. This is

what is shown in Figure 6.

Each row of Figure 6 shows the average spike count, W(h,

f,Dw,Dxenc;Dxstim,Dystim), for all zero-phase-disparity neurons in the

population, elicited by one particular stimulus disparity (Dxstim,-

Dystim). (The choice to display the 630 neurons with Dw= 0 is

arbitrary; qualitatively similar plots are obtained for the other

phase disparities.) The 6 rows show the response of this population

to 6 different stimulus vertical disparities Dystim, as indicated to the

left of each row. In each case the stimulus horizontal disparity is

Dxstim = 22 pixels, marked with the arrow in each panel. Each

panel shows W(h, f,Dw,Dxenc;Dxstim,Dystim) as a function of Dxenc

(horizontal axis) and h (vertical axis), for the spatial frequency f

indicated at the top of the column. Thus, the 6 rows of Figure 6

correspond to 6 of the 441 stored responses of this population,

Figure 5. Disparity tuning surfaces for 15 example disparity-encoding neurons with different phase disparities and orientations.
Each panel represents the 2D disparity tuning surface for one neuron, that is, the mean spike count elicited from that neuron in response to stimuli
with the two-dimensional disparity specified on the horizontal and vertical axes. Specifically, each panel shows W(h,f,Dw,Dxenc;Dxstim,Dystim) (Equation
5), as a function of Dxstim and Dystim, for Dxenc = 6pix, spatial frequency tuning f = 0.071cyc/pix, and the different h and Dw specified in the row/
column labels. Each neuron’s two-dimensional position disparity (Dxpos,Dypos) is indicated at the top of each panel. This was set as in Equation 1, to
ensure its preferred horizontal disparity is Dxenc (here 6pix) and its preferred vertical disparity is 0. The white cross marks the pixel for which the spike
count was highest. The fact that this empirical preferred disparity closely agrees with the desired value (6,0) shows that the position disparity
successfully cancels out any vertical component introduced by the phase disparity. Matlab code: The mean response was obtained with Protocol S3,
averaging over 500 stimuli, and the figure was generated with Protocol S4.
doi:10.1371/journal.pcbi.1000754.g005
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which will be used in our template-matching algorithm to extract

an estimate of stimulus disparity.

The neurons above the arrow in each panel are those tuned to

the horizontal disparity of the stimulus under consideration,

Dxenc =Dxstim. As one would expect, the effective correlation is

generally high in this region (dark red colors). The stimulus vertical

disparity Dystim is 4 pixels in row A, 2 pixels in row B, 0 pixels in

row C, and so on as indicated to the left of each row. Although the

cells in the population are tuned to many different horizontal

disparities, Dxenc, they are all tuned to zero vertical disparity. Thus

the middle row, Figure 6C, is the only case where any neurons are

tuned to the exact two-dimensional disparity of the stimulus. Here,

neurons with Dxenc =Dxstim = 22 have receptive fields which

exactly match the binocular disparity of the stimulus. Their

correlation is therefore C = 1 for every noise image with this

disparity, and so the mean spike-count W = (1+C) is exactly 2. The

mean spike-count falls below 2 to either side of the arrow, as the

difference between the horizontal disparity of the stimulus and that

preferred by the neurons increases. The rate of decrease depends

on the spatial frequency channel, since this controls the size of the

receptive fields. For the left-most column, f = 0.2 cycles/pixel, the

standard deviation of the receptive field envelope, s, is just 1.25

pixels. For the right-most column, f = 0.025 cycles/pixel and

s= 10 pixels, meaning that the effective correlation experienced

by these neurons is still high even for neurons tuned to disparities

several pixels away from the stimulus. The rate of decrease also

depends on the orientation. In our model population, the receptive

field envelopes are isotropic, but the rate of change of the receptive

field function is still fastest orthogonal to the cell’s preferred

orientation h (see Figure 3). Thus, for each spatial frequency

channel, the rate of change along the horizontal direction is fastest

for the vertically-oriented cells (h = 0u), and slowest for the

horizontally-oriented ones (h = 690u). This effect can be seen in

Figure 6C: the red region of high correlation extends further to

either side of the optimal disparity for the horizontally-oriented

cells at the top and bottom of each panel.

The same effect of receptive-field size can be seen as we look at

rows other than row C, thus increasing the distance between the

neurons’ preferred vertical disparity (0) and that of the stimulus.

The peak response anywhere in the population declines as we

move along a column away from Dystim = 0, as described by Read

& Cumming [15]. Again, this decrease is most apparent for the

higher-frequency channels, where receptive fields are smaller. For

the highest-frequency channel (0.2 cyc/pix), where s is just 1.25

pixels, a vertical disparity of 28 pixels (row F) is enough to make

the portions of the images falling within the left and right-eye

receptive fields completely uncorrelated. This means that the

average binocular correlation is zero, and so with the spiking

model I have adopted, the mean spike count is just 1, everywhere

in the panel.

The most interesting, and informative, panels of Figure 6 are

those where the stimulus has a non-zero, but relatively small,

vertical disparity (rows A,B,D,E). Here, the effective binocular

correlation C has fallen below 1, but is still above zero. In this case,

the red region of high spike-counts takes on a distinctive diagonal

slant, whose direction depends on the sign of stimulus vertical

Figure 6. Average population response, W(h,f,Dw,Dxenc;Dxstim,Dystim), for different stimulus vertical disparities. Only neurons with zero
phase disparity are shown (the key features discussed in the text are the same for all phase disparities). The stimulus disparity is fixed in each panel,
and the horizontal axis is the preferred horizontal disparity of the neurons (unlike Figure 5, where the neuron’s preferred horizontal disparity was
fixed in each panel and the horizontal axis was the horizontal disparity of the stimulus). Each panel shows the mean number of spikes which stimuli
with this disparity elicit from 126 neurons, tuned to 21 different horizontal disparities Dxenc and 6 orientations h, plotted on the horizontal and
vertical axes respectively. The 5 panels in each row show sets of 126 neurons tuned to 5 different preferred spatial frequencies. Thus together each
row shows the mean response of the zero-phase-disparity sub-population, 630 neurons, averaged over 500 random stimuli with the same stimulus
disparity. The stimulus horizontal disparity, Dxstim, was set equal to 22 pixels throughout (marked with the arrow in each panel); the stimulus vertical
disparity, Dystim, was set to a different value in each row, as indicated to the left of each row. The colorscale is the same as in Figure 5, indicated on
the right. Matlab code: The mean responses were obtained with Protocol S3, and the figure was generated with Protocol S5.
doi:10.1371/journal.pcbi.1000754.g006
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disparity. Where stimulus vertical disparity is positive (rows A, B),

spike-counts are highest for receptive fields tilted counter-clockwise

from vertical (positive h) when horizontal disparity is positive, and

for receptive fields tilted clockwise from vertical (negative h) when

horizontal disparity is negative. When stimulus vertical disparity is

negative (rows D, E, F), the situation is reversed. The reason is

exactly the geometry sketched in Figure 2. This slant is the

‘‘signature’’ of vertical disparity, and will enable us to decode

vertical disparity from this population.

2D stimulus disparity can be extracted from the response
of this population

Figure 6 showed the average response of a neuronal population,

averaged across thousands of stimuli with the same disparity. As

we have seen, this average response possesses a structure which

reflects the vertical disparity of the stimulus. However, this

averaging process conceals important features of the response to

single images. Most importantly, the response of the neuronal

population to single images is affected not only by the disparity,

but also by the luminance features of the particular image. These

features cancel out to nothing when averaged over many random

images, but the brain cannot take advantage of this when

estimating the disparity of a single image. The stereo correspon-

dence problem is complicated by these ‘‘false matches’’ due to

particular features of the image [31]. Normalizing stereo energy so

as to calculate the effective binocular correlation C is enough to

solve the problem in the absence of vertical disparity. Then, as

explained in the Methods, the stimulus horizontal disparity can be

identified from the horizontal disparity tuning of the cell with

C = 1 (mean spike count = 2U). However, when there is a

mismatch between the cell’s preferred vertical disparity and the

vertical disparity of the stimulus, the correlation will not usually

reach 1 even for cells tuned to the horizontal disparity of the

stimulus, so the false-match problem creeps in again. Secondly,

neuronal populations are subject to noise. In principle, this may be

reduced by averaging either over a long time period, or over a

large pool of neurons with similar tuning and independent noise.

Here, I have made the conservative assumption that neither of

these options is available, so the neuronal population is subject to

very large amounts of trial-to-trial noise, with the coefficient of

variation at least 70%.

To bring home just how much variation these two sources of

noise contribute, Figure 7 shows the spikes elicited in response to a

single example test image, with stimulus disparity Dxstim = 22 and

Dystim = +2 pixels. For comparison, Figure 6B showed the average

response of the same population to stimuli with this disparity, with

both neuronal and stimulus-driven noise averaged away. The 5

panels of Figure 6B are thus the ‘‘template’’ which Figure 7 is

meant to match (though note that because up to 6 spikes were

produced by the single presentation in Figure 7, while the mean

number of spikes never rises above 2, different colorscales were

used in the two plots). At first glance, the task might appear to be

impossible, given the very high levels of noise. However, certain

features of similarity are indeed detectable between Figure 7 and

Figure 6B. At the lower spatial frequencies (right-hand panels),

where the stimulus vertical disparity is not so large as a fraction of

receptive field size, there is a slight tendency for neurons tuned to

the horizontal disparity of the stimulus, marked with the arrows, to

fire more spikes. Similarly, the slanted structure of the most

responsive region is already hinted at. Furthermore, recall that for

reasons of space, Figures 6 and 7 show only the 630 neurons with

zero phase-disparity; once we include the other phase disparities,

there are a further 2520 neurons whose instantaneous response

can be matched to the corresponding template. As I show below,

despite the major differences between the single-image response

shown in Figure 7 and its template shown in Figure 6B, the

population provides enough information for the correct template

to be reliably identified.

As described in the Methods, I assess the quality of the match

between the population response to a single image and the stored

average population response by calculating the Pearson correla-

tion coefficient between the two. Figure 8 uses pseudocolor to

show the Pearson correlation coefficients r(Dxdec,Dydec) for all 441

disparities. The black cross marks the disparity of the stimulus. In

this example, the highest Pearson correlation is obtained from the

decoder tuned to this disparity, so for this single test image, the

stimulus disparity is correctly extracted.

Figure 9 quantifies the accuracy with which this algorithm

performs across many test images. The plots show frequency

histograms for the estimated disparity (red for horizontal disparity,

blue for vertical) for 1000 different random test images with a fixed

disparity. None of the 1000 test images was in the set of 500

images used to obtain the template responses, although they were

all Gaussian noise images like those in Figure 4. Each column in

Figure 9 shows results for a different test disparity (Dxtest,Dytest).

The root-mean-squared error between the disparity estimated for

each test image and its actual value is given above each panel. The

algorithm’s performance does not depend on the horizontal

disparity of the test image (provided, of course, that it falls within

the range to which the encoding population is tuned), so the three

Figure 7. Neuronal spike counts, Rtest(h,f,Dw,Dxenc), elicited by a single presentation of a single test image, with stimulus disparity
(Dxstim, Dystim) = (22, +2). As in Figure 6, only neurons with zero phase disparity are shown, Dw= 0. The different panels each show 126 neurons
tuned to different spatial frequencies f, while 21 preferred horizontal disparity tunings Dxenc and 6 orientations h are shown by the horizontal and
vertical axes, respectively. In each panel, an arrow marks the neurons tuned to the horizontal disparity of the stimulus. The colorscale is the same in all
panels. The average response of the population to all Gaussian-noise stimuli with this disparity was shown in Figure 6B (note different colorscale).
This mean response differs from the single-stimulus response shown here because the latter is affected by stimulus-dependent variation, reflecting
the properties of this particular image, and Poissonian noise on neuronal spiking. Matlab code: This figure was generated by Protocol S6.
doi:10.1371/journal.pcbi.1000754.g007
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particular horizontal disparities chosen are immaterial. In

contrast, performance does depend strongly on the vertical

disparity tested. The three rows of Figure 9 show results for

increasing vertical disparity magnitudes: A: Dytest = 0, B: Dytest = 2,

C: Dytest = 24 pixels.

In Figure 9A, the test images had zero vertical disparity. Thus,

the encoding population contains sensors tuned to the exact 2D

disparity of the test images. Under these circumstances, unsur-

prisingly, both horizontal and vertical disparity are reconstructed

with great accuracy. In Figure 9B, the test images had a vertical

disparity of 2 pixels. An example population response to a single

test image with this disparity was shown in Figure 7, while the

template response (averaged over many training images with this

disparity) was shown in Figure 6B. Here, no sensors in the

encoding population are tuned to the 2D disparity of the stimulus.

This naturally reduces the accuracy, but the RMS error is still only

half a pixel. Critically, both the magnitude and sign of the vertical

disparity can still be estimated from the reduction in the peak spike

count [15] and the slant in the region of high spike count.

Figure 9C shows results when the test images had a vertical

disparity of 28 pixels. This is large compared to the receptive field

size of most channels, so the RMS error increases further, but the

sign of the vertical disparity is still reliably detected. Horizontal

disparity is also extracted, but with a larger error which would

correspond to a reduced stereoacuity. This is qualitatively

consistent with human performance: human stereo perception

becomes worse as vertical disparity increases, and is destroyed by

relatively small amounts [41,42]. Here, almost all the ‘‘work’’ is

being done by the low spatial-frequency channels, but these are

still enough to extract 2D disparity, without being excessively

degraded by the higher-frequency channels for which the stimulus

is effectively uncorrelated. Ultimately, of course, as vertical

disparity moves beyond the range spanned by the largest receptive

fields, performance will fall to chance, again as human

performance does.

Response to anti-correlated stereograms
Disparity is encoded within this model by the population of

binocular correlation detectors C(h, f,Dx). This population, which

is all tuned to zero vertical disparity on the retina, performs the

initial encoding of disparity. It was chosen to resemble primary

visual cortex, V1. For example, these initial disparity encoders are

tuned to a particular spatial frequency and orientation, and they

continue to respond to disparity in anti-correlated stimuli. Anti-

correlated stereograms are those in which one eye’s image has

been contrast-inverted, so that black pixels are replaced with

white. Since I use zero to represent the mean luminance, this

corresponds to inverting the sign of one eye’s image. Thus, the

product vLvR changes sign when the stimulus is made anti-

correlated. This means that the disparity tuning of binocular

correlation-detectors inverts for anti-correlated stimuli. A similar

inversion is found in V1 [43,44], although with a slight reduction

in amplitude.

Disparity is extracted from the activity of these V1 correlation-

detectors by a higher-level brain area. The properties of this

decoding area should ideally match those of human perception.

For example, neurons in this region should not respond to

disparity in anti-correlated stereograms, since these produce no

perception of depth in humans or monkeys [36,37,40], and

neurons in higher visual areas such as IT and V4 do not respond

to disparity in anti-correlated stimuli [38,39]. In this paper, I have

used the Pearson correlation coefficient, r, to quantify how well the

population response to a test image matches the mean population

response to template images. To match the lack of response to

disparity in anti-correlated stereograms, I set the response of the

decoding population equal to the half-wave-rectified Pearson

correlation, replacing negative r with 0. This has no effect on

correlated stereograms, where the maximum r is positive, but it

prevents the decoder responding systematically to disparity in anti-

correlated stereograms.

Figure 8 illustrated the response of the population of disparity

decoders (prior to the half-wave rectification) to one example test

stimulus, showing that the maximally-responding decoders were

those tuned to disparities close to that of the stimulus. Figure 10

plots the disparity tuning surface of a single disparity decoder, the

one tuned to (Dxstim,Dystim) = (26,23), for both correlated and

anti-correlated stereograms. The pseudocolor of each pixel shows

the mean ,P(Dxstim,Dystim). averaged across 40 different random

images with the same disparity (Dxtest,Dytest), specified by the

pixel’s position on the axes. Figure 10A shows the disparity tuning

surface for normal, correlated stereograms. Unsurprisingly, the

response is largest when the two-dimensional disparity of the test

stimulus matches the preferred disparity of the decoder, indicated

with the cross. Similar disparity tuning surfaces were plotted in

Figure 5 for the encoding neurons. The disparity tuning surfaces

for the decoding neurons differ in two respects. First, they are

isotropic rather than elongated, because the decoding neurons

receive inputs from cells tuned to all orientations (Figure 11).

Second, the peak response is obtained for a non-zero vertical

disparity, whereas the encoding neurons were all tuned to zero

vertical disparity.

Figure 10B shows the disparity tuning surface for the same

decoder as in Figure 10A, but this time obtained with anti-

correlated stereograms. As noted, anti-correlated stimuli elicit no

perception of depth, and neurons in brain areas which are believed

to have solved the correspondence problem do not discriminate

Figure 8. Response of the population of disparity decoders
(before rectification) to a test image with horizontal disparity
Dxtest = 22pix, Dytest = +2pix, marked with the cross. Each pixel in
the plot represents a decoding neuron, tuned to the 2D disparity
(Dxdec,Dydec) indicated on the horizontal and vertical axes. The
pseudocolor represents the Pearson correlation coefficient between
the activity in the encoding population elicited by the test image, and
the stored ‘‘templates’’ representing the mean activity to stimuli with
disparity (Dxdec,Dydec). The disparity of the test image was correctly
estimated from the peak activity in the decoding population. Matlab
code: This figure was also generated by Protocol S6.
doi:10.1371/journal.pcbi.1000754.g008
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Figure 9. Results of estimating 2D stimulus disparity from the 1D disparity encoding population. Each panel shows the distribution of the
estimated disparity component (left column, red: horizontal disparity; right column, blue: vertical disparity). The rows show three different test disparities
(Dxtest,Dytest), as indicated by the black vertical lines in each column. In each case, 1000 images with the specified test disparity were generated, and their 2D
disparity was estimated as being the value of (Dxdec,Dydec) which gave the best match between the population activity Rtest(h,f,Dw, Dxenc) evoked by the test
image, and the stored W(h,f,Dw,Dxenc;Dxdec,Dydec), as in Figure 8. The root-mean-squared error between the estimated disparity and the correct value is
indicated at the top of each panel. Matlab code: The disparity estimates were obtained with Protocol S7, and the figure was generated with Protocol S8.
doi:10.1371/journal.pcbi.1000754.g009

Figure 10. Disparity tuning surface for the disparity decoder tuned to Dxstim = 26 and Dystim = 3, indicated by the cross in each
panel. The color of each pixel in the plot shows the mean response, ,P(Dxstim,Dystim)., averaged over 40 test stimuli with the disparity (Dxtest,Dytest)
specified by that pixel’s position on the horizontal and vertical axes. A: for correlated stimuli. B: for anti-correlated stimuli. The same colorscale is used
in both panels. Matlab code: The results were generated by Protocol S9 and the figure was plotted by Protocol S10.
doi:10.1371/journal.pcbi.1000754.g010
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disparity in anti-correlated stereograms. The Pearson correlation

coefficient r between the response to an anti-correlated stereogram

and the stored average responses for correlated stereograms is

almost always negative, meaning that half-wave rectification

ensures the decoder response P(Dxstim,Dystim) is zero. Accordingly,

the disparity tuning surface in Figure 10B is almost completely flat,

in agreement with the physiological data for areas IT and V4

[38,39]. Thus, both encoding and decoding neurons in this

simulation have properties consistent with those of the corre-

sponding neuronal populations, as far as these are known.

Discussion

This paper has implemented a simple physiologically-inspired

two-dimensional stereo correspondence algorithm. It consists of

two model ‘‘brain areas’’: one which performs the initial encoding

of binocular disparity between left and right images, and one

which decodes this activity so as to arrive at an estimate of the two-

dimensional disparity in the images. The unusual feature of this

model is that the encoding neurons are all tuned to the same

vertical disparity (zero). Despite this, the decoding neurons are

able to successfully recover 2D stimulus disparity. This is possible

because vertical disparity causes distinctive patterns of activity

across the encoding population. The model uses its stored

knowledge about these patterns, in the form of templates of

expected activity, to deduce the stimulus disparity.

Neuronal correlates
The model has a simple physiological interpretation. The

population of disparity encoders, C(h,f,Dxenc), was designed to

represent primary visual cortex, V1. Neurons in this area are

tuned to different orientations h, spatial frequencies f and

horizontal disparities Dxenc, and respond to disparity in anti-

correlated stereograms. This encoding area projects to a higher

brain area which extracts stimulus disparity. Neurons in this

decoding area are tuned to both horizontal and vertical disparity,

but are not sensitive to orientation or spatial frequency. They

do not respond to disparity in anti-correlated stereograms. The

perceived disparity corresponds to the preferred disparity of the

most active neuron in the decoding area.

The stored templates of the population activity expected for

different stimulus disparities, W, can be viewed as the synaptic

weights in the projection from the early encoding area to the

decoding area (Figure 11). That is, W(h, f,Dw,Dxenc;Dxdec,Dydec)

describes the strength of the synaptic connection from the

encoding neuron tuned to orientation h, frequency f, phase

disparity Dw and horizontal disparity Dxenc, onto the decoding

neuron tuned to horizontal disparity Dxdec and vertical disparity

Dydec. The firing rate of the decoding neuron depends on the total

activity of its input neurons weighted by the strength of each

synapse (the term S RtestW in Equation 6), after undergoing a

subtractive and a divisive normalization, and finally a threshold

non-linearity (Equation 7). The threshold non-linearity is a

universal feature of neuronal circuits, since firing rates cannot go

negative. Both subtractive and divisive normalization have been

extensively discussed in the literature, and plausible neuronal

mechanisms have been proposed to implement them

[45,46,47,48,49,50].

Robustness to noise
This model is able to successfully decode two-dimensional

disparity, including both the magnitude and sign of vertical

disparity, from the activity of the encoding population. This

demonstrates that information regarding vertical disparity is

implicitly encoded within this population. The accuracy of this

information, unsurprisingly, declines as the vertical disparity of the

stimulus increases (Figure 9), consistent with psychophysical data.

In the model, this decline occurs because information about the

stimulus disparity is being carried by neurons which are not

optimally tuned to it. Partly, this is because of neuronal noise: the

effective signal-to-noise level declines as we move away from the

peak of the neuron’s tuning surface. I modelled neuronal spiking as

a Poisson process, and deliberately chose a low spike count so that

the Poisson noise would be large. In these simulations, neurons

optimally tuned to the stimulus disparity have a coefficient of

variation (CV, the ratio of standard deviation to mean) of 70%,

Figure 11. Sketch of the model’s physiological interpretation. Disparity is initially encoded by a population tuned entirely to zero vertical
disparity. A higher brain area extracts two-dimensional disparity from the activity of this population. The synaptic weights of the projection from the
encoding to the decoding population store the mean activity of the encoding population to stimuli with different 2D disparity. For simplicity,
synaptic connections onto only two, color-coded, decoding neurons are shown. The call-outs show examples of the 2D disparity tuning for the two
populations (encoding: oriented, optimal vertical disparity is zero; decoding: isotropic, optimal vertical disparity may be non-zero).
doi:10.1371/journal.pcbi.1000754.g011
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while neurons which are tuned so far from the stimulus disparity

that it appears effectively uncorrelated to them have a CV of

100%. However, the main reason for the decline in decoding

accuracy is not neuronal noise, but fluctuations in the stimulus.

For the uniform-disparity stimuli examined here, receptive fields

tuned to the 2D stimulus disparity always experience an effective

binocular correlation of exactly 1 (CV = 0%), whereas away from

the 2D stimulus disparity the effective binocular correlation is, on

average, smaller, and also much more variable. This means that as

vertical disparity moves away from the value to which the neurons

are tuned (here, zero), the stimulus-dependent fluctuations

contribute much more variability to the neuronal spiking.

Nevertheless, despite these two potent sources of noise in the

model, the simulations reveal that it performs extremely well. This

is because the decoding process uses the responses of thousands of

encoding neurons. Although every neuron is tuned to different

parameters, and so their responses cannot be directly pooled, the

decoding process effectively averages out noise when it correlates

the responses of thousands of neurons with the stored templates.

For this reason, the model is extremely robust to neuronal noise. If

the reader runs the code in the Supplementary Material, reducing

the Poisson noise by setting Neurons.MeanSpikeUncorr to a

value greater than its current value of 1, s/he will be able to verify

that the results show only a slight improvement in accuracy.

Relationship to previous models of vertical disparity
encoding

The model of Read & Cumming [15] was discussed in the

Introduction. That model worked by detecting changes in vertical

disparity magnitude across the visual field. In contrast, the present

model is purely local; all neurons simulated were tuned to the same

cyclopean position in the visual field. This model would therefore

work even with the induced-effect stimulus of Serrano-Pedraza &

Read [16]. Serrano-Pedraza & Read [16] were correct to reject

the particular decoding model proposed by Read & Cumming

[15], but wrong to conclude that vertical disparity must be

explicitly encoded. A more sophisticated decoding of the same

encoding population is consistent with their psychophysical results.

Matthews et al. [51] also modelled the perceptual effects of

vertical disparity using energy-model neurons with different

orientation tuning. The present algorithm differs substantially

from theirs. Most importantly, their model does not ever estimate

stimulus vertical disparity. Their decoding algorithm extracts a

one-dimensional estimate of horizontal disparity, assuming that

vertical disparity is zero. This means that when vertical disparity

actually is present, it causes horizontal disparity to be mis-

estimated: a vertical disparity V is misinterpreted as a horizontal

disparity of Vcoth, where h is the cell’s preferred orientation

relative to horizontal (eq. 6 of Matthews et al.). They postulate that

the perceptual effects of vertical disparity are a direct consequence

of this confusion between horizontal and vertical disparity

components. In contrast, the present model explicitly decodes

both horizontal and vertical disparity. Vertical disparity does not

cause horizontal disparity to be systematically mis-estimated

(although it does increase the random error, Figure 9). Thus, the

present model is agnostic on the question of how vertical disparity

causes its perceptual effects: the two-dimensional disparity

decoded by the present algorithm would have to be fed into one

of the many models of that process (e.g. [14,52,53,54,55]. Second,

in order to explain how the ‘‘mistaken’’ disparity Vcoth produces a

perceptual effect when averaged over neurons tuned to all possible

orientations h, Matthews et al. [51] invoke a radial bias for h
[56,57,58]. The present algorithm does not depend on any such

anisotropy. In the simulations presented here, h was assumed to be

isotropic; any anisotropy would not affect the performance of the

algorithm. This means that the present model is almost the

opposite of that in Matthews et al. Their neuronal population

explicitly encodes both horizontal and vertical disparity, but their

decoding algorithm deliberately extracts only horizontal disparity.

My population explicitly encodes only horizontal disparity, but my

decoding algorithm extracts both horizontal and vertical disparity.

Consistency with known physiology
As sketched in Figure 2, the present algorithm depends critically

on the obliquely-oriented disparity-tuning surfaces predicted by

the stereo energy model. It is therefore important to know whether

real neurons display such oriented disparity-tuning surfaces. In

monkey V1, Cumming [13] examined two-dimensional disparity-

tuning surfaces for random-dot patterns, and compared their

orientation to the cell’s orientation tuning for grating stimuli. He

found many cells with the obliquely-oriented disparity tuning used

here. However, most cells had disparity-tuning surfaces elongated

along the horizontal axis, independent of the cell’s orientation

tuning for gratings. Cumming argued that this represented a

specialization for horizontal disparity not predicted by the energy

model. This non-energy-model population can be modeled by

combining several energy-model units with different horizontal

disparity tuning [3]. The oblique disparity tuning predicted by the

energy model is also found in cat visual cortex [59], and in

peripheral monkey V1 [11]. Thus, the existing physiological

evidence suggests that neurons with the obliquely-oriented

disparity-tuning surfaces used by this model do exist, and may

form the inputs for a second stage of disparity encoding consisting

of neurons with horizontally-oriented disparity-tuning surfaces.

Neurons in V1 contain both position and phase disparity

[22,23,24,60]. The model presented here works equally well

whether position disparity alone, or both position and phase

disparity, are included. In this paper, I specified a relationship

between position disparity, phase disparity, frequency and

orientation (Equation 1) which ensured that all neurons in the

population were tuned to zero vertical disparity. (If this

relationship did not hold, the model would contain neurons tuned

to a range of vertical disparities, so its success would be trivial.) No

physiological study has yet quantified both phase disparity and

vertical disparity tuning, yet the results of [13] imply that

something like Equation 1 may hold in reality, at least in the

central 10u or so of the visual field.

In the visual periphery, very little is currently known about the

distribution of 2D retinal disparity, despite the fact that this is

where the range of naturally-occurring vertical disparities is largest

[14,61]. The existing physiological studies have reported their

results only in head-centric Helmholtz coordinates, and have not

examined tuning as a function of position on the retina. The

encoding population described here, where all neurons at a given

retinotopic location are tuned to the same vertical disparity on the

retina (Figure 1), is consistent with the very limited existing

physiological data available [15]. Only future physiological studies

can resolve the issue. These should obtain a full 2D disparity

tuning surface for every neuron; as Figure 2 shows, 1D cross-

sections can give misleading results. They should be clear about

the definition of vertical disparity they are using, reporting data in

retinal, as well as head-centric, coordinates. Finally, they need to

examine disparity tuning as a function of position on the retina

(not just eccentricity), in order to test whether the mean and

variation in preferred vertical disparity varies across the retina as

predicted from natural image statistics [14]. These studies should

be carried out in both early visual cortex and in higher areas such

as IT believed to underlie perception. The present model predicts
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that the range of preferred vertical disparities will be larger in the

higher cortical areas.

Significance
This paper demonstrates a highly efficient strategy for

representing 2D stimulus disparity. 2D disparity is represented

explicitly only at the decoding level, with the initial encoding being

one-dimensional. Because the disparity decoding area does not

represent other stimulus properties such as orientation, spatial

frequency and phase, this results in a huge reduction in the

number of neurons required.

Irrespective of whether the model here is ultimately validated

physiologically, it nevertheless provides a vivid demonstration that

populations of disparity-tuned neurons contain a much richer

array of information than previously appreciated. It places a

caveat on the common wisdom that in order to encode a quantity

X, a neuronal population needs to be tuned to a range of values of

X. In this example, horizontal and vertical disparity are completely

independent quantities in the external world, but they are bound

together with orientation at the initial encoding stage in the brain.

Subsequently, vertical disparity can be extracted from neurons via

their tuning to horizontal disparity and orientation alone. Under

these very special circumstances, the common wisdom ceases to

hold.

Supporting Information

Protocol S1 Matlab code for running the simulations presented

in this paper (Fig_ExampleRFs.m)

Found at: doi:10.1371/journal.pcbi.1000754.s001 (1.00 KB TXT)

Protocol S2 Matlab code for generating Fig 4 (Fig_Example

Images.m)

Found at: doi:10.1371/journal.pcbi.1000754.s002 (1.00 KB TXT)

Protocol S3 Matlab code (www.mathworks.com) for running

the simulations presented in this paper (gets templates). GetTem-

plates.m

Found at: doi:10.1371/journal.pcbi.1000754.s003 (1.00 KB TXT)

Protocol S4 Matlab file, for generating Fig 5 (Fig_DispTunSurf

Encoders.m)

Found at: doi:10.1371/journal.pcbi.1000754.s004 (3.00 KB TXT)

Protocol S5 Matlab code (www.mathworks.com) for running

the simulations presented in this paper (Fig_MeanResponses.m)

Found at: doi:10.1371/journal.pcbi.1000754.s005 (2.00 KB TXT)

Protocol S6 Matlab code (www.mathworks.com) for running

the simulations presented in this paper (Fig_FitDisparity.m)

Found at: doi:10.1371/journal.pcbi.1000754.s006 (3.00 KB TXT)

Protocol S7 Matlab code (www.mathworks.com) for running

the simulations presented in this paper (FitDisparity.m)

Found at: doi:10.1371/journal.pcbi.1000754.s007 (2.00 KB TXT)

Protocol S8 Matlab code (www.mathworks.com) for running

the simulations presented in this paper (Fig_FreqHists.m)

Found at: doi:10.1371/journal.pcbi.1000754.s008 (3.00 KB TXT)

Protocol S9 Matlab code for generating Fig 10 (DispTunSurf

Decoders.m)

Found at: doi:10.1371/journal.pcbi.1000754.s009 (2.00 KB TXT)

Protocol S10 Matlab code for generating Fig 10 (Fig_DispTun

SurfDecoders.m)

Found at: doi:10.1371/journal.pcbi.1000754.s010 (1.00 KB TXT)

Protocol S11 Zip archive containing 7 files with Matlab

functions necessary to run the simulations and generate the

figures in the paper (Protocol_S11.zip)

Found at: doi:10.1371/journal.pcbi.1000754.s011 (0.14 MB ZIP)
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