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Abstract. The extraction of stereoscopic depth from
retinal disparity, and motion direction from two-frame
kinematograms, requires the solution of a correspon-
dence problem. In previous psychophysical work [Read
and Eagle (2000) Vision Res 40: 3345-3358], we com-
pared the performance of the human stereopsis and
motion systems with correlated and anti-correlated
stimuli. We found that, although the two systems
performed similarly for narrow-band stimuli, broad-
band anti-correlated kinematograms produced a strong
perception of reversed motion, whereas the stereograms
appeared merely rivalrous. I now model these psycho-
physical data with a computational model of the
correspondence problem based on the known properties
of visual cortical cells. Noisy retinal images are filtered
through a set of Fourier channels tuned to different
spatial frequencies and orientations. Within each chan-
nel, a Bayesian analysis incorporating a prior preference
for small disparities is used to assess the probability of
each possible match. Finally, information from the
different channels is combined to arrive at a judgement
of stimulus disparity. Each model system — stereopsis
and motion — has two free parameters: the amount of
noise they are subject to, and the strength of their
preference for small disparities. By adjusting these
parameters independently for each system, qualitative
matches are produced to psychophysical data, for both
correlated and anti-correlated stimuli, across a range of
spatial frequency and orientation bandwidths. The
motion model is found to require much higher noise
levels and a weaker preference for small disparities. This
makes the motion model more tolerant of poor-quality
reverse-direction false matches encountered with anti-
correlated stimuli, matching the strong perception of
reversed motion that humans experience with these
stimuli. In contrast, the lower noise level and tighter
prior preference used with the stereopsis model means
that it performs close to chance with anti-correlated
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stimuli, in accordance with human psychophysics. Thus,
the key features of the experimental data can be
reproduced assuming that the motion system experienc-
es more effective noise than the stereoscopy system and
imposes a less stringent preference for small disparities.

1 Introduction

To perceive depth in stereograms, or motion in two-
frame kinematograms, the brain must solve a corre-
spondence problem, deducing which point in the left
retina or first frame corresponds to which in the right
retina or second frame. Even for random-dot stimuli, in
which each dot in one image has a multitude of possible
matches in the other, our brains can often solve this
problem instantaneously and effortlessly. However, the
problem is far from trivial. It has, in general, no unique
solution (Fig. 1). In order to select a possible solution,
the brain must apply additional constraints, representing
its inherent or acquired assumptions about the outside
world. For instance, in the double-nail illusion of Fig. 1,
the perception is of two spheres at the same distance
from the observer — presumably because we more often
see flat surfaces face on than edge on. A common
constraint used by modellers is that of smoothness or
continuity: solutions assuming a sudden jump in dis-
parity should be avoided in favour of solutions in which
disparity varies smoothly across the image, reflecting the
fact that the real world tends to be composed of discrete
objects with continuous surfaces. The psychophysical
evidence suggesting a preference for matches with small
disparity (McKee and Mitchison 1988) is also consonant
with a smoothness constraint, since it implies an
assumption that objects in the vicinity of the fixation
point are all at a similar distance from the viewer.

A Bayesian model (Knill and Richards 1996) provides
a convenient way of framing these constraints. In this
approach, each possible solution of the correspondence
problem is assigned a probability of being correct. This
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Fig. 1. A classic example of the fact that the correspondence problem
has no unique solution. The left and right diagrams show different
alignments of two spheres which both create identical situations on
the retinae. The large open circles represent the eyeballs, seen from
above. The filled circles represent spheres in front of the viewer. If the
sizes of the spheres are chosen appropriately, both configurations
create exactly the same stimulus at the retina. There is no way to
distinguish between these situations from stereoscopic disparity alone

probability depends not only on the retinal images
themselves, but also on the brain’s assumptions about
the world, encoded as the a priori probabilities accorded
to each solution. For instance, a preference for small
disparities can be achieved by according a lower prob-
ability to solutions involving large-disparity matches. In
this paper, I develop one possible application of Baye-
sian theory to the correspondence problem.

I am interested in building a biologically realistic
model. The brain performs extensive processing on the
retinal images before tasks such as the correspondence
problem are attempted. A multitude of psychophysical
and physiological evidence suggests that the brain ana-
lyses images in a set of different spatial frequency and
orientation channels, each optimally sensitive to a dif-
ferent Fourier component of the image (Campbell and
Robson 1968; Blakemore and Campbell 1969; de Valois
et al. 1982a,b; Mansfield and Parker 1993; Eagle 1997,
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Prince et al. 1998). In previous psychophysical work
(Read and Eagle 2000), we investigated this aspect of the
correspondence problem by using an illusion which can
be easily explained in terms of Fourier channels, but
which is hard to explain otherwise (Sato 1998). This is
the “reverse phi” motion (Anstis 1970) observed with
anti-correlated two-frame kinematograms. In these
stimuli, the second frame is not only displaced from the
first, it is also anti-correlated; that is, its polarity is in-
verted, so that previously black pixels become white, and
vice versa. The reversed perception obtained with such
stimuli is hard to understand in terms of feature-
matching mechanisms, since if the mechanism is sensitive
to polarity, it will fail, whereas if it is not, it will report
veridical motion. However, a qualitative understanding
is simple if we assume that the phenomenon involves
perceptual channels which have a finite orientation and
spatial frequency bandwidth, each sensitive to a different
region of the Fourier spectrum of the stimulus.

We can qualitatively understand many aspects of our
and others’ results by considering the cross-correlation
function (CCF) of images after filtering by these chan-
nels (Cleary and Braddick 1990; Prince and Eagle 2000b;
Read and Eagle 2000). There is evidence that such a
calculation is carried out in the brain: the firing rates of
disparity- and motion-sensitive complex cells is de-
scribed well by assuming that they carry out a local
cross-correlation of filtered retinal images (Adelson and
Bergen 1985; Ohzawa et al. 1990, 1997); the local cross-
correlations obtained with filters in quadrature phase are
then summed to obtain local contrast energy.

Figure 2 shows the CCF for correlated and anti-
correlated one-dimensional (1-D) noise stimuli, filtered
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Fig. 2. Cross-correlation functions (CCFs) for a filtered disparate
image pair, either correlated (left-hand plot) or anti-correlated (right-
hand plot). The images are white noise with a disparity of 16 pixels,
following filtering by model spatial frequency channels. Each channel
is represented by a Gabor filter with bandwidth 1.5 octaves. The
graphs show the mean CCFs (normalised to unit amplitude) which
would be obtained by averaging over a large number of random
images. In each case, the CCF of the anti-correlated image pair is the
inverse of that for the correlated image-pair. When the images are

o
displacement

correlated, the CCF has its central peak at the true displacement for
all filters (16 pixels, indicated by the dashed vertical line). When the
images are anti-correlated, the CCF has its central trough at 16 units,
but its side-peaks occur at different positions (d + 4/2) for the
different filters. The filters illustrated all have 4 > 24, so the side-peak
closest to the origin is on the left of the origin. Thus, if these channels
reported the position of the peak closest to the origin, they would
agree on the sign of the displacement (which would be the reverse of
the true value), but would differ on its magnitude



by 1l-octave channels centred on three different spatial
frequencies. The finite bandwidth of the channels re-
moves the ambiguity found with sine-wave gratings. For
correlated stimuli, the CCF always has its largest peak at
the correct displacement d, irrespective of the preferred
spatial period and orientation of the channel. If the
channel reports the position of the largest peak, it al-
ways gives the correct displacement. However, there is
evidence for perceptual reversal at large displacements
of narrow-band stimuli (Cleary and Braddick 1990;
Prince and Eagle 2000a; Read and Eagle 2000). This
suggests that, for larger d, the preference for matches
with small displacement wins out over the preference for
larger peaks: the subsidiary peak which is closest to the
origin — although on the wrong side — is chosen in
preference to the largest, correct peak. The existence of
an upper limit Dy, on direction discrimination can be
explained by arguing that, eventually, the subsidiary
peaks close to the origin become small enough to be lost
in noise, while the large veridical peak is considered too
far from the origin to be accepted. One prediction of this
qualitative model is that, for a single channel, Dy, is
proportional to the preferred period A. This is consistent
with experimental evidence across a range of spatial
frequencies (Chang and Julesz 1983; de Bruyn and Or-
ban 1989; Cleary 1990; Cleary and Braddick 1990;
Smallman and McLeod 1994).

For anti-correlated stimuli, the CCF is inverted. It
has two peaks corresponding to the troughs on either
side of the central maximum for the correlated stimulus,
at d + /2. If the peak nearest the origin is the most
likely to be chosen, and d < A/2, this is in the wrong
direction. Quantitative models based on these ideas can
explain a wide range of data (Prince and Eagle 2000b).

Fourier’s theorem provides us not only with a for-
mula for decomposing an image into its constituent
components, but also with an inverse transform for re-
covering the image from a knowledge of its components.
An analogous process must occur within the brain to
provide us with our unified perception of the visual
world. Thus, to explain the results obtained with broad-
band stimuli, we need to understand not only how each
individual channel arrives at a perception of displace-
ment, but also how information from different channels
is combined. We have previously investigated this in a
series of psychophysical experiments using broad-band
anti-correlated stereograms and kinematograms (Read
and Eagle 2000). The value of anti-correlated stimuli is
that they are expected to produce conflicting responses
from channels tuned to a different spatial period 4 and
orientation 6, since peaks in the cross-correlation func-
tion occur at horizontal displacements of d + (2m + 1)1/
(2cos 0), where m is an integer. This is in contrast to the
situation for correlated stimuli. Here, the largest peak
occurs at the correct position d for every channel, even
though the position of the subsidiary peaks d + mi/
cos 0 differs between channels. Studying the responses to
anti-correlated stimuli can yield insight into how con-
flicting responses are combined.

In our psychophysical work (Read and Eagle 2000),
we studied conflict between different spatial frequency
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channels by using 1-D anti-correlated filtered noise with
a bandwidth of 5 octaves. Since these images contain
only vertical orientations, they are expected to activate
just one orientation channel. However, their broad
spatial frequency bandwidth should activate a wide
range of spatial frequency channels. We found that such
broad-band anti-correlated images produced only weak
reversed perception. For motion as well as stereopsis,
the performance was much closer to chance than for
anti-correlated narrow-band images. This suggested that
conflict between different spatial frequency channels was
impairing, but not completely preventing, a coherent
perception. Because the stereopsis and motion results
were very similar for these 1-D stimuli, we suggested that
the stereopsis and motion systems probably use a similar
means of combining information from different spatial
frequency channels.

We next presented our subjects with broad-band 2-D
images, containing the full range of orientations. We
expected these to produce still more cross-channel con-
flict, since now there is disagreement between channels
tuned to different orientations as well as those tuned to
different spatial frequencies. In accordance with this
expectation, stereoscopic performance was slightly
closer to chance than for the 1-D stimuli. However, to
our surprise, the perception of reversed motion was
greatly enhanced. Most subjects now reached perfor-
mance close to 0%, indicating a reliable perception of
reversed motion (Anstis 1970; Sato 1989). We suggested
that this might indicate a difference in how the stereo
and motion systems combine information across orien-
tation channels. According to the model developed
above, for small displacements (d < 1/(2cos0)), differ-
ent orientation channels agree on the direction of the
displacement, but not on its magnitude. We argued that
our results could be explained if, in motion, conflicting
reports from different channels do not impede a clear
perception of displacement provided the values reported
from different channels agree on the direction of the
displacement, whereas in stereopsis, a clear perception
can be formed only if different channels agree both on
the magnitude and sign of disparity.

In fact, although a quantitative model based on these
ideas is capable of providing a good match to experi-
mental results, it is not necessary to postulate that the
two systems differ in how they combine information
from different orientations in order to explain the ex-
perimental results. In the present paper, I show that the
difference between the stereopsis and motion results can,
in fact, be explained economically by using stereopsis
and motion models which are essentially identical
structurally. The different pattern of results is accounted
for by the different values of two free parameters: the
amount of noise and the strength of the preference for
small disparities. By choosing these parameters appro-
priately for each model, we can reproduce the experi-
mental finding that the two systems perform similarly
for 1-D stimuli, both correlated and anti-correlated,
while differing strongly in their response to 2-D anti-
correlated stimuli. Thus, our original suggestion that the
two systems adopted a different algorithm for combining
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information from different orientation channels, while
plausible, is not the simplest way of explaining the data.

The model proposed here is closely based on the
known physiological properties of cells in striate cortex.
The initial filtering of the retinal image is carried out by
simple cells with receptive fields of different spatial fre-
quencies and orientations. These feed into complex cells
according to the energy model (van Santen and Sperling
1984; Adelson and Bergen 1985; Ohzawa et al. 1990,
1997). The extraction of displacement is based on the
output of these complex cells. In this, the model is close
to previous approaches (Sanger 1988; Qian 1994; Fleet
et al. 1996; Zhu and Qian 1996; Qian and Zhu 1997
Prince and Eagle 2000b). However, it differs in the use of
Bayesian analysis to calculate the probability of each
possible match between the two images. The Bayesian
approach provides a natural way to incorporate the
preference for smaller displacements, and to combine
information across different channels.

For each system (stereopsis/motion), the model is
tested with twelve different sets of data: correlated and
anti-correlated stimuli with six different spectral profiles.
With two free parameters, representing the level of ret-
inal noise and the strength of the prior preference for
small displacements, all twelve sets of experimental re-
sults can be matched reasonably well. In particular, the
model reproduces the observation that, with anti-cor-
related stereograms containing power at all orientations
and spatial frequencies, subjects perform close to
chance, whereas with the same stimuli presented as
kinematograms, they consistently report the wrong
answer.

2 Methods
2.1 Images

The images used are the same as in our psychophysical
work (Read and Eagle 2000). At the viewing distance
used, the 128 x 128 pixels of the image took up
1.7° x 1.7° on the retina. Our images were constructed
to maximise cross-channel conflict by supplying the
same power to each spatial frequency and orientation
channel. Spatial frequency channels have been estimated
to have roughly equal octave bandwidths across a range
of frequencies (de Valois and de Valois 1988). We
therefore constructed our images to have equal spectral
power in equal octaves, a property approximately
exhibited by some natural images. For 1-D patterns,
this meant that the Fourier power had to scale inversely
with frequency; for 2-D patterns, as the inverse-square
of frequency. We used a variety of spatial frequency and
orientation bandwidths. In each case the central fre-
quency was 3.2 cycles per degree. The contrast of images
with different bandwidths was set so as to preserve the
property of equal power in equal octaves, so that the 5-
octave images had /5 times the contrast of the 1-octave
images. Similarly, we wished the channels tuned to
vertical orientations to be activated equally by our 1-D
and 2-D stimuli. Since there is both physiological and

psychophysical evidence that the bandwidth of orienta-
tion channels is approximately 30° (Campbell and
Kulikowski 1966; de Valois et al. 1982b; Mansfield
and Parker 1993), we gave each 30° orientation band of
our 2-D images the same power as a 1-D image of the
same octave bandwidth.

At every trial, the image was “‘shuffled” in the same
way as for human observers (Read and Eagle 2000): a
random number of columns of pixels were removed
from the right edge of the stored image and added back
onto the left edge; then, a random number of rows were
removed from the top of the image and added onto the
bottom. In the psychophysical experiments, this shuf-
fling was to avoid providing a monocular cue to dis-
parity by having particular features recurring in the
same place. In the computer model, shuffling ensured
that the position of particular features in the stored
images was randomised with respect to the retinal array
of receptive field centres (shown in Fig. 5).

In both psychophysical experiments and computer
simulations, the shuffled image formed the stimulus to the
left eye/first frame. This was then displaced by wrapping
columns of pixels around to form the stimulus for the
right eye/second frame. This preserved the Fourier
spectrum of the band-pass stimuli without introducing
luminance discontinuities (Read and Eagle 2000).

2.2 Experimental procedure

In both motion and stereopsis psychophysical experi-
ments, we used a two-interval forced-choice protocol.
Observers pressed a keypad button to indicate which
interval contained rightward motion/crossed disparity.
Subjects performed 80 trials at each of 7 displacements.
The motivation for using a two-interval protocol was to
circumvent any observer bias, for example a tendency to
perceive crossed disparity. We assumed that, in the event
of perceptual ambiguity, subjects would report which
interval seemed to contain the most crossed disparity/
rightward motion. The model is constructed according-
ly. In each interval, the model is presented with two
images, corresponding to left/right retinae for the stereo
model, and first/second frames for the motion model. It
compares these two retinae/frames and arrives at an
estimate for the global displacement in the horizontal
direction in that interval. It then reports which interval
contained the most crossed disparity/fastest rightward
motion. If the same displacement was estimated for both
intervals, the model reports either interval at random.
The method of obtaining the estimated global horizontal
displacement is described in the following sections.

2.3 Initial processing

The Bayesian probability analysis is based on the output
of displacement-tuned complex cells described by the
energy model put forward by van Santen and Sperling
(1984) and Adelson and Bergan (1985) in the context of
motion, and adapted for stereopsis by Ohzawa et al.



(1990, 1997) and Fleet et al. (1996). The sterecopsis and
motion versions of the energy model are essentially the
same. In each case, the complex cell receives input from
a set of four simple cells, which in turn receive input
from a matched pair of receptive fields (RFs). In the
stereopsis version of the model, the simple cells are
binocular: they have RFs in each retina. In the original
motion model, the two RFs represent different temporal
phases of the response. One set of RFs responds to the
first frame of the kinematogram, and the other to the
second frame. Physiologically, this could be achieved by
a dynamic RF function, which varies with time as well as
space. I do not model the temporal profile in detail, but
simplify it into two snapshots, representing the average
response to the first and second frames. In what follows
I describe the stereopsis version of the energy model,
indicating occasionally how the interpretation would be
modified for motion-sensitive cells.

There is evidence that simple cells exhibit nearly lin-
ear spatial summation (Hubel and Wiesel 1962; Movs-
hon et al. 1978; Anzai et al. 1999a), although including
an output non-linearity. The model assumes that simple
cells respond to the difference I(x,y) between the lumi-
nance at a given point (x,y), and the mean luminance
across the whole retina. They calculate the convolution
of this difference with their RF function p(x,y), which
gives the cell’s response to a spot of light at position
(x,») in the retina. Negative values of p(x,y) represent
an OFF region, in which bright stimuli tend to suppress
firing. The spatial frequency and orientation tuning de-
pends on the RF profile. In the model, simple cell RFs
are represented by Gabor functions (Appendix A), since
most real simple cell RFs can be fitted well using a
Gabor function with appropriate parameters.

Because simple cells have a low baseline firing rate,
they cannot signal negative values, and so output a half-
wave rectified version of this convolution. The output of
a simple cell with RF centred on (xo, ) is therefore

S(x0,30) = Pos <//dXdy I(x,y)p(x — x0,y —yo))
= Pos(v(xo,w)) (1)

where Pos represents half-wave rectification and we
define v to represent the convolution of an image with an
RF. However, the energy model side-steps this half-wave
rectification by assuming that simple cells occur in pairs
whose RF functions are inverses of each other, so that
every ON region in one cell is matched by an OFF
region in the other. The effect of this is to remove the
half-wave rectification (because Pos(x) — Pos(—x) = x).
Thus, the value of the convolution v is encoded by the
difference in the firing rates of two simple cells, only one
of which fires in response to any given image.

The simple cells which feed into each complex cell are
divided into two types, with different receptive field
symmetry. One set has a RF with even symmetry — for
example, a central ON region flanked by two weaker
OFF regions. The other set has odd-symmetric RFs —
for example, an ON region next to an OFF region of the
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Even receptive field Odd receptive field

Fig. 3. Even and odd receptive fields (RFs). Both RFs are Gabor
functions with a spatial frequency bandwidth of 1.5 octaves and
orientation bandwidth of 30° (see Appendix A). The model retina
shown is 128 x 128 pixels, and the preferred spatial period of both
RFs is 32 pixels. The same greyscale is used in plotting both RFs.
Bright regions of the plot represent ON regions of the RF; dark
regions represent OFF regions

same strength (Fig. 3). I shall refer to these as odd and
even simple cells. The choice of purely even and odd cells
is convenient but arbitrary (Ohzawa et al. 1990, 1997).
The only requirement of the energy model is that the
simple cells feeding into each complex cell should be
divided into two groups differing in phase by n/2.

A binocular simple cell is achieved by combining four
such monocular simple cells. I assume that all four have
same-symmetry RFs (all even or all odd), with the same
orientation and spatial-frequency tuning. Two of the
monocular cells excite the binocular cell, and two inhibit
it. The firing rate of the binocular cell is the half-wave
rectified sum of its inputs:

B = Pos{Pos[vy(xor,yor)] — Pos[—vr (xoL, yoL)]
+Pos[vr (xor, yor )] — Pos[—vr (xor, Jor )]}
= Pos{vr(xoL, yoL) + vrR (Xor, J0R)} - (2)

Four such binocular simple cells feed into each complex
cell. The output of the complex cell is assumed to reflect
the sum of the square of its inputs. This squaring non-
linearity is the reason for the name “‘energy” model.
Again, I assume that binocular simple cells are combined
in pairs whose receptive fields are inverses of one another.
Since [Pos(x)]* 4 [Pos(—x)]* = x2, the effect of this is to
remove the half-wave rectification in (2). Finally, then,
the output of the complex cell can be written

2 2

C(XoL, Yo, Xor, Jor) = [U5Y" + v | +[vp9d + v,
— [Uiven]Z + [U(]:{ven]Z + [Uidd}z + [U%dd]2
42 [Uiven U?{ven + Uidd v(}){dd] ) (3)

Equation (3) represents the response of a complex cell
tuned to horizontal disparity (xop —xor) and vertical
disparity (yor — yor ). The motion energy model involves
entirely analogous expressions. Instead of the subscripts
L and R (for left and right retinae), we have 1 and 2 (for
first and second frames). The cross-terms represent a
local cross-correlation between filtered versions of the
first and second frames. The difference between the
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stereo complex cells tuned
to horizontal disparities

Fig. 4. Schematic wiring diagram of disparity-sensitive complex cells
(left) and motion-sensitive complex cells (right). Complex cells receive
input from simple cells with RFs at different positions in each image.
The array of circles represent the possible locations of simple cell RFs
on the retina. The circles represent the centre of each receptive field
(there is one such array for each spatial period A and orientation 6). In
the stereopsis model, complex cells receive input from simple cells at
the same vertical position on each retina. The results shown in this

positions of the RFs in the two images determines the
displacement/disparity tuning of the complex cell. That
is, my models are based on position rather than phase
disparity, and incorporate only tuned-excitatory cells
(Poggio and Fischer 1977).

The monocular terms represent the local intensity of
the filtered images. For instance, 1{""(xor, 1) repre-
sents the intensity, at the retinal position (xr,yor), of
the left image after filtering by an even Gabor function.
The cross-terms represent a local cross-correlation be-
tween the filtered images in each eye. Thus, the energy
complex cell computes the contrast energy of the two
images, after filtering them through a band-pass filter
tuned to a particular spatial frequency and orientation.

The receptive fields of the component simple cells
endow the complex cell with its spatial frequency and
orientation tuning. The spatial period and orientation of
the carrier cosine grating correspond to the preferred
spatial period and orientation of the simple cell. The
spatial extent of the envelope determines its spatial fre-
quency and orientation bandwidths. Evidently, simple
cells with wider envelopes relative to the carrier cosine
have narrower bandwidths (Appendix A).

The energy model captures several features of real
complex cells (Ohzawa et al. 1990, 1997; Anzai et al.
1999b). The response is unchanged by inverting the
contrast in both images (e.g. the cell responds equally to
two bright bars as to two dark bars). It responds best to
features with a particular displacement, irrespective of
precisely where they occur within its receptive field. The
energy model does not capture the reduced response of
complex cells to anti-correlated stimuli (Ohzawa et al.
1990; Cumming and Parker 1997; Read et al. 2000).
However, if we assume that all complex cells have their
responses reduced by the same factor for anti-correlated
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motion complex cells tuned
to different displacements

paper used an 9 x 9 array of retinal RF positions. Thus, within each
spatial frequency/orientation channel, there are 93 = 729 complex
cells tuned to zero vertical disparity, of which four are shown
schematically here. In the motion model, there are 9* = 6561 complex
cells, tuned to displacements in all directions. Four are shown
schematically, receiving input from simple cell RFs at (in general)
different horizontal and vertical positions in each frame

stimuli, this complication should make little difference to
the results of the modelling.

In the model, a particular spatial frequency/orienta-
tion “‘channel” corresponds to a population of complex
cells tuned to spatial period A and orientation 6. Psy-
chophysical and physiological evidence suggests that the
orientation bandwidth of both stereopsis and motion
channels is around 30° (Campbell and Kulikowski 1966;
Mansfield and Parker 1993). I therefore set the orien-
tation bandwidth to 30° for all channels, although in
reality this may be an over-simplification — for instance,
channels tuned to vertical orientations may have smaller
bandwidth than those tuned to off-orientations. Thus,
six orientation channels, tuned to 0°,30°, 60°, 90°, 120°
and 150°, cover the full range. Psychophysical and
physiological evidence suggests that, across a wide range
of spatial frequencies, different channels have roughly
the same octave bandwidth, around 1-2 octaves (de
Valois and de Valois 1988). I therefore set the octave
bandwidth to the same value — 1.5 octaves — for all
channels, and spaced the spatial frequency channels 1
octave apart. Again, this is an over-simplification, be-
cause in fact there is evidence that higher frequency
channels do have smaller octave bandwidths. The range
of spatial frequencies easily visible to humans spans
around 5 octaves (de Valois and de Valois 1988), so most
relevant frequencies could be covered with five channels,
tuned to 0.6, 1.2, 2.4, 4.8 and 9.6 cycles per degree (1, 2,
4, 8 and 16 cycles per image).

In each retina (for stereopsis) and frame (for motion),
we have an array of n x n monocular RFs. The model
thus has the potential for complex cells tuned to n* dif-
ferent displacements (Fig. 4). I now assume that the
stereopsis system uses only horizontal disparity to re-
construct depth [vertical disparities (Mayhew and
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Fig. 5. This figure shows some of the receptive fields used in the
model. The model retina is 128 x 128 pixels. The array of RF centres
is indicated by the small dots. In each plot, five example RFs are
shown. The left plot shows even-symmetric RFs and the right plot
odd-symmetric ones. The RFs have spatial period 64, 32, 16 and 8
pixels. (No example is shown of an RF with the largest spatial period,
128 pixels, because it would cover almost the whole retina and thus
obscure the other RFs.) Dark shading represents the OFF regions of
the RF, and pale shading the ON regions. Contour lines are also
superimposed. For clarity, the RF functions shown here all have the
same amplitude. In fact, in the model, the higher frequency RF
functions are given larger amplitude, so that despite the smaller extent
of these RFs, all simple cells respond with the same firing rate to their
own optimal stimulus. The model includes 4860 such RF functions:
odd/even RFs at each of the 9 x 9 possible positions on the retina,
with six different orientations and five different spatial frequencies

Longuet-Higgins 1982) do not in any case contribute to
the front/back discrimination task modelled here]. Thus
the stereo model includes only the n* complex cells tuned
to horizontal disparities. Complex cells have RFs centred
at the same vertical position yy in each retina, although
the horizontal positions xo and xor are different in the
left and right retina. In contrast, the motion system must
be sensitive to movement in any direction. The motion
model thus includes the full #* complex cells. In general,
complex cell have RFs centred at different positions in
the first frame (xo1,)01) and the second frame (xo2, y2)-

Within each channel, complex cells have the same
spatial frequency and orientation tuning, but differ in
the location of their retinal receptive fields. With the
assumption of constant octave bandwidth, the spatial
extent of each receptive field scales linearly with the
preferred spatial period. Thus, in order to ensure
equivalent coverage in each spatial frequency channel, it
would be logical to scale the spacing of the RFs ac-
cording to their spatial frequency tuning. In practice,
this is difficult to implement. The spacing of the simple-
cell RFs determines the possible disparities to which a
complex cell may be tuned. If the spacing is different for
different channels it is hard to compare different chan-
nels. Interpolating between the different disparities is
unsatisfactory, because for some stimuli random noise
causes different disparities to be assigned very different
probabilities. I therefore set the array spacing the same
for all channels, irrespective of RF extent. Effectively,
then, the model retina is covered more densely by RFs
tuned to lower spatial frequencies (Fig. 5).

The computer time and memory required increases
very rapidly with the number of RFs (Sect. 2.10) — a
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9 x 9 grid was the largest that was practicable to run.
Yet, if the maximum separation between RF centres is
too small, large displacements will not be correctly
perceived. Conversely, if the minimum separation
between RFs is too large, the model will fail for small
displacements. I needed to build an RF array suitable
for the data I wished to model, which includes dis-
placements ranging from 2 pixels (1.6 arcmin) to 45
pixels (36.4 arcmin). In order to cover this range of
displacements with the smallest possible number of RFs,
I used the irregular array shown in Fig. 5. The nine RF
centres are located at 20, 40, 56, 61, 63, 65, 70, 86 and
106 pixels across the 128-pixel retinal image. The dif-
ferences between these horizontal positions define the
disparities to which the model is sensitive. With this
choice of RF centres, the model is sensitive to 41 dif-
ferent disparities: 0,42, 44, +5 +7,+9, +14,... 441,
+43, £45,+46,+50,+66 and +86 (representing all
possible differences between pairs of RF centres, whose
positions are given above). This range (2-86 pixels =
1.4-69 arcmin) is suitable for the data I wish to model.
Other data might require finer spacing between RF
centres, with the associated computational overhead.

I did not include any RFs centred on positions out-
side the 128 x 128 pixels of the stimulus; i.e. I did not
explicitly model simple cells whose receptive fields fell
predominantly on the grey background region of the
screen. In the psychophysical experiments, attention was
directed to the target region. Furthermore, simple cells
outside the target region have low firing rates and thus
are not expected to contribute to the task, since the
model automatically assigns greater significance to cells
with higher firing rates (Sect. 2.5).

2.4 Noise

The sources of biological noise are currently uncertain.
Opinions vary as to the reliability of cortical neurons
(Stevens 1994; Rieke et al. 1997). 1 started with the
assumption that all the noise in the visual system arises
at the retina (for instance, due to “‘shot” noise from the
finite number of photons arriving at each receptor), with
cortical calculations introducing no additional noise.
Thus, if I(x, y) is the “perfect”” image as presented to the
retina and I(x,y) is the noisy image available to the
brain, then

1(x7y):i(xuy)+ce(xvy) ’ (4)

where ( is the standard deviation of retinal noise and
€(x,y) is a random variable drawn from a standard
normal distribution (mean 0, variance 1).

Since simple cells compute the convolution of the
image with their receptive field, the effect of the retinal
noise is to add normally distributed random noise to the
output of the simple cells. The standard deviation of the
noise affecting each simple cell reflects the integral-
squared of its receptive field function. For the Gabor
receptive fields used here (Appendix A), this turns out to
be
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1 4n’o?
éeven/odd = C\/87I0'x0'y l:l +exp <_ 12 X>:| ) (5>

where the plus sign holds for even receptive fields and
the minus for odd. The model channels have constant
octave bandwidth, so their spatial extent oy, 0o, scales
with their period 4 (Eqs. A6 and AS8). Thus from (5), the
amplitude of the noise on the convolution scales as 1/4.

When implementing the model computationally,
noise is in fact added directly to the convolutions cal-
culated by the simple cells, rather than to the retinal
images themselves. This means that our model has to
include only the 128 x 128 pixels of the experimental
stimulus itself, and not a surrounding region represent-
ing the grey background, even though the receptive fields
of some simple cells extend into this background. The
grey region contributes nothing to the mean firing rate
of such cells, and the additional noise it contributes is
taken into account in the square of the integral.

2.5 Bayesian analysis

Each spatial frequency/orientation channel consists of a
set of complex cells, tuned to different horizontal and (in
the case of motion) vertical displacements. Consider a
motion-tuned complex cell that receives input from
simple cells with RFs centred on (xg1,) in the first
frame for motion, and (xg,, 1y2) in the second frame. The
complex cell is thus tuned to a horizontal displacement
of (xo1 —xo2) and a vertical displacement of (yy1 — y2).
Effectively, it is considering the possibility that the
region around (xo;,)01) in the first frame corresponds to
the region around (xg2, 392) in the second. Each complex
cell in a given channel is considering a different possible
match. Evidently, a stimulus of a particular disparity
will preferentially activate complex cells tuned to that
disparity. Thus, one obvious way to judge the disparity
of the stimulus from the activity of the complex cells is
to see which complex cells are responding most vigor-
ously (Qian 1994; Fleet et al. 1996; Zhu and Qian 1996;
Qian and Zhu 1997; Prince and Eagle 2000b). However,
I found that a modification of this approach, incorpo-
rating a Bayesian probability analysis, was more suc-
cessful at capturing the observed psychophysical
response to broad-band and anti-correlated stimuli. In
what follows, I discuss the Bayesian analysis in terms of
the motion model, since that is more general. The
discussion can easily be adapted to the stereopsis model
(“first/second frame’ becomes “‘left/right retinal image”
etc.), with the additional restriction to zero vertical
disparity.

The first step in the Bayesian analysis is to calculate
the relative probability of the possible matches con-
sidered by the whole population of complex cells in
each channel. First of all, I invoke the smoothness or
continuity constraint. [ assume that the disparity
varies only slowly across the image, so that across
each receptive field, the local disparity is approxi-
mately constant. Since the octave bandwidth is ap-
proximately constant across different channels, the size

of the receptive field scales linearly with its preferred
spatial period. This means that different channels
“smooth” out disparity variations over a scale de-
pending on their spatial period. Some form of
smoothness or continuity constraint like this is neces-
sary in order to arrive at a unique solution of the
fundamentally ill-posed correspondence problem (Marr
1982). We can then argue that, if the feature at
(xo1,301) in the first frame really does correspond to
the feature at (xp,)02) in the second, the first and
second frames are locally related by

I (x,y) = L(x — xo1 + X02, ¥ — Yo1 + Y02) - (6)

It is then easy to prove that, in the absence of retinal
noise, the convolution of the first image over each simple
cell’s first RF would be the same as the convolution of
the second image over the corresponding second RF:

= //dxdypeven(x—xoz,y—yoz)lz(X,J/)
— g (7)

The importance of this observation is that it enables
the response of the motion-sensitive complex cell to be
predicted from a knowledge only of the convolutions of
the first image. The difference between this prediction
and the actual firing rate of the model complex cell
enables us to assess the validity of the assumption that
the match considered by this complex cell is correct.
Some difference is expected, due to the noise. However,
the greater the difference, the less likely it is that this
match is correct. We can quantify this notion mathe-
matically.

We wish to assess the probability that (4) the retinal
position (xo;,01) in the first image really does correspond
to position (xg1,)01) in the second image, given (B) the
firing rate of the complex cell, C(xo1, Yo1,X02, Y02), together
with the convolutions of the first image over even and odd
receptive fields, v$"*"(xo1,01) and v‘l’dd(x()], yo1)- We use
Bayes’ theorem, which states that 2{A|B} = #{B|4}
P{A}/P{B}, where ?{A} represents the prior probabil-
ity of event 4, and 2{4|B} represents the probability of
event 4, given that event B has occurred.

One possibility would be to consider the complex-cell
firing rate C directly, and compare this to the value
expected in the absence of noise and assuming that the
match is correct. From (3), this expected value is
4([1}?““]2 + [v‘l’dd]z). It turns out to be more convenient to
normalise the complex cell firing rate by dividing by the
expected value. I refer to this normalised value as K,
where the subscript indicates that the expected value was
estimated using the values of convolutions in the first
frame:

C (01,01, %02, Y02)
[65v" (xo1, 301)]> + [099 (xo1, y01)]

(8)

K (xo1, Y01, %02, 02) =



If the complex cell really is tuned to the correct match,
then we would expect this normalised firing rate K; to be
1. The further it departs from unity, the less likely it is
that the cell is, in fact, tuned to the correct match.

Mathematically, we are calculating the Bayesian
posterior:

P{(x01,501)< (x02,)02) |K1 (x01,)01,X02,)02),

cven

o§*" (xo1,301), 07 (xor,301) }
= 2{ K\ (xo1,)01,%02,02) | (Xo1, 01 )= (X02,302),
o1 (xXo1,)01), U(fdd (xo1,301)}
Xg{(xm,ym)@(xoz,yoz) v§¥e (xo1, )01 ), 0594 (o1, 301) }
P{K:1(xo01,)01,%02,302) |15 (xo1, 301 ), 099 (o1, 301) }
)

where the symbol < means “corresponds to” or ““is the
correct match for”. In the following sections, each term
on the right-hand side of this equation is now discussed
in detail. By making appropriate assumptions regarding
the brain’s experience of the visual world, each term on
the right can be evaluated. Hence, we can derive the
probability that the match under consideration is
correct. For brevity, from now on this probability will
be written simply as

Po:{(xo1,¥01) & (x02,02) }
= 2{(xo01,501) (x02,02)| K1 (X1, Y01, %02, J02),

cven

v (xo1,301), U?dd(xm,ym)} ) (10)

where I have dropped the explicit reminders that this
probability depends on the normalised complex-cell
firing rate and monocular convolutions, in favour of a
more compact subscript 04. This reminds us that this is
the local single-channel probability, derived from the
output of a single complex cell, looking at a particular
region of the retina, and tuned to a particular spatial
period 1 and orientation 6. In Sect. 2.9, I discuss how to
combine information from different channels.

2.6 The prior

The numerator in (9), ,@{(xm, 1) € (%02, y02)|v‘1"’e“
(xo1,01), 199 (x01,301)}, is the Bayesian prior. Mathe-
matically, it describes the a priori probability that retinal
position (xo1, o1 ) in the first frame corresponds to retinal
position (xp2,1p2) in the second frame, given the
monocular convolutions v*°®(xo1,y1) and v§9(xo1, yo1).
The single-frame convolutions can contain no information
about the correspondence, so the values v8*™ and v%¢ are
irrelevant. However, not all possible matches are con-
sidered equally probable. This is where we build in the
brain’s preference for small displacements. The prior
probability of a match is assumed to depend on the
magnitude of the displacement (not its direction):
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Fig. 6. The Bayesian prior, incorporating a preference for small
disparities. The solid line shows the priors employed in the models.
These are Helmholtz-coils functions (13) with D =10 pixels, 7.5
arcmin. For comparison, the dotted lines show a Gaussian with
standard deviation D. The functions are very similar, but the Gaussian
is more sharply peaked at the origin

0= \/(xm —x02)*+ 001 — 302)” - (11)
Thus

P{(xo1,)01) & (xoz,yoz)|v‘fve"(x01,yo1)v?dd(x01,y01)}
= 2{d} , (12)

where #{4} is a prior probability function describing the
brain’s assessment of how intrinsically likely it is to
encounter a match with displacement ¢. This, presum-
ably, depends on the brain’s experience of the visual
world built up throughout life. As discussed, it appears
that the brain considers small displacements intrinsically
more likely. In the model, I used the prior probability
function shown in Fig. 6:

P8} = [Dz + (8- D/Z)Z} B
+ [DZ + (6 +D/2)2} R (13)

where D is a scale length, defining which disparities count
as “small” (the prior probability falls to roughly half its
maximum when é = D). I chose the form given in (13)
because it is very flat at the origin; the first four
derivatives are zero. (The inspiration came from classical
electromagnetism: the function in (13) in fact describes
the magnetic field in between two Helmholtz coils, an
arrangement designed to give a region of extremely
uniform field.) This property was chosen so that the
model brain would prefer small disparities to larger ones,
but would not show such a strong preference for zero
disparity as, for example, a Gaussian. In addition, the
Helmholtz function, having broader shoulders, is more
tolerant of large disparities than a Gaussian. However,
the precise form of the function is not important. I have
experimented with a Gaussian (exp(—0d%)) and obtained
similar results; Prince and Eagle (2000b) used an
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exponential (exp(—|d|)) for a similar purpose (although
not actually a Bayesian prior). The key property is that
the function declines monotonically with the magnitude
of the displacement.

2.7 The likelihood
The first probability on the right-hand side of (9),

P{K:(xo1, 301, %02, %02) | (¥o1, 01 )& (o2, )02),

v§¥ (o1, yor ), 5% (o, yo1) }

is the Bayesian likelihood. It is the probability of
obtaining a particular normalised complex-cell firing
rate, given the convolutions of the first image over odd
and even cells, and the assumption that the postulated
match is correct. This probability distribution can be
derived analytically using the smoothness constraint
discussed in Sect. 2.5.

We have seen (7) that in the absence of noise, given
that the match is correct and disparity is locally con-
stant, the convolution of the first and second images
across corresponding receptive fields are equal. That is,
757" = 550 and 9999 = 994 (7), where we use a tilde to
denote the ““ideal” convolutions which would be ob-
tained if the retinal image were free of noise. In fact, the
brain has access only to the noisy values
(V" = o5V + E"e etc.), where ¢ is the amplitude of
noise on the convolution (5), and we are using € to
represent a random variable drawn from a standard
normal distribution. We assume that the noise is un-
correlated between frames and in different retinae. The
noisy convolutions are therefore related by

cven cven __ cven
PEYen — v — ggeveny/p,

Ugdd _ U(I)dd — Eded\/E ) (14)

Note that the average difference between the noisy
convolutions is still zero, as it would be in the absence of
noise.

The firing rate of the complex cell is (3)

even
U1

v 2
C(xo1, yo1, %02, y02) = [05" (o1, y01) + 05" (x02, Y02 )]
2
+ [U?dd (o1, yo1) + v3% (x02, 02)]
(15)
If the postulated match is correct, we can substitute for

05" and vgdd in (15) from (14):

even zeven 2
C(xo1, Y01, %02, Y02) = [201 (xo1,y01) + €€ \/ﬂ
2
+ {2U?dd(xO1,y01) + Gded\/E] .
(16)

In the Bayesian analysis, we normalise the complex cell
firing rate by dividing by the value which would have
been obtained in the absence of noise:

- 2
C(xm,ym):[zvéfven(xm,ml)]%r[Zv?dd(xmaym)] . (17)

Thus we define K| = C/C~v (8). We can then use (16) to
derive an analytical expression for the probability
density function (PDF) of K, describing what noise-
related fluctuations in K; can be expected under the null
hypothesis that the complex cell is tuned to the correct
match. This turns out to be

P
r - 2
X 7/22 dw{ exp —ﬁ vV — %(H—sinw)
iy i
+exp —ﬁ vV + %(H—Sinw) 2
X { exp —ﬁ u‘l’dd—\/%(l—sinw) 2
+exp —ﬁ 0% 4 %(l—sinw) 2_ ,

(18)

with ¢ given in (17). This must be evaluated numerically
for each complex-cell response (since the PDF depends
on three variables, it was not practical to store it as a
look-up table). I used the trapezoidal rule with 200 steps.
If neither even nor odd simple cells were firing, so that
¢ = 0, the normalised complex cell response is undefined.
If this occurred, the PDF was set equal to zero.
However, this was unlikely to occur, since the retinal
noise means that simple cells maintain a small firing rate.

The likelihood itself is then f(Kj,v$*", v949)dK;.
However, since the normalised units are the same for all
channels and all contrasts, the dK; term simply intro-
duces an overall scaling factor, and can therefore be
neglected (this, in fact, was the motivation for using the
normalised response).

2.8 Complex cells

The last term on the right-hand side of (9) is the
denominator .@{Kl (X()] , )01, X()z,y()z) |U?Ven (XQ1 , o1 ), U(l)dd
(xo1,%01)}- In principle, this can be deduced from (9)
by summing both sides over all possible situations and
requiring the result to equal unity. In the summation, we
must take into account not only all possible matches
(x02,302) in the second frame for the point (xo1,)01)
under consideration in the first frame, but also the
possibility that (xo1,101) actually has no such match. In
the stereopsis case, there are many everyday stimulus
configurations in which certain features are visible to



only one eye; in motion, one object may pass behind
another and hence disappear. We therefore require, for
each spatial frequency and orientation channel,

(x()l » o1 )7

(on»yoz)

.@{(x017y01)<:> ®|K1 (x017y017x02,y02), U(]iven
”?dd(xm,ym)} + Z P{(xo1,y01)=
(x02:302)

K1 (x01, yo1, %02, Y02), -

dd _
00, 00) =1, (19)
where the notation “(xg1,)01) < 07 means ‘“the point

(x01,)01) has no matching point in the other frame”.
Using this constraint in (9) and rearranging, we obtain

Uefven (x01 , o1 ),

cven

P{K1 (xo1,¥01, %02, 702) | 05" (¥o1, yo1 ), 0§ (xo1, 301 }

= 7{K1 Xo],y017x027y02)|(x01’y01)
PN @ Ueven(x()l’ym)’vldd(xO],ym)}y{(xOlayOl) AN @}
+ Z 2{Ki(xo1, 31, %02, 702) | (o1, yor )

(x02,02)
And (x027y02)7 (xo1,¥01), v (xmaJ/m }Q{ (x01, y01)
< (X02,02)} - (20)

To calculate this, we would have to make further
postulates. We need the brain’s a priori assumptions
about the firing rates of simple and complex cells (in
order to assign probabilities to the possible values of K;
when the complex cell is not tuned to the correct match),
and about the probability of occlusion (that is, 2{(xo,
yo1) < 0}). Rather than introducing these complica-
tions, I simply assume that the function 2{K;(xo1, 01,
X()z,yoz |U en x01,y01) dd(xm,ym)} is the same for each
spatial frequency/orlentatlon channel. It then becomes
an overall constant, whose value is irrelevant. If this
assumption is wrong, it will have the effect of differen-
tially weighting the various spatial frequency/orientation
channels, giving anomalously high weight to those
channels which should have a low value of 2{K|(xo,
Yo1,X02, 02) |15 (xo1, o1 ), 199 (xo1,01)}. However, the
fact that the complex-cell firing rates have been norma-
lised — so that, for noise-free complex cells tuned to the
stimulus disparity, K; = 1 irrespective of the channel
orientation or frequency — at least makes the assumption
plausible.

Let us review what this rather involved calculation is
telling us. We have started with a particular point in the
first frame, (xo1,)01). We know the local convolution of
the noisy, filtered retinal image in the vicinity of this
point. We then look at all the potential matches in the
second frame. Assuming that each match in turn is
correct, we are able to predict the normalised output of
the complex cell tuned to that match. We can thus assign
a probability to the normalised output actually observed
from that complex cell. It is of course equally possible to
pursue this calculation from the other direction: that is,
to start with a particular point in the second frame,
(x02,302), and assign a probability to the output of each
complex cell using K, instead of K. In the computer
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program, I took the average of both these probabilities.
This was particularly motivated by the stereopsis model,
where it seemed desirable to treat both retinae equally.

2.9 Global judgement of displacement direction

Putting together these expressions for each term in the
right-hand side of (9), we arrive at the probability that
the match under consideration is correct, given the firing
rate of the complex cell and the monocular convolu-
tions. So, finally, we arrive at the local single-channel
match probability

& (Y02, 002)} = P{O}[f(Ky, o5, v9%Y)
Hf (Ko, 05, 099)] L (21)

Po:{(xo01,501)

with f given in (18). Recall that this is the probability
reported by a complex cell tuned to a single spatial
period A and orientation 6. The model brain then
averages the different local single-channel probabilities
so as to arrive at a global judgement of the overall
direction of displacement in each interval of a two-
interval forced-choice experiment. It should be stressed
that this averaging process is purely heuristic; it is not
based on statistical theory. Thus, its justification
depends on the extent to which it can reproduce
experimental data. A full mathematical treatment,
remaining within the Bayesian framework, would
require us to consider the responses of all complex
cells together. Rather than the PDF of the complex
cell response, (18), describing the probability of
obtaining a particular firing rate from one complex
cell if the stimulus locally has the disparity to which
the complex cell is tuned, we would require the joint
PDF describing the probability of getting a particular
set of firing rates from the entire population of
complex cells, given that the stimulus has the global
disparity J,. Since the responses of different complex
cells are evidently not independent, this joint PDF
could not be resolved into a product of single PDFs
like (18). As well as being highly intractable, this
analysis might also be less satisfactory as a model,
since it would give individual channels the power of
veto. Logically, if the value from any complex-cell is
inconsistent with a global stimulus disparity (in the
sense that the probability of obtaining the observed
complex-cell firing rate, given the outputs of monoc-
ular simple cells in one eye, is zero), then that global
stimulus disparity cannot be correct and must be
assigned probability zero. Thus, a model of this form
would not be misled by false matches unless they were
considered plausible by all channels. Such a model
might well be an ideal disparity detector. However, it
is hard to see how such a model could yield
systematically wrong answers for anti-correlated ki-
nematograms, as observed from human subjects. The
present model was designed to be misled by false
matches in the same way as humans apparently are.
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Fig. 7. The square model retina results in more complex cells tuned
to zero disparity. Each dot represents a different complex cell; its
position on the grid shows the horizontal position on left and right
retinae of the RF centres of the component monocular simple cells (in
pixels). The thick line marks complex cells tuned to zero disparity,
where the simple cell RFs are at corresponding positions in left and
right retinae. The thin line marks complex cells with a disparity of 30
pixels. Evidently there are more of the former than the latter.
Specifically, M (d,) =9 for 6, =0; M(d,) = 2 for J, =30 pixels (22)

Thus, the probability of a particular horizontal dis-
parity o, is estimated by averaging the single-channel
match probability 2;0{(xo1,)01) < (x02,302)} over all
spatial frequency and orientation channels, and over all
vertical positions in the receptive field. Finally, we av-
erage over all horizontal positions xg;, xop with the
specified disparity: xo; — xo» = 0,. Here, we have to ac-
count for the fact that there are more complex cells
tuned to zero disparity than to larger disparities, as il-
lustrated in Fig. 7. We thus incorporate a final nor-
malisation factor M(J,), describing how many complex
cells are tuned to the horizontal disparity J, under
consideration. That is,

1
P00 =gy 2

Yo Vo2 X01,X02*

X02—X01 =0

XY > Zo{xonp0) € o)} - (22)
0 2

For the stereo model, the averaging occurs analogously
(with the labels 1, 2 replaced with L, R). The only
difference is that the stereo model does not include
complex cells tuned to non-horizontal disparities, so the
double sum over yy;, 1, in (22) is replaced by a single
sum over vertical position yy.

Having obtained the global match probability
2#{d,}, the global horizontal displacement A, is taken
to be the value of d, for which 2{d,} is a maximum:
A, = argmax(2{d,}). If this maximum is not unique
because several values of J, have equally large
estimated probabilities 2{J,}, the smallest disparity is

chosen. This approach is analogous to that adopted
by Fleet et al. (1996), who also took the average
across all spatial scales and orientations, although
they were summing neural firing rates rather than
probability.

2.10 Implementation

The model is computationally very intense. The results
shown in this paper use an 9 x 9 array of simple cell
RFs on a retina of 128 x 128 pixels, with six orienta-
tion and five spatial frequency channels. These RFs
occupy around 500 Mb of computer memory. Since
there are both odd and even simple cells, whose
response must be evaluated four times for each trial
(two intervals each containing two images), at each
trial 92 x 6 x 5 x 2 x 4 = 19 440 convolutions must be
evaluated. The stereo model includes a total of
93 x 6 x5=21870 complex cells, and the motion
model 9* x 6 x 5= 196 830. The Bayesian likelihood
of each complex cell response must be calculated, which
means evaluating an integral (18) 196 830 times for a
single trial with the motion model. We ran 80 trials at
each of seven displacements for six different stimulus
sets, in both correlated and anti-correlated conditions.
Initial versions of the model, in only one dimension,
were developed on a Macintosh, using MATLAB
(Mathworks, Natick, Mass.) to allow easy visualisation
of model behaviour. After the basic Bayesian approach
had been formulated, the model was rewritten in C for
running on Oxford University’s supercomputer OS-
CAR. It was generalised to two dimensions, allowing the
incorporation of different orientation channels, and
parallelised, with each processor handling a different
set of stimuli. The model was then run on six processors
in parallel, all sharing a model with the same choice of
retinal noise and Bayesian prior, and each running a
different simulated experiment. Under these circum-
stances, the stereopsis model took around 3 days to run
a complete set of simulations (Figs. 8, 9), and the motion
model track over a week.

For each model (stereopsis/motion), the two free
parameters — retinal noise { and bias towards small
disparities D — were adjusted so as to achieve a good fit
to the experimental data. Because the models took so
long to run, an automated fitting procedure was im-
practical. Instead, trial and error was used to find a
reasonable fit, using only a small number of trials
under each condition. Then, for the best parameters
found, the model was run again with the full 80 trials
at each disparity to obtain the results shown in Figs. 8
and 9. With a more thorough exploration of the pa-
rameter space, it is possible that slightly better fits
could have been achieved.

3 Results

Figures 8 and 9 compare the results obtained from the
best models with those obtained from a human subject.
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The stereo data were best fitted with a very narrow
prior (the spread D being just 3 pixels, or 2.4 arcmin)
and very low noise levels: the contrast of the simulated
retinal noise was only 1% of that of the lowest-
contrast image (the 1-D image with a bandwidth of 1
octave). For the motion model, a good match to
experimental data required both much higher noise
levels (20% of the lowest-contrast image) and a wider
prior (D =7 pixels, or 5.6 arcmin). The figures show
the psychophysical functions (percentage of correct
responses) as a function of disparity for the model
(thick lines; circles) and one of our human observers
(R.A.E., Read and Eagle 2000: thin lines; triangles).
Note that the models could not be tested at precisely
the same disparities as the humans. Because of
computational limitations, the models sample the
retinal image rather sparsely, and are thus sensitive
to a limited number of disparities (see Sect. 2). For
example, the model presented here contains no com-
plex cells tuned to a disparity of 12 pixels, and is thus
likely to perform poorly when tested at this disparity,
even though it can “perceive”” 9 and 14 pixels perfectly
well. In order to make a fair assessment of the model,
it was tested only at disparities to which it was

sensitive. Note that this restriction is imposed by
computational limitations, and is not a fundamental
feature of the model. Ideally, the model would
incorporate a very large number of simple cells,
positioned at random across the retina, preferably in
accordance with an experimentally determined distri-
bution.

3.1 Stereopsis model

For the stereopsis model, the best results were obtained
with noise equal to 1% of the contrast of the lowest-
power image (1-D, 1 octave; see Sect. 2), with a bias
towards disparities lower than D = 2.4 arcmin (13).
Figure 8 shows the results obtained with these param-
eters. The model reproduces the key features of the
experimental data reasonably well. For correlated stim-
uli, the model performs close to 100%, as required,
falling to chance at large disparities, where the prior bias
towards small disparities effectively blinds it to the
correct match. The major discrepancy is that the fall
towards chance occurs at larger disparities (““Dmay’") for
the model than for the human observer. This is especially
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marked in the response to 2-D, 5-octave stereograms,
where the model is still performing close to 100% at large
disparities where the human performance is well down
towards 50%. Human performance with 1-D band-pass
stereograms tends to scale with the longest spatial period
present in the image (Chang and Julesz 1983; de Bruyn
and Orban 1989; Cleary 1990; Cleary and Braddick 1990;
Read and Eagle 2000). The model is constructed to have
a similar tendency, because for displacements much
larger than the longest spatial period, there will be
alternative, false matches at smaller absolute disparities,
which are considered a priori more probable.

2-D (isotropic) stereograms actually contain power at
arbitrarily long spatial periods, contributed by oblique
orientations. We then expect performance to scale with
the longest spatial period to which the detector is sen-
sitive. In the present model, this was 1 cycle per degree.
The 5-octave 1-D stereograms also contain power at 1
cycle per degree, so the longest available period was in
fact the same for the 1-D and 2-D 5-octave stereograms.
However, the 2-D 5-octave stereograms contain the
same power in each 30° slice as the 1-D 5-octave stere-
ograms do in total. The model’s better performance for
2-D stereograms probably reflects this increased power.

disparity / arcmin

pointing triangles show the results with
higher noise (noise = 10% and D =7
pixels)

Non-vertically oriented model complex cells are more
strongly stimulated by the 2-D images, thus reducing the
effective level of noise and improving accuracy. A similar
effect occurs in our human observers (Read and Eagle
2000); their performance begins to decline from 100% at
smaller disparities for 1-D 5-octave stimuli than for 2-D
5-octave stimuli. However, this effect is much less
marked in humans than in the model, which may indi-
cate that the model is giving undue weight to the longer
spatial periods. A plausible reason for this is that the
model retina is covered more densely (in units of spatial
period /) with RFs tuned to large A (Sect. 2; Fig. 5).
For anti-correlated stimuli, the model again describes
human responses reasonably well. For small displace-
ments of narrow-band stimuli, both model and human
systematically report the wrong answer, resulting in
scores close to 0%. For larger displacements, perfor-
mance moves towards 100%. As the bandwidth is in-
creased, the reversed depth becomes less pronounced,
with the minimum score closer to 50%. The model
performs completely at chance level for both the 2-D 5-
octave and the random-dot stereograms (except for a
very weak reversed depth effect with random-dot pat-
terns at the smallest disparities). This is very much in line



Fig. 10. The effect of retinal noise. The figure shows an example 1-D
band-pass noise stimulus, bandwidth 1 octave. The image on the right
has been degraded with “retinal” noise at the amplitude used in
obtaining the results in Fig. 9. The model retinal noise is Gaussian,
with contrast 20% of this 1-octave stimulus. Since the experimental
stimuli have equal power in equal octaves, this 1-octave stimulus is the
most affected by a given level of retinal noise. The same level of retinal
noise represents only 1.5% (20/+/5/6) of the contrast of the 2-D 5-
octave stimulus

with human data (Cogan et al. 1993; Cumming et al.
1997, Read and Eagle 2000); the observer R.A.E. is
unusual amongst our subjects in showing even weak
reversed depth for the 2-D 5-octave stereogram.

The effect of the two parameters is explored in
Fig. 10. Here, the unfilled squares show results obtained
with a wider prior, and the downward-pointing triangles
show results with a higher noise level. First consider the
response to correlated stimuli. With a low noise level
(1%), a very tight prior (3 pixels) is necessary in order to
reproduce the observed fall-off in performance as dis-
parity increases. With a wider prior (15 pixels, squares in
Fig. 10), the model continues to perform at 100% out to
large disparities beyond the maximum disparity reliably
perceived by human observers. With more noise, a
looser prior still produces a good match to human ob-
servers (downward triangles in Fig. 10). These results
are readily understandable. Where there is very little
noise, the Bayesian likelihood is sharply peaked at the
correct match. Thus, to prevent the model from selecting
the correct match even at large disparities, a tight prior
must be applied, so that correct large-disparity matches
are punished severely enough so as not to be selected
despite their high likelihood. If the noise level is higher,
the Bayesian likelihood is much more tolerant to false
matches. The correct match is assigned a lower proba-
bility, since it is considered just one of several possibil-
ities. Thus, less “punishment” from the prior is
necessary to deflect the model from the veridical match.

The same effect of increased noise is visible in the
results for anti-correlated stimuli. Again, increasing the
noise level makes the model more tolerant to the false
matches presented by anti-correlated stimuli. If the noise
level is low, the model can tell that these matches cannot
actually be correct; no match is consistently accorded
high probability, and the model performs close to
chance level. If the noise level is high, false matches in
the wrong direction are routinely accepted, leading to
performance close to 0%.
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3.2 Motion model

The structure of the motion model is slightly different
from that of the stereopsis model, in that it was
constructed to be sensitive to displacements in all
directions, not just horizontal. This was motivated by
the desire for biological plausibility, since there is no
reason why the brain’s motion system should emphasise
horizontal displacements. However, this structural
difference has little effect on the results presented here,
since the models were asked to report only the horizontal
direction of motion of horizontally moving stimuli. Thus,
for a particular choice of noise and prior, the stereopsis
and motion models give similar results. The results of
Sect. 3.1 (Fig. 10) therefore already indicate that a higher
retinal noise level will be needed to reproduce the
reversed motion reported by human observers. Figure 9
shows results from the motion model with parameters
which were found to give reasonable results: a retinal
noise level equal to 20% of the contrast of the lowest-
contrast image, and a relatively wide prior (D = 5.6 arc-
min). Once again, the model agrees reasonably well with
experimental data. In particular, it reproduces the results
found with anti-correlated stimuli: for 1-D, broadband
anti-correlated stimuli, performance is close to chance,
whereas widening the orientation bandwidth to 2-D
elicits a “‘reverse phi” phenomenon. The major discrep-
ancy is the larger Do displayed by the model, especially
for the narrow-band, 1-D stimuli.

4 Discussion

Our previous psychophysical work (Read and Eagle
2000) revealed an intriguing difference between the
responses to stereograms and to kinematograms. For
both stereopsis and motion, small displacements of anti-
correlated 1-D stimuli with narrow spatial frequency
bandwidth produce reversed perceptions. For 2-D anti-
correlated stimuli, however, small displacements pro-
duce a strong perception of reversed motion and little or
no perception of reversed depth.

In this paper, I have presented a model that can
reproduce these results. It is based on the known
physiology of primary visual cortex, albeit simplified.
The image is initially processed within channels tuned
to a particular spatial frequency and orientation. Each
channel represents a population of complex cells in
cortical area V1. Similar approaches have been used
before (Sanger 1988; Qian 1994; Fleet et al. 1996; Zhu
and Qian 1996; Qian and Zhu 1997; Prince and Eagle
2000b) in discussing the correspondence problem.
Most previous workers have deduced the stimulus
disparity from the peak firing rate of a population of
complex cells. While there is an extensive literature on
decoding channel-coded systems, this paper appears to
be the first to combine a Bayesian approach with an
analysis into different spatial frequency/orientation
channels.
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4.1 Advantages of a Bayesian approach

The Bayesian approach has several advantages. First, it
provides a natural way to build in the constraints which
are necessary to arrive at a solution to the ill-posed
correspondence problem. Here, I have used the prior to
encode a preference for small disparities. The calculation
of the Bayesian likelihood in terms of simple and complex
cells, rather than directly from the retinal images, also
naturally leads the model to include a smoothness
constraint, over a scale appropriate for each channel
(Sect. 2.5). The other key advantage of a Bayesian
approach is that, by converting firing rates from different
channels into the common language of probability, it
simplifies the combination of information from different
channels. If firing rates are compared directly, we need to
postulate some scaling rule to convert between channels —
for example, by requiring that simple cells in different
channels respond with the same firing rate to their optimal
sine-wave grating. This is avoided in the present approach
by using a form of contrast normalisation in the Bayesian
analysis, in which the firing rate of each complex cell is
divided by the firing rate of some of the same simple cells
that feed into it. Perhaps paradoxically, this contrast
normalisation actually has the sensible effect of encour-
aging the model to pay greater attention to regions of the
image where the contrast is high, rather than to dim grey
regions which match equally well at any disparity. The
value of the normalised response is that, in the absence of
noise, it would be unity for any complex cell tuned to the
correct disparity, irrespective of the cell’s spatial frequen-
cy or orientation tuning, and irrespective of the contrast
and spectral content of the stimulus. However, random
retinal noise causes small departures from unity. These
fluctuations are smaller for larger values of the stimulus
contrast within the cell’s receptive field. Thus, the
probability of getting unity, assuming that the cell actually
is tuned to the correct match, increases with stimulus
contrast. This means that — other things being equal —
greater significance is attached to a report of a correct
match coming from a high-contrast region of the stimulus,
since this is less likely to be a spurious match occurring at
random in the retinal noise. Divisive contrast normalisa-
tion has been employed to good effect in several models
(Heeger 1993; Thomas and Olzak 1997; Tolhurst and
Heeger 1997), although there the divisor represents the
pooled activity of a large number of cells, from different
channels.

4.2 Effect of noise

The Bayesian analysis means that the effect of noise can
be slightly counter-intuitive. It is natural to envisage
noise as always limiting performance. For instance, in
Prince and Eagle (2000b), increasing noise always pushes
the model’s performance towards chance level. Within
the present Bayesian framework, noise has a more
complicated effect. The brain’s estimate of the noise
levels on its data affects its calculation of the probability
that a particular solution of the correspondence problem

is correct. When implementing the present model, I
assumed that this assessment was accurate, reflecting a
lifetime of visual experience. That is, the noise used in
the model’s calculation of the match probability is equal
to the noise actually affecting each simple cell (£°" and
&4 i Eq. 5). One consequence of this is that changing
noise levels can have rather an unpredictable effect on
performance. For instance, increasing retinal noise does
not necessarily degrade the performance of the model.
This is because the model is programmed to seek the
correct match on the assumption that, apart from noise,
the left retinal image is exactly a horizontally shifted
version of the right, whereas in our experiments, to
avoid providing monocular cues, the images were
displaced within a fixed window on the screen. This
means that even those complex cells tuned to the
notionally correct disparity do not see a perfect match.
If retinal noise is very low, the model will expect very
precise matching, and so may reject the notionally
“correct” match. Increasing retinal noise makes the
model more tolerant of inexact matches, and so may
actually improve performance by enabling the model to
accept the best match on offer. This effect could be
avoided by making the model allow for higher noise
levels than are actually present. This might be valuable
in real life if it enabled a more robust response to inter-
ocular discrepancies caused, for instance, by occlusion.
This variant of the model is not explored here.

The decision to add noise at the retinal level, rather
than centrally, means that the amplitude of the noise
added to simple cells is different for each spatial fre-
quency channel, and for each RF type (odd/even) within
this channel, reflecting differences in the integral-squared
of the receptive field. If the noise arose centrally, it
would be natural to add noise of the same amplitude to
every simple cell. With retinal noise, it turns out (5) that
the high-frequency channels experience more noise, be-
cause they have smaller receptive fields and so average
over a smaller number of photoreceptors. Note that
because account is taken of the higher noise in the
Bayesian probability calculation, this does not mean that
the higher frequency channels contribute less to detect-
ing disparity. On the contrary, they may contribute more
because they are more tolerant of poor matches.

4.3 Differences between the stereopsis
and motion models

I have developed two versions of the model, one adapted
for the stereo problem, the other for motion. For
stereopsis, I assume that horizontal disparities are both
generally larger than vertical disparities, and more
significant in judging the sign of depth. Thus, the
stereopsis model uses complex cells tuned to horizontal
disparities only. In contrast, for the motion model I
assume that stimuli are equally likely to be moving in
any direction. Thus, the motion model includes complex
cells tuned to displacements in all directions. In fact, as
might be expected, these extra complex cells make little
difference to the model’s performance when tested with
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Fig. 11. Performance of the motion model com-
pared with a human observer, (R.A.E.). All details
are as in Fig. 8, except that the stimuli were
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horizontal displacements. Both models use position
rather than phase disparity, and both use complex cells
tuned to all orientations, not just vertical. It has been
suggested (Anzai et al. 1999) that neurons can encode
disparities only orthogonal to their RF orientation, but
other workers (Ohzawa and Freeman 1986; Prince et al.
2001) find cells tuned to all orientations which are highly
sensitive to horizontal disparity. Certainly, from a
theoretical point of view, even cells that are tuned to
horizontal orientations can encode horizontal disparities
which are larger than their receptive field size.

4.4 Model parameters

Several parameters were required to specify the models.
Where possible, these were determined from experimen-
tal data (e.g. the channels’ spatial frequencies and
orientation bandwidths). Sometimes, they were set by
computational limitations; for instance, simple cell RFs
are placed on a 9 x 9 grid (Fig. 5), whereas ideally the
model would include RFs at many more different
positions on the retina, scattered at random according
to a distribution observed experimentally. Only two
parameters for each model were “free”” in the sense of
being systematically altered so as to obtain the best fit

(=] & =

&

disparity / arcmin

presented to the human observer as two-frame
kinematograms rather than stereograms, and the
computer simulation used the motion model de-
scribed in Sect. 2, with the spread of the prior
function D = 5.6 arcmin (7 pixels) and the contrast
of the retinal noise set to 20% of the 1-octave
stimulus

At

L .

(although computational limitations precluded system-
atic optimisation). These free parameters were the
retinal noise { and the extent of the bias towards small
disparities D for each model system. The different values
adopted for these parameters are the only significant
difference between the stereopsis and motion models.
With suitable values of these two parameters, each
model produces a reasonable match to twelve data sets
each containing seven data points. This success may
indicate that the models capture some of the essential
properties of the human visual system.

Although both of the free parameters have a simple
interpretation, the model cannot be taken as predicting
real biological values. For instance, noise was modelled as
occurring purely in the retina. The main motivation for
this was parsimony: adding noise separately to the retina,
simple cells and complex cells would have resulted in more
free parameters. Thus, the noise level incorporated in the
model, although nominally retinal, has to represent all
possible biological noise sources. Furthermore, the ap-
propriate level of model noise may depend on other as-
pects of the model, for instance, how closely retinal fields
were spaced across the retina (Fig. 5).

In addition, different levels of retinal noise were used in
the two forms of the model. The retinal noise applied to
the motion model was an order of magnitude larger than
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that used in the stereopsis model. In the motion model, the
high level of noise was important not because it degraded
theimage (as Fig. 11 shows, it had relatively little effect on
even the lowest-contrast stimuli), but because it made the
motion model more tolerant to poor matches. Thus, for
anti-correlated stimuli, it accepted the relatively poor re-
versed-motion matches, whereas the stereopsis system
could not find any acceptable match and so performed at
chance level. One interpretation of these results is that the
retinal noise level is really the same in both stereopsis and
motion, but that the motion system is more tolerant to
poor matches. This could be expressed in the motion
model by allowing for a larger noise level in calculating the
match probability (18) than is actually present in the ret-
ina. Alternatively, the effective retinal noise may actually
be greater for the motion system. One factor which has
been neglected in this study, but which might contribute to
higher effective noise levels for motion, is the temporal
properties of the input neurons [18]. The simplistic mod-
elling of the motion-sensitive complex cell as responding
only to two frames does not address this complexity.

Finally, it is striking just how low the noise is. Figure
11 shows the effect of the noise in the motion model on
the lowest-contrast image. For the higher-contrast
stimuli, or the lower noise levels incorporated in the
stereopsis model, the degradation is even smaller. This
agrees with the view that the brain adds remarkably little
noise to its inputs (Rieke et al. 1997).

4.5 Future work

Because the model was developed to explain the results
of a two-interval forced-choice psychophysical experi-
ment, it was constructed to output a single estimate of
global stimulus disparity, by pooling information from
across the image. The model could instead be used to
derive an estimate of the disparity at each point in the
image, to see whether it could construct an accurate
disparity map of the stimulus. This has already been
carried out in a related (non-Bayesian) model (Qian
1994; Zhu and Qian 1996; Qian and Zhu 1997).

Secondly, it would be interesting to exploit the proba-
bilistic nature of this model further. Because it seeks ini-
tially to assign probability to each potential match, rather
than homing in on a single correct answer, it might be well
suited to deal with problems such as ambiguity (Fig. 1),
transparency or occlusion. For instance, Fig. 12 shows
Panum’s limiting case, where one object in the right retina
matches two in the left retina. Such a situation would
cause problems for an algorithm which seeks a unique
partner for each retinal position. However, it might be
handled well by a probabilistic model, which could assign
equal probability to the case that position A matches
position C and position A matches position B.

4.6 Summary

I present a physiologically realistic pair of models which
together can reproduce the response of human observers

A

Fig. 12. Asin Fig. 1, the large open circles represent the eyeballs, seen
from above. The filled circles represent spheres in front of the viewer.
The further sphere is hidden from the right eye by the nearer sphere.
However, the left eye can see both spheres. To deduce the distance of
both spheres, the brain would have to match position 4 in the right
retina with position B and position C in the left retina

to correlated and anti-correlated stereo- and kinemato-
grams with a range of spatial frequency and orientation
bandwidths. The model predicts that the motion system
experiences higher effective noise levels than the stereopsis
system, making the motion system more tolerant of poor-
quality correspondences. The model is constructed in
Bayesian probabilistic terms. This provides a natural way
to incorporate the visual system’s prior knowledge and
assumptions, and has the potential to be exploited further
to address complex problems such as ambiguity.
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Appendix A: Properties of the Gabor receptive field

The model simple cell RF has the general form (Fig. 3)

1 xcos 0 + ysin 0]
o= o
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where A and 0 are the spatial period and orientation on
the retina (0 =0 is vertical). The exponential terms
describe a 2-D Gaussian envelope, limiting the cell’s
receptive field to a finite region of the retina. For the RF
in (A1), this region is centred on the origin; to obtain an
RF centred on (xo,3p), we write p(x —xo,y — ). 0y
controls the spatial extent of the RF perpendicular to its
preferred orientation, and o, that parallel to it. Together
with the spatial period, these set the spatial frequency
and orientation bandwidth of the RF, as explained in
the Section A.l. ¢ describes the phase of the carrier
cosine relative to the Gaussian envelope: ¢ = 0 for even
RFs and n/2 for odd.



A.1 Spatial frequency and orientation bandwidth
of a Gabor filter

The Fourier transform of the Gabor receptive field in
(A1), p(4,0), represents the response of the simple cell to
a sine-wave grating with spatial period A oriented at
angle 0 to the vertical. Mathematically, it is given by
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To obtain the spatial frequency bandwidth, consider
how the Fourier transform varies as a function of the
stimulating spatial period 4, when the orientation of the
stimulus is matched to the RF (0 = 0). The octave
spatial bandwidth f is defined in terms of the lowest and
highest spatial periods passed by the filter:

ln(}qo//lhi)

= A3
B 3 (A3)
Of course, a Gabor filter has no sharp cut-off. I define
the limits of the filter, 4, and Ay;, to be where the power
of the Fourier spectrum drops to half its maximum
value. To an excellent approximation, these are given by

the solutions of
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This yields the following relationship between band-
width as defined in (A3) and the spatial extent of the RF:
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Due to the asymmetry of the Gabor filter in octave
space, the preferred spatial period 4 is a smaller number
of octaves from J;, than Ay;.

In the model, I assume that all channels have the
same octave bandwidth, so that the spatial extent of the
receptive fields scales with the preferred spatial period.
Together with the overall division by 6, and o, in (Al),
this also means that all simple cells respond with the
same firing rate to a sine-wave grating at their preferred
spatial frequency, orientation and phase (as we see by
using Eq. 24 to calculate the absolute value of the
Fourier transform with 4 = 4 and 0 = 0).
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Similarly, I define the orientation bandwidth « as the
range of angles over which the filter passes components
at greater than half-maximal power. The limiting angles
are given by the solutions of

2ng? ~
exp{ —sin(0 — 0)}
yi

2.2 ~ 2
X exp{—zz;)—x [cos(@ —0)— 1} } =272 . (A7)

This comes from (A2), for a component at the preferred
spatial period. 0 here represents the angle at which the
modulus-squared of the Fourier transform falls to half
of the maximum attained for § = 0. Thus « = 2|0 — 0]. If
we assume that the orientation bandwidth is small, we
can use the small-angle approximations for sine and
cosine. Retaining powers of « up to second order, we
obtain the following relationship between the orienta-
tion bandwidth in radians « and the spatial extent of the
receptive field along its preferred orientation, o,:

A A
o= vin2, o,=—+vIn2 . (A8)
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