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I present a probabilistic approach to the stereo correspondence problem.
Rather than trying to find a single solution in which each point in the left
retina is assigned a partner in the right retina, all possible matches are
considered simultaneously and assigned a probability of being correct.
This approach is particularly suitable for stimuli where it is inappro-
priate to seek a unique partner for each retinal position—for instance,
where objects occlude each other, as in Panum’s limiting case. The prob-
ability assigned to each match is based on a Bayesian analysis previously
developed to explain psychophysical data (Read, 2002). This provides a
convenient way to incorporate constraints that enable the ill-posed corre-
spondence problem to be solved. The resulting model behaves plausibly
for a variety of different stimuli.

1 Introduction

A fundamental problem facing the visual system is how to extract infor-
mation about a three-dimensional world from a two-dimensional retinal
image. One clue in this task is provided by retinal disparity: the difference
in the position of an object’s images in the left and right eyes, arising from
the horizontal displacement of the eyes in space. Evidently, this calculation
depends on correctly matching each feature in the left retinal image with
its counterpart in the right retina. This task has become known as the cor-
respondence problem. In a simple visual scene such as that illustrated in
Figure 1, this presents little difficulty. However, in a more complicated visual
scene, the correspondence problem may be highly complex and indeed is ill
posed. In general, there are many possible solutions of the correspondence
problem, each implying a different arrangment of physical objects. Despite
this, the visual system is capable of arriving, almost instantaneously, at a
judgment of disparity across a scene. This implies that the visual system
must be using additional constraints to select a solution.

Bayesian probability theory (Knill & Richards, 1996) provides a natural
way of framing these constraints. Bayesian models of perception typically
envisage an observer attempting to deduce information about the visual
scene, S, given an image I. In the context of stereopsis, S represents the
location of objects in space, and I represents the pair of retinal images.
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Figure 1: How probability relates to perception in physical space. The eyes
(circles) are fixating on object F, whose image thus falls at the fovea in both
retinas. Object P is in front of the fixation point, and thus has positive (crossed)
disparity δ = xL − xR, where xL, xR are the horizontal positions of the image of
P in the left and right retinas. The distance d describes how far the object at P
is in front of the fixation point F, while the angle xc describes how far it is to
the right of F. 2I is the interocular distance, and α is the vergence angle. Under
the approximation that the fixation point is sufficiently distant and all objects
viewed are sufficiently close to it that the angles α, xL, xR, and xc are all small, it
can be shown that xc ≈ (xL+xR)/2 and d ≈ (xL−xR)I/2α2. Each potential match
between a point (xL, y) in the left retina and a point (xR, y) in the right retina
implies a percept of an object at the corresponding location in space P, with
luminance depending on the mean of the light intensities recorded in the two
retinas. The strength of the perception is presumed to increase monotonically
with the probability P{(xL, y)↔ (xR, y)} assigned to the match (zero probability
= no perception).

Due to noise within the system, a given configuration of objects does not
necessarily produce the same image on successive presentations. However,
we assume that the imaging system and its limitations is well characterized,
so that the brain knows the likelihood P(I | S) of obtaining an image I given
a particular scene S. Furthermore, we assume that the brain has its own
a priori estimate of the probability P(S) that a particular scene occurs. Then
Bayes’ theorem allows us to deduce the posterior probability of a particular
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scene S, given that we receive the image I:

P(S | I) = P(I | S)P(S)/P(I).
For instance, in the double-nail illusion, human observers presented with

two nails in the midsagittal plane report a clear perception of two nails
with zero disparity in the frontoparallel plane (Krol & van der Grind, 1980;
Mallot & Bideau, 1990). This solution is preferred over the physically correct
solution, even though other cues, such as size and shading, mean that the
latter presumably has the higher likelihood P(I | S). One way of explaining
this within a Bayesian framework is to postulate a prior preference for small
disparities. Then the solution in which both nails have zero disparity is
assigned a higher posterior probability than the other solution, in which
one nail has crossed disparity and the other uncrossed. The zero-disparity
solution is thus the one perceived.

A second advantage of a probabilistic approach is its ability to handle am-
biguity. Several existing models of the correspondence problem (Dev, 1975;
Nelson, 1975; Marr & Poggio, 1976, 1979; Grimson, 1981; Pollard, Mayhew,
& Frisby, 1985; Sanger, 1988) employ a uniqueness constraint. That is, they
seek a unique match in the right eye for every point in the left, and vice
versa. This could be implemented within a Bayesian scheme by taking the
correct match at every point to be that which has the highest posterior prob-
ability. However, although computationally convenient in avoiding false
matches, a uniqueness constraint is clearly not satisfied in practice. Parts
of the visual scenes are often occluded from one or the other eye; for in-
stance, a stereogram consisting of a disparate target superimposed on a
zero-disparity background may contain regions that have no match in the
other eye. Conversely, occluding stimuli may require one point in the left
image to be matched with two points in the right image. Experimental evi-
dence suggests that the human visual system does indeed produce double
matches in this situation (McKee, Bravo, Smallman, & Legge, 1995). An algo-
rithm avoiding the uniqueness constraint is capable of deriving the correct
solution (McLoughlin & Grossberg, 1998). Finally, although algorithms in-
corporating the uniqueness constraint have been able to solve stereograms
incorporating transparency (Qian & Sejnowski, 1989; Pollard & Frisby, 1990),
the uniqueness constraint certainly appears less than ideal for such stimuli
(Westheimer, 1986; Weinshall, 1989).

A probabilistic theory is well suited to such situations. Let P{(xL, y) ↔
(xR, y)} denote the probability that the point (xL, y) in the left retina corre-
sponds to the point (xR, y) in the right retina, that is, both points are images
of the same object. High probability can be assigned to several matches
for a given object without necessarily having to implement a uniqueness
constraint by deciding on only one match as being “correct.”

I adopt the following working hypothesis of how the match probability
relates to perception, illustrated in Figure 1. If the point (xL, y) in the left
retina corresponds to the point (xR, y) in the right, then both must be viewing
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an object located at an angle xc = (xL + xR)/2 to the straightahead direc-
tion, and at a distance d = (xL − xR)I/2α2 in front of the fixation point (see
Figure 1). I propose that a nonzero match probability P{(xL, y) ↔ (xR, y)}
implies a perceptual experience of an object at the corresponding point in
space, with luminance equal to the mean luminance of the retinal images,
[IL(xL, y)+ IR(xR, y)]/2. I propose that the strength of the perceptual experi-
ence depends on the probability assigned to the match, P{(xL, y)↔ (xR, y)},
with higher probabilities creating a clearer perception.

In previous work (Read, 2002), I developed a computational model based
on these Bayesian ideas. This model was designed to explain the results of
psychophysical experiments involving two-interval forced-choice discrimi-
nation of the sign of stereoscopic disparity (crossed versus uncrossed) (Read
& Eagle, 2000). It was tested only with stimuli whose disparity was constant
across the entire image, and the model reported the most likely value of this
global disparity. This procedure was appropriate for modeling the results of
our two-interval forced-choice discrimination experiments, and the simula-
tions captured the key features of the psychophysical data across a variety of
spatial frequency and orientation bandwidths. However, the model actually
calculated internally a detailed probabilistic disparity map of the stimulus,
assigning a probability to every potential match. For the previous article,
this information was then compressed into a single estimate of stimulus
disparity. Now I wish to probe the probabilistic disparity map in more de-
tail, testing the model on stimuli whose disparity varies across the image, to
see whether the model can reconstruct disparity in a way that qualitatively
captures the behavior of human subjects.

2 Methods

2.1 Structure of the Model. The model is described in full mathematical
detail in Read (2002), and only an outline is given here. Following earlier
work by Qian (1994) and Prince and Eagle (2000a), the model was designed
to incorporate the known physiology presumed to underlie binocular vi-
sion. Thus, rather than applying a Bayesian analysis to the original retinal
images, the retinal images are first processed by model simple cells, which
are assumed to be linear with an output nonlinearity of half-wave rectifica-
tion (Movshon, Thompson, & Tolhurst, 1978; Anzai, Ohzawa, & Freeman,
1999). The receptive fields of these cells are Gabor functions (the product of a
gaussian and a cosine), described by the spatial frequency and orientation to
which they are tuned, and by the bandwidth of this tuning. For simplicity, all
simple cells in my model have a spatial frequency bandwidth of 1.5 octaves
and an orientation bandwidth of 30 degrees, defined as the full width at half
height of the tuning curve. This is in accordance with psychophysical and
physiological evidence for the bandwidths of channels in the visual system
(Mansfield & Parker, 1993; de Valois, Albrecht, & Thorell, 1982; de Valois,
Yund, & Hepler, 1982; de Valois & de Valois, 1988). These model simple
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cells then feed into disparity-tuned model complex cells, whose response is
simulated using the energy model developed by Adelson & Bergen (1985),
Fleet, Wagner, & Heeger (1996), Ohzawa, De Angelis, & Freeman (1990,
1997), and analyzed by Qian (1994). All simple cells feeding into a single
complex cell are assumed to be tuned to the same spatial frequency and
orientation; they differ only in the phase of their Gabor receptive field and
in their position on the retina. This model uses quadrature pairs of simple
cells—simple cells whose receptive fields differ in phase by π/2. The dif-
ference between the positions of the receptive fields in left and right retina
defines the disparity to which the complex cell is tuned. My model employs
only tuned-excitatory complex cells, which respond maximally to stimuli
at their preferred disparity.

2.2 The Bayesian Analysis. A complex cell of this form can be used to
test the hypothesis that the region of the stimulus within the complex cell’s
receptive field has the disparity that the complex cell is tuned to. If this
were the case, then the part of the image falling within the complex cell’s
left retinal receptive field would be expected to be identical to the part of
the image viewed by the right retinal receptive field. Thus, the response of
the binocular complex cell could actually be predicted from a knowledge of
the firing rates of simple cells with receptive fields in one eye only. This ob-
servation forms the basis of the Bayesian analysis carried out by the present
computational model.

The model assumes that the left and right retinal images are indepen-
dently degraded by noise. Any other sources of noise within the visual
system are neglected. The retinal noise means that even if the stimulus does
have exactly the disparity that the complex cell is tuned to, there will never-
theless usually be some slight discrepancy between the actual firing rate of
the complex cell and that predicted by considering the response of simple
cells with receptive fields in just one eye. However, the distribution of this
discrepancy can be calculated analytically given the amplitude of the reti-
nal noise. Hence, one can deduce the probability of obtaining the observed
binocular complex cell firing rate, given the firing rate of the monocular
simple cells from one eye, on the assumption that the disparity the complex
cell is tuned to is that actually present in the stimulus. According to Bayes’
theorem, this calculation can then be inverted to arrive at the probability
that the stimulus really does have the disparity that the complex cell is tuned
to, given the observed firing rates of the binocular complex cell itself and
the monocular simple cells that feed into it.

This calculation applies only to the patch of the stimulus falling within
the complex cell’s receptive field. In addition, since the complex cell is tuned
to a particular spatial period λ and orientation θ , it applies only to that part
of the Fourier spectrum of the stimulus that falls within the complex cell’s
bandpass region. I thus refer to this probability as the local single-channel
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match probability (Read, 2002):

Pλθ {(xL, y)↔ (xR, y)}.
This is the probability that the region of the left retinal image centered on
(xL, y) corresponds to the region of the right image centered on (xR, y). Note
that both RFs are assumed to have the same vertical position y: I include
model complex cells tuned to horizontal disparities only. λ, θ are the ori-
entation and spatial period to which the complex cell is tuned. I include
several different orientation tunings (0◦, 30◦, 60◦, 90◦, 120◦, 150◦) ranging
from horizontal to vertical, and several different spatial frequencies (1, 2, 4,
8, 16 cycles per image) designed to cover the full range of frequencies visible
to humans (de Valois & de Valois, 1988).

Precisely what is meant by “local” in this context depends on the channel
under consideration. The probability analysis within each channel imple-
ments a local smoothness constraint—that is, it assumes the stimulus dis-
parity is constant across the complex cell’s receptive field. This is a region in
each retina whose extent scales with the spatial period λ to which the com-
plex cell is tuned to (for the bandwidths employed here, it is approximately
0.277× 0.506λ).

I now average the local single-channel match probability over all spatial
frequency and orientation channels to arrive at a local match “probability”
to which all channels contribute:

P{(xL, y)↔ (xR, y)} = 6λθPλθ {(xL, y)↔ (xR, y)}.
This averaging process is purely heuristic. A full mathematically valid treat-
ment would require the joint probability of obtaining a particular set of firing
rates from the entire population of complex cells. The motivation for this
approach is discussed in Read (2002). Thus, P{(xL, y) ↔ (xR, y)} is strictly
not a probability, although I shall refer to it as such. It is regarded as an esti-
mate of the probability that the position (xL, y) in the left retina corresponds
to the position (xR, y) in the right retina, that is, that the stimulus dispar-
ity in the vicinity of this region is δ = xL − xR. The “vicinity” represents
an average over the receptive fields of the different channels, whose area
and orientation are different for each channel. This local match probability
P{(xL, y) ↔ (xR, y)} forms the probabilistic disparity map, describing how
likely each potential match (xL, y)↔ (xR, y) is.

2.3 Details of the Model Parameters. The Bayesian prior, describing the
a priori probability P{δ} that a stimulus has the disparity δ, is taken to have
the form

P{δ} = [D2 + (δ −D/2)2]−3/2 + [D2 + (δ +D/2)2]−3/2.

This closely resembles a gaussian function but is less sharply peaked at the
origin and decays less steeply (Read, 2002). D is a scale parameter, effec-
tively describing which disparities are counted as “small.” In the original
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article (Read, 2002), D was one of two free parameters that were systemat-
ically adjusted in order to produce a good fit to experimental results, the
other being the level of retinal noise. I found it necessary to postulate a very
low noise level, just 0.075% of the contrast of the binary random dot patterns
used here and in the previous article. Then a very tight prior of 2.4 arcmin
was necessary in order to reproduce the observed decline in performance as
stimulus disparity increased. Although the model was constructed on the
presumption that the brain introduces rather little noise and that the major
noise affecting the calculation arises at the inputs (for instance, spontaneous
photoisomerizations, photon shot noise, and the limitation of the eye’s op-
tics), the fitted noise level is extremely low and may not be realistic. The low
noise was found to be necessary in order to prevent the model finding incor-
rect “reversed-phi” (Anstis & Rogers, 1975) matches in dense anticorrelated
stereo stimuli, which would disagree with human psychophysics (Julesz,
1971; Cogan, Lomakin, & Rossi, 1993; Cumming, Shapiro, & Parker, 1998).
With correlated stimuli, good matches to human psychophysics could be
obtained with much higher noise levels. The very low noise level may thus
be an artifact of other inadequacies of the model—for instance, its failure to
incorporate any non-Fourier mechanisms that might suppress false matches
in anticorrelated stimuli. Alternatively, it is possible that such low noise lev-
els are achieved by averaging uncorrelated noise over a population. In this
view, a single unit in the model would represent a small local population of
identical physiological units, in which noise tends to be averaged away. All
simulations presented here use the value of noise and prior scale-length D
fitted to psychophysical data (Read, 2002).

The model was originally developed to account for the results of psy-
chophysical experiments (Read & Eagle, 2000) in which the stimuli were
128 × 128 pixels at a distance of 127 centimeters, subtending an angle
1.7◦ × 1.7◦. Accordingly, the model retina was originally constructed to be
128× 128 pixels, where each pixel represents an angle of 0.8 arcmin on the
retina. In this article, I also use a more detailed model retina of 256 × 256
pixels. This is constructed to represent the same visual angle of 1.7◦ × 1.7◦,
meaning that each pixel now represents 0.4 arcmin. The pixel values of the
spatial periods of the model’s channels and the prior scale length D were
accordingly doubled.

The computer memory and runtime required for simulations depend on
the number of different simple and complex cells included. The simulations
presented here use 128 different horizontal positions of receptive field (RF)
centers. This dense sampling makes the model highly sensitive to variations
in disparity across the stimulus. The simulations use simple cell RFs at just
one vertical position in the model retina. Note that this does not mean that
the model uses information only from a single horizontal strip across the
image, since the RFs themselves extend over a wide region of the image.
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2.4 Perception. My hypothesis is that the local match probability
P{(xL, y) ↔ (xR, y)} determines which matches are consciously perceived.
Several different matches may be perceived for the same feature. In sec-
tion 3, I show plots of P{(xL, y) ↔ (xR, y)}, plotted against xL and xR for
a particular horizontal section through the retina. These plots imply a dis-
tribution of probability in space, for a particular horizontal plane in front
of the observer. Lines of constant disparity δ = xL − xR run diagonally up
across the (xL, xR) plot; these correspond to frontoparallel lines in space.
Lines of constant xc = (xL + xR)/2 run diagonally down across the (xL, xR)

plot; these correspond to radial lines from the observer, at an angle xc to
straight ahead.

Incorporating a prior preference for small disparities, as implied by psy-
chophysical data, inevitably means that lower posterior probability will be
assigned to matches with nonzero disparities than those with zero, even if
the matches are equally valid and thus have the same likelihood. But in our
perceptual experience, disparate regions within Panum’s fusional limit are
perceived as clearly as regions with zero disparity. This may imply that the
relationship between probability and perception saturates, so that all prob-
abilities above a certain threshold cause the same clarity of perception. This
article postulates only that clarity of perception increases (not necessarily
strictly) monotonically with probability.

2.5 Maximal Complex Cell Response. For comparison, I also consider
an extension of the model of Qian (1994) to multiple spatial frequency and
orientation channels. Qian’s model extracts, for each line of constant xc =
(xL+xR)/2, the disparity δ = xL−xR for which the complex cell firing rate is
maximal. This yields a disparity map giving the best disparity as a function
of position xc across the image:

δbest
λθ (xc) = argmax

δ

Cλθ (xc, δ)

One simple way of extending this to multiple spatial frequency and ori-
entation channels would be to sum the complex cell responses across all
channels and extract the disparity, for each xc, at which this summed re-
sponse is maximal:

δbest(xc) = argmax
δ

∑
λ,θ

Cλθ (xc, δ)

However, I found that this method gave noisy results; it was poor at ex-
tracting the disparity of the target region in a random dot stereogram. Better
results were obtained by extracting the maximum within each channel inde-
pendently and combining these by constructing a “maxima field” M(xc, δ),
where the value of M(xc, δ) is the number of channels that had δbest

λθ (xc) = δ.
This “maxima field” shares several properties with the Bayesian approach
already described. It is independent of how we choose to relate firing rates
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across different channels (whether by making all simple cells respond with
the same firing rate to their optimal sinusoidal grating, or some other
method). In the Bayesian approach, this was achieved by converting all
firing rates into the common language of probability—here, by allowing
each channel to signal only the position where its response is maximum
rather than the value of that maximum. Similarly, Qian’s approach is ca-
pable of matching a single point xL in the left retina with several different
points xR in the right retina. The form of uniqueness constraint it imposes
is that along each line of sight xc, there should be only one disparity δ. In
the present version, this constraint is imposed on each channel separately.
A conventional disparity map, such as those plotted by Qian (1994), could
then be extracted from M(xc, δ) by defining the disparity perceived at each
xc to be that where M(xc, δ) is maximal. To achieve good matches to human
psychophysics, some weighting function would have to be imposed that
favored small disparities (Cleary & Braddick, 1990; Prince & Eagle, 2000a,
2000b; Read & Eagle, 2000); this complication is neglected here.

3 Results

3.1 Random Dot Patterns. I begin by investigating the model’s response
to binary random dot patterns, where the false-matching problem is at its
most acute. I have previously (Read, 2002) demonstrated that the model
performs close to 100% when tested with binary random dot stereograms
in a front-back discrimination task. Now, I investigate the probability field
in more detail and examine whether the model is capable of extracting the
details of how disparity varies acoss the image.

First I consider a central disparate region superimposed on a zero-dis-
parity background. Figure 2 shows the images used in the simulation (A–C),
and the results obtained (D–F), considering just the y = 0 horizontal cross-
section through the image. Figure 2C shows the total luminance of the left
and right images, at y = 0 (horizontal line in Figures 2A and 2B) and different
x positions. Figure 2D shows the total response of complex cells, summed
over all channels. Figure 2E shows the maxima field M(xc, δ), obtained by
extending the model of Qian (1994) to multiple spatial-frequency and ori-
entation channels. Figure 2F shows the probability field obtained with the
Bayesian approach. Both models succeed in extracting the disparate region.
The lines mark regions of each monocular image that have no match in the
other eye due to occlusion. Naturally enough, the models cannot assign
these a clear disparity, although the imposed smoothness leads to a slight
tendency to continue the disparity of adjacent binocularly viewed regions
into the occluded region.

3.2 The Double Nail Illusion. Here, I consider the model’s response
to the double nail illusion. The model was presented with the images in
Figures 3A and 3B. The images in the left and right eyes are identical (apart
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Figure 2: (A, B) The random dot stereogram used in obtaining the model results
shown in the lower two plots. The stereogram is 256× 256 pixels, representing
1.7◦ × 1.7◦ of visual angle. It contains a target region of 128 × 128 pixels, with
disparity 18 pixels, centered on a background with zero disparity. The dots’
luminance relative to background is ±1300 times the standard deviation of the
model’s retinal noise. (C) The sum of the left and right images, IL(xL, y)+IR(xR, y),
at the vertical position y marked with the line in A and B. (D) The response of
complex cells, summed over all spatial frequency and orientation channels. The
grayscale at (xL, xR) represents the total response of the population of complex
cells with left- and right-eye RFs centered on (xL, y) and (xR, y), respectively.
(E) The maxima field M(xc, δ) obtained by generalizing the model of Qian (1994).
Within each channel, for each xc, the disparity where the complex cell response
was maximal contributes 1 to M(xc, δ). (F) The probabilistic disparity map, in
which the grayscale at (xL, xR) represents the probability P{(xL, y) ↔ (xR, y)}
that (xL, y) matches (xR, y).
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Figure 3: (A, B) Stimuli for the double-nail illusion. Each image contains two
dots, 3 pixels (2.4 arcmin) square, with luminance 1300 times the noise. Only the
center 40 pixels are shown. The remaining panels concern the horizontal plane
containing the two objects (horizontal line across image plots). Details as for
Figure 2.

from the noise), each containing two objects positioned at xL = −3 pixels,
xR = +3 pixels. Depending on the correspondence made, this can be inter-
preted as two bars with disparity 0, positioned at xc = ±3 pixels (2.4 arcmin)
in the frontoparallel plane, or as two bars with xc = 0 and disparity ±6 (4.8
arcmin). These four matches are apparent in the plots of total luminance
(see Figure 3C) and in the complex cell response (see Figure 3D).
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Because neither the Bayesian nor the maxima model imposes a unique-
ness constraint demanding a one-one match between xL and xR, they could
potentially find all four matches. However, in fact the zero disparity match
is favored throughout the image, as is apparent from the dark stripe along
the line of zero disparity, xL = xR, in Figures 3E and 3F. Since the background
is devoid of features, any region of the background matches equally well
with any other region. The smoothing implied by the receptive fields and
(in the Bayesian case) the prior preference for small disparities ensure that
the background is assigned zero disparity.

So far there is little reason to prefer the more elaborate Bayesian analysis
to the simpler maxima analysis based on the model of Qian (1994) and Qian
and Zhu (1997). I therefore turn now to a stimulus where the Bayesian model
performs better.

3.3 Occluding Bars/Panum’s Limiting Case. I consider a famous stimu-
lus that provides a challenge to many existing models of stereopsis (Howard
& Rogers, 1995; Qian, 1997) because it violates the uniqueness constraint.
The visual scene is supposed to consist of two vertical bars, one centered
on xc = 4 and disparity +6.4 arcmin (here, 8 pixels) and the other centered
on xc = −4 and disparity −6.4 arcmin. Both bars fall at the same position
in the left retina, xL = 0, while falling at different positions in the right
retina, xR = ±8 pixels. Physically, in the left eye, the nearer bar occludes
the farther bar, whereas in the right eye, both are visible. Thus, the correct
match requires the position xL = 0 in the left retina to be matched both with
position xR = −8 and with position xR = 8 in the right retina.

The images and the results of the simulation are shown in Figure 4.
The probability field in Figure 4F shows high probability at disparities δ =
±8 pixels, as indicated by the dark stripes along the lines drawn at these
disparities. Thus, the model successfully finds both correct matches. Because
it does not enforce a uniqueness constraint, it is able to match the single bar
in the left eye simultaneously with both bars in the right eye.

Although the bars themselves are only 3 pixels wide, the probability is
nonzero for several pixels along the lines δ = ±8, even though the prior
preference for small disparities means that blank regions of the image are
normally assigned zero disparity. These constant disparity stripes reflect
the smoothness constraint built into the model. The lowest-frequency sim-
ple cells have very large receptive fields, so the match implied by the bars
can potentially influence the probability assigned to very distant matches.
The prior preference for zero disparity is thus opposed by the assumption
that adjacent points have the same disparity. Under the hypothesis that the
probability plotted here underlies perception, the intepretation is that an
isolated disparate object tends to produce the perception of being embed-
ded in a disparate frontoparallel plane. This is consonant with perceptual
experience and could potentially help the brain reconstruct smooth surfaces
from discrete disparate stimuli (Grimson, 1982).
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Figure 4: (A, B) Stimuli for Panum’s limiting case. The right image contains
two bars and the left image one. Each bar is 3 pixels (2.4 arcmin) wide, with
luminance 13 in arbitrary units. Only the center 40 pixels are shown. Remaining
panels as in Figure 2.

In contrast, the maxima field in Figure 4E still shows clear remnants of
the cruciform structure of the raw complex cell response. This leads to a
predicted perception of a “ghost” object in between the two objects actually
present. (In the stimuli used, this is at the fixation point; in general, wherever
the bars are with respect to fixation, the ghost will lie exactly between them.)
The origin of this ghost is clear if one traces along the line xc = 0, marked
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Figure 5: Stimuli as for Figure 4 except that the bars have disparity ±2 pixels.
Only the center 20 pixels are shown. In all panels, the diagonal lines indicate
disparity±2 pixels. (A) The sum of the left and right images, IL(xL, y)+IR(xR, y)at
y = 0. (B) The response of complex cells, summed over all spatial frequency and
orientation channels. (C) The probabilistic disparity map P{(xL, y) ↔ (xR, y)}.
(D) Probability weighted by image intensity: P{(xL, y) ↔ (xR, y)} × [IL(xL, y) +
IR(xR, y)]. This is intended to approximate the perceptual experience. Thus, the
model predicts a perception of two bars, disparity slightly greater than 2 pixels.

with a line in the plot of summed complex cell responses (see Figure 4D).
Within each channel, the maximum complex cell response along this line
occurs at zero disparity.

If the bars’ disparity is reduced, the Bayesian model experiences a repul-
sion illusion. Figure 5 shows the results obtained with bars of disparity ±2
pixels (1.6 arcmin). Now, the model perceives the bars at slightly different
positions in the left eye and at slightly larger disparities than veridical. This
is especially apparent when we plot the probability field weighted by the
combined images, [IL(xL, y) + IR(xR, y)], Figure 5D, in an attempt to show
the spatial location of the visual objects perceived by the model.

This illusion occurs when the separation between the images in the left
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Figure 6: Why the bars in Panum’s limiting case tend to repel at small separa-
tions. The five rows show complex cells tuned to five different values of disparity
δ and xc. (A, B) The positions of the complex cell receptive fields in left and right
retinas. (C) The corresponding position on the disparity map (circle = RF cen-
ter). The shading in the disparity map indicates the probability assigned to the
match. (D) The effect of all this on the probability map assigned to the stimulus.
The bars tend to “repel” each other, being shifted away from each other along
both δ and xc.

and right eyes becomes smaller than the RF size in the majority of complex
cells. Figure 6 explains why. Figures 6A and 6B represent the left and right
retinas, with the positions of the bar stimuli in each eye indicated. The left
retina contains a single bar at horizontal position xL; the right retina, two
bars at positions xR1 and xR2. In addition, each plot contains an example
complex cell RF. The circle represents the center of the RF in each retina,
and the oval indicates the extent of the RF. The five rows of plots differ in
the positions of the complex cell RFs. Figure 6C shows where the RF centers
are located in the (xL, xR) disparity space familiar from the previous figures.

The top row shows a complex cell tuned to a correct match, in which the
bar in the left eye is correctly identified with a bar in the right eye (clearly
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there is another correct match, given by the pairing with the other bar in the
right eye, which is not shown here). However, although this match is in fact
correct, the complex cell shown will accord it low probability. This is because
the large RF of this cell extends over both bars in the right retina. The RFs
in either eye are thus not stimulated equally, meaning that the calculated
probability is low. The total match probability summed over all channels
will be relatively low, as represented by the pale shading assigned to this
correspondence in the disparity map in Figure 6C.

The same effect occurs for the cells shown in the second row, which are
tuned to the same disparity but a mean retinal position xc slightly to the
right, and for those in the third row, which are tuned to the same mean
retinal position xc as those in the first row, but a smaller disparity. Again,
the complex cell reports low probability.

The fourth row shows a cell that has the same xc as the first row but
larger disparity; the fifth row shows a cell that has the same disparity but
smaller xc. Here, exactly one bar falls in each eye’s RFs. Since the RFs are
symmetric, the complex cell receives equal stimulation in both eyes, and
so signals high probability. This is represented by the dark shading in the
disparity map.

Figure 6D summarizes the results from the five rows. As in Figures 2
through 5, the grayscale at the point (xL, xR) represents the probability that
the point xL is the correct match for xR. The correct match is not assigned the
highest probability; matches with larger disparity or lower xc are consid-
ered more likely than the correct match. Thus, the bars are perceived shifted
away from each other both in the front-back (δ) and the left-right (xc) direc-
tion. This effect is due to channels whose RFs are longer horizontally than
the separation between the bars’ images in the right eye. The repulsion is
therefore due predominantly to channels tuned to low spatial frequencies
or orientations close to horizontal. Similar repulsion illusions have been re-
ported with human subjects (Ruda, 1998; Badcock & Westheimer, 1985) and
have been reproduced with a non-Bayesian model also based on energy-
model complex cells (Qian, 1997; Mikaelian & Qian, 2000).

At smaller bar separations still, human observers display an apparent
“pooling” effect: the bars appear to attract rather than repel each other, and
the actual disparity perceived is an average of the disparities of each bar.
Qian’s model reproduces this effect. This model, however, cannot display
such pooling. This is because when two bars falls in one eye’s RF and only
one in the other, the two eyes’ RFs are very unequally stimulated; the model
naturally assigns a very low probability to such a match. This deficiency
might be addressed by including some form of local contrast normalization
between the left and right images.
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4 Discussion

This article discusses one way of applying a probabilistic approach to the so-
lution of the correspondence problem. Rather than seeking a unique match
for every point in each retina, I propose assigning a probability to each po-
tential match between left and right retinal positions. This is interpreted
as the probability that an object exists in front of the viewer at the spatial
location implied by the match. This probability is assumed to underlie per-
ception: zeros of the probability field imply no perception of an object at that
location, whereas nonzero values of probability imply a perception, whose
clarity is presumed to increase with increasing probability, of an object with
luminance given by the mean of the values in the left and right retinas (see
Figure 1).

There are many ways in which the brain might attempt to assign a prob-
ability to each potential match. The approach adopted here was motivated
by a desire to incorporate as much as possible of the known physiology of
binocular vision. The available physiological and psychophysical evidence
suggests that initial processing takes place within channels tuned to a partic-
ular spatial frequency and orientation. Accordingly, the match probability is
initially calculated within a single channel, using a Bayesian analysis based
on the outputs of disparity-tuned complex cells and the simple cells that
feed into them. This analysis introduces the two key constraints employed
by the model in order to overcome the ill-posed nature of the correspon-
dence problem. First, the disparity is smoothed over the RF dimensions in
each channel. Second, the Bayesian prior is used to enforce a preference
for small disparities. Information from different channels is then combined
by averaging the probability reported from each individual channel. This
means that information from all spatial scales is handled simultaneously; the
model employs no coarse-to-fine hierarchy (Mallot, Gillner, & Arndt, 1996).

Bayesian stereo algorithms have a long history in the computer vision
literature (Szeliski, 1990; Geiger, Ladendorf, & Yuille, 1992; Chang & Chat-
terjee, 1992; Scharstein & Szeliski, 1998). This article differs from these in
two major respects. First, it attempts to incorporate the known physiology
of disparity-tuned cells in primary visual cortex. Thus, it applies Bayesian
ideas to the results of previous workers who used linear filters as a match-
ing primitive (Lehky & Sejnowski, 1990; Jones & Malik, 1992; Sanger, 1988;
Qian, 1994). The probability field is then derived (albeit with a number of
simplifications and approximations) from the statistics of retinal images de-
graded by gaussian noise and processed by simple and complex cells. In
contrast, previous Bayesian models have usually been postulated to take a
Gibbs form: exp(-potential/temperature), where the potential is some cost
function incorporating punishment for disparity discontinuities, poor lu-
minance matches, and so on.

Second, this article postulates that the probability field directly underlies
perception. Previous studies incorporating Bayesian ideas have generally
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used it as a tool to arrive at a single match between points in the left and
right eyes, explicitly including a form of uniqueness constraint (often al-
lowing for occlusion—each point in the left image must match at most one
point in the right image). The approach here was designed to allow for
the possibility of multiple matches. The model is closest to that developed
by Qian and coworkers (Qian, 1994; Zhu & Qian, 1996; Qian & Zhu, 1997;
Qian & Andersen, 1997) and Prince and Eagle (2000a). It differs from their
work in incorporating multiple spatial frequency and orientation channels
and in processing the complex cell output to assign a probability to each
match.

The model presented here has a number of serious limitations, which
means that it can be regarded only as a preliminary model of stereo cor-
respondence. It was initially developed to model psychophysical data ob-
tained in a front-back depth discrimination task in which images were pre-
sented for 130 ms. Although it succeeds admirably in this task, the percept
implied by the model lacks the clarity and sharpness of human perceptions.
For instance, the ragged outline of the target region perceived in the random
dot stereogram of Figure 2 does not accord with the sharp, square outline
that humans viewing this figure perceive. This is perhaps not surprising for
a model based on the known physiology of primary visual cortex, which
incorporates no hierarchy of interactions or iterative processes that sharpen
the performance of many other stereo models (cf. Marr & Poggio, 1976;
Geiger et al., 1992; Scharstein & Szeliski, 1998). Thus, this model may repre-
sent an initial step in stereoscopic perception, providing a sketch of the 3d
visual scene, which is then processed by still higher visual areas.

The model makes use of a prior probability assigned to each disparity
but does not address how the brain could arrive at such a judgment. It does
not include any mechanism for updating the prior on the basis of visual
experience or information from nonvisual sources. A full Bayesian model
would require such a mechanism, based on experimental evidence of how
performance develops with training.

The model fails to show the correct response with sparse anticorrelated
stereograms. Anticorrelated stereograms are those in which the polarity of
one eye’s image has been inverted, with black pixels becoming white and
vice versa. Dense examples of such stimuli, such as binary random dot pat-
terns, produce little or no impression of depth in most human subjects, al-
though some display a slight tendency to see depth in the opposite direction
to that implied by the disparity of the stereogram. The model reproduces this
behavior (Read, 2002). However, sparse anticorrelated stimuli give human
observers the impression of depth in the veridical direction (von Helmholtz,
1909; Cogan, Kontsevich, Lomakin, Halpern, & Blake, 1995), presumably
because boundaries are extracted and matched even though the polarity of
the boundaries is opposite. The model presented here assigns low probabil-
ity to all anticorrelated potential matches and thus has no mechanism for
reproducing this behavior.
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Further, the model currently includes no form of contrast normalization
between left and right eyes. It seems likely that some such normalization
exists, because human observers can fuse stereograms even where consid-
erable contrast differences exist between the monocular images. The model
cannot, because any contrast differences between left and right eyes mean
that even the correct matches are considered improbable. In addition, the
model fails to reproduce the “disparity pooling” observed with disparate
bars at very small separations. A suitable scheme of local contrast nor-
malization might be able to correct both of these discrepancies, although
considerable work might be required to find a suitable implementation.

Despite these limitations, the model is able to produce plausible solu-
tions of the correspondence problem for a range of stimuli. It extracts the
appropriate disparity map in dense random dot stereograms containing
several target regions with different disparity. In the double-nail illusion,
it perceives only two of four possible matches, in agreement with human
observers. Models that impose a strict uniqueness constraint cannot handle
Panum’s limiting case, whereas the model presented here performs cor-
rectly with this stimulus. This is an advantage of the Bayesian approach
over models with a similar physiological basis but a different method of
extracting disparity, such as that of Qian (1994) and Qian and Zhu (1997).
Finally, it has already been shown (Read, 2002) that the model accurately re-
produces psychophysical functions in a front-back discrimination task, for
both correlated and anticorrelated random noise stereograms with a range
of spatial frequency and orientation bandwidths. Thus, the model combines
physiological plausibility with wide explanatory power.
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