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Abstract

Stereo ‘‘3D’’ depth perception requires the visual system to extract binocular disparities between the two eyes’ images.
Several current models of this process, based on the known physiology of primary visual cortex (V1), do this by computing a
piecewise-frontoparallel local cross-correlation between the left and right eye’s images. The size of the ‘‘window’’ within
which detectors examine the local cross-correlation corresponds to the receptive field size of V1 neurons. This basic model
has successfully captured many aspects of human depth perception. In particular, it accounts for the low human
stereoresolution for sinusoidal depth corrugations, suggesting that the limit on stereoresolution may be set in primary
visual cortex. An important feature of the model, reflecting a key property of V1 neurons, is that the initial disparity
encoding is performed by detectors tuned to locally uniform patches of disparity. Such detectors respond better to square-
wave depth corrugations, since these are locally flat, than to sinusoidal corrugations which are slanted almost everywhere.
Consequently, for any given window size, current models predict better performance for square-wave disparity corrugations
than for sine-wave corrugations at high amplitudes. We have recently shown that this prediction is not borne out: humans
perform no better with square-wave than with sine-wave corrugations, even at high amplitudes. The failure of this
prediction raised the question of whether stereoresolution may actually be set at later stages of cortical processing, perhaps
involving neurons tuned to disparity slant or curvature. Here we extend the local cross-correlation model to include existing
physiological and psychophysical evidence indicating that larger disparities are detected by neurons with larger receptive
fields (a size/disparity correlation). We show that this simple modification succeeds in reconciling the model with human
results, confirming that stereoresolution for disparity gratings may indeed be limited by the size of receptive fields in
primary visual cortex.
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Introduction

Human 3D depth perception is highly precise, with the ability to

detect disparities between the two retinal images of less than the

width of one photoreceptor [1]. However, it has very poor spatial

resolution [2–4]. This can be demonstrated, for example, by using

random-dot patterns to depict a corrugation in depth. An example

is shown in Figure 1, depicted in red/green anaglyph stereo for

illustration. The disparities between dots visible to the left eye (red)

and right eye (green) vary sinusoidally as a function of vertical

position in the image. Accordingly, when viewed with red/green

3D glasses, the dots appear to lie on an undulating surface rather

like a sheet of corrugated iron, with the bars of the corrugations

horizontal on the page. We shall refer to this kind of stimulus,

pioneered by Tyler [3], as a sinusoidal disparity grating, by

analogy with the luminance gratings pioneered by Schade [5].

The upper frequency limit at which such disparity gratings can

be perceived has been found to be around 3–4 cycles per degree

[3,6–8] which is much lower than the limit found for luminance

gratings. This low spatial stereoresolution has been explained in

terms of a model, based on the known properties of cells in

primary visual cortex (V1), where disparity is measured by the use

of local cross-correlation between the two eyes’ images [6,8,9].

Banks et al. found that the spatial stereoresolution of the model

depended on the size of the correlation window, roughly

corresponding to the receptive field size of the V1 cells modelled,

such that the resolution was higher for smaller windows, up to a

limit set by the highest useful dot density which in turn depends on

the level of optical blur [6,8]. For realistic levels of blur, they found

that the smallest useful window size was roughly 6 arcmin. They

also found that the performance of the model with this window

size showed the most similar dependence on the level of blur to

that of human observers, suggesting that ‘‘the smallest mechanism

in humans has a diameter of roughly 3–6 arcmin, which is the

smallest useful size given the optics of the human eye’’ [8]. Based

on the success of this model, these authors made the interesting

and plausible suggestion that spatial stereoresolution may be set in

primary visual cortex, reflecting the size of receptive fields there

[6,9]. In this view, the better spatial resolution for luminance

gratings occurs because V1 receptive fields are divided into ON

and OFF subregions; the effective window reflects the size of V1

subregions. Because V1 neurons respond best to locally uniform

disparity [9], the effective window for disparity is the entire

receptive field.
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This is an intriguing and attractive model, which relates human

perception to the properties of neurons early in visual cortex.

However, we recently raised an observation which potentially

presents a challenge to this view [10]. Almost all previous

empirical results relating to stereo resolution were obtained using

sine-wave disparity gratings like that depicted in Figure 1. Because

the model uses detectors which are tuned to locally uniform

patches of disparity it would be expected to perform better on

detection of square-wave gratings, which consist of regions of

locally constant disparity. We recently confirmed this with

simulations using the model of Banks et al [6,8] with the optimal

window size of 6 arcmin. As expected, the model does indeed

perform better with square-wave gratings, in particular at high

disparity amplitudes. However, Tyler [4] had found using line

stereograms that performance was similar in both square- and

sine-wave disparity gratings. We therefore tested human observers

on dense random-dot stereograms depicting square-wave gratings.

We found that the model’s prediction was not borne out: humans

never showed significantly better ability to detect square-wave

than sine-wave gratings [10]. Figure 2 shows example human and

model data near the upper frequency limit, illustrating the marked

qualitative difference between the model and the human

observers. For humans (Figure 2, top row), performance rises

rapidly to a peak and thereafter declines as the grating’s disparity

amplitude increases, for both sine-wave gratings (red circles) and

square-waves (blue squares). The model (bottom row) performs

similarly for sine-waves, but for square-waves, the model’s

performance remains at its peak value as disparity amplitude

increases, in disagreement with the human data.

This failure of the model raises the possibility that spatial

stereoresolution may not be limited by the smallest receptive field

size in V1 after all but rather at a later stage, perhaps by detectors

in extra-striate areas tuned to disparity slant or curvature [11–14].

However, there is also the possibility that minor modifications to

the model may make it consistent with these new human results.

In this paper, we examine a modified version of the model,

where larger disparities are detected using larger correlation

windows. There is considerable psychophysical evidence for such a

size/disparity correlation [2–4,15–17], and some physiological

evidence has also been found in favour of it [18]. We show that

this new version can capture human performance on both sine-

and square-wave depth corrugations.

Methods

Model
Stimuli and task. The stimuli and task have been described

in detail elsewhere [10]. Briefly, the stimuli used were random-dot

stereograms depicting horizontal sine-wave and square-wave

disparity gratings (i.e. modulations in disparity as a function of

vertical position in the image). For humans, the disparity gratings

are readily visible at low grating frequencies, but as the frequency

increases, it becomes impossible to detect the distinct bars of the

corrugation, and the dots either appear to be distributed

throughout the space between the front and back limits of the

stereogram or they appear to be distributed over two planes at the

front and back limits, depending on the waveform and amplitude

of the grating. Disparity gratings at frequencies beyond the limit of

stereoresolution thus remain readily distinguishable from planes of

constant disparity or from binocularly uncorrelated dot patterns,

but the surface structure cannot be perceived. Accordingly, to

probe stereoresolution, we asked subjects to distinguish disparity

gratings from disparity noise patterns containing the same range of

disparities. Each trial consisted of two intervals. Observers were

shown one stereogram depicting a sine- or square-wave grating

and one stereogram of the corresponding noise pattern, and had to

judge which stereogram contained the grating.

In the psychophysics experiments, sine- and square-wave gratings

were interleaved so that human observers did not know which sort

of grating to look for on any given trial. Disparity grating amplitude

and phase were also randomly interleaved, but different frequencies

were run in blocks. The computer simulations reflected the human

experiments as closely as possible, so the model observer had no

prior knowledge of grating waveform, amplitude or phase. The

Author Summary

Stereo depth perception requires the brain to detect
displacements of features between the two eyes’ images.
Several current models use local cross-correlation between
the two eyes’ images, looking for small patches that are
the most similar between the two images. There is
evidence that cells in primary visual cortex are doing
something very similar. This model captures many aspects
of human depth perception, notably why we can see
depth variation on much coarser scales than luminance
variation. This suggests that the spatial resolution for
depth perception is set in primary visual cortex. However,
the model as currently implemented cannot explain why
humans are as good at detecting sine-waves in depth as
they are at detecting square-waves, a fact that we have
previously raised as a challenge to the model. Here we
show that if we introduce a size/disparity correlation, such
that larger patches are used when searching for larger
displacements of features between the two images, then
simple models based on local cross-correlation can explain
human performance for both sine- and square-wave depth
corrugations, without needing to invoke more complicat-
ed disparity processing. This supports the proposal that
spatial resolution for depth perception is set in primary
visual cortex.

Figure 1. Sinusoidal disparity grating. Random dot stereogram of
a sinusoidal disparity grating.
doi:10.1371/journal.pcbi.1002142.g001
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images presented to the model were preprocessed by blurring and

scaling to simulate the optics of the human eye, as in the model of

Banks et al. [6,8] and our previous paper [10].

Encoding disparity using cross-correlation. After the

preprocessing, the images were presented to a population of

cross-correlators tuned to different vertical locations along the

grating and to different disparities between left and right eyes.

Each cross-correlator had two windows, one in each eye’s image.

Both windows for a given cross-correlator had the same vertical

position. In our model, the left-eye window was always at the same

horizontal position. The right-eye window was in one of a range of

horizontal positions on either side of the left-eye window. The

correlation between contents of the two windows was calculated

and recorded for every combination of window-positions. The

definition of correlation that was used was:

C(y,Dx)~
cov(Lw,Rw)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov(Lw,Lw)cov(Rw,Rw)
p ð1Þ

where Lw and Rw are the pixel-values in the left and the right

image, multiplied by the window function, and cov is the

covariance. We used Gaussian window functions that were cut

off at two standard deviations from the centre. That is, if the left

window is centered on position (x,y) and IL(i,j) represents the left

eye’s image at position (i,j), then

Lw is the set of values fIL(i,j)exp(½-(i-x)2-(j-y)2�=2s2)g for all

(i,j) satisfying |i-x|,2s and |j-y|,2s, and

Rw is the set of values fIR(i,j)exp(½-(i-x-Dx)2-(j-y)2�=2s2)g for

all (i,j) satisfying |i-x|,2s and |j-y|,2s.

We refer to the standard deviation s as the size of the window for

that cross-correlator. The function C(y,Dx) represents a population

of neuronal units tuned to different disparities Dx and vertical image

positions y. The preferred disparities used were in the range from

213 to 13 arcmin with a step of 0.6 arcmin (1 pixel in the scaled

images), except in the section on ‘‘Size-disparity correlation and the

disparity gradient limit’’, where we included window disparities up

to 140 arcmin, again with a step size of 0.6 arcmin, in order to

examine performance down to lower frequencies. The step size in

the range of y-positions was also 1 pixel in the scaled images.

The innovative feature of the present paper is that cross-

correlators tuned to larger disparities, i.e. with larger separations

between the centers of their left-eye and right-eye windows, had

larger windows. Psychophysical evidence for a different sort of

size-disparity correlation was provided by Smallman and Ma-

cLeod [16].These authors investigated the optimal disparity at

which subjects could perform a front back discrimination task with

stereograms based on narrow-band filtered noise. They obtained

linear fits between optimal disparity and the center spatial

frequency of the noise on a loglog scale. Assuming that cells

processing higher luminance frequencies have smaller receptive

fields, this provides evidence for a correlation between disparity

tuning and receptive field size. The fits obtained for the data from

the two different subjects tested had loglog slopes of approximately

21 and 20.5, corresponding respectively to a linear and a

quadratic relationship between size and disparity. Motivated by

Smallman and MacLeod’s results, we have examined a second

order polynomial as well as a linear function as the relationships

between window size and preferred disparity in our model:

s~3z0:032 � (Dx)2 ð2Þ

s~3z0:27 � Dxj j ð3Þ

Figure 2. Comparison between human data and model results with the old fixed window-size model. Examples of human data (top row)
and model results (bottom row) reproduced from Allenmark & Read (2010). The task was to detect which of two intervals contained a disparity
corrugation, and which contained disparity noise with the same disparity amplitude. The model is the old fixed-window-size cross-correlation model
with the decision model based on template matching.
doi:10.1371/journal.pcbi.1002142.g002
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where s is the standard deviation of the Gaussian window and Dx
is the disparity of the window, both measured in arcmin. We have

also explored an exponential size disparity relationship. Although

the very long run-time of the simulations made it impossible to

perform systematic optimization, or to fit the model results to the

data of individual subjects, the size/disparity relationships given in

Equation 2 and Equation 3 gave the best match to human

performance of those we examined.

The cross-correlator output can be visualised as a two-

dimensional image showing correlation as a function of the

horizontal disparity, Dx, between the windows as well as the vertical

position of the windows, y (see Figure 3). This cross-correlation

performs the initial encoding of disparity within the model.

Physiologically, we envisage this as occurring in primary visual

cortex. The cross-correlation calculated for a given window position,

size and disparity represents, in idealised form, the combined activity

of several disparity-selective neurons in primary visual cortex, all

tuned to the same retinal position and disparity. Each row in Figure 3

represents the activity of a group of V1 neurons tuned to the same

retinal location but to a range of horizontal disparities. The black

lines indicate how the vertical extent of the window increases with

the horizontal disparity to which they are tuned.

Making a perceptual judgment. In order to compare our

model to human observers, we needed to take the correlator output

from each interval, and use it to make a judgment regarding which

interval contained the grating. Physiologically, this process

presumably occurs in extra-striate areas, but little is known about

how it is achieved. We therefore have little to go on in modelling this

process other than some plausible assumptions. In this paper, we shall

ultimately conclude that spatial stereoresolution is fundamentally

limited by the initial encoding of disparity in V1, not by the nature of

this perceptual read-out process. It is therefore important to

demonstrate that our results are qualitatively the same independent

of the precise assumptions made regarding read-out. To this end, we

have examined three different decision models incorporating specific

decision rules, aiming to span a range of possible approaches and

assumptions. Since these all give qualitatively similar results, we

present only one of them in the main body of the paper. The others

are presented in Text S1 and Text S2.

For the results in the main body of the paper, we assume that

the model observer knows the frequency of the grating it is trying

to detect, though not the disparity amplitude, waveform (sine vs

square) or phase. This is realistic since frequency was blocked in

the psychophysical experiments whose results we are trying to

reproduce, while amplitude, waveform and phase were inter-

leaved. Avoiding the need to search for frequency speeds up the

simulations, but is not critical to our results. In Text S1, we show

that very similar results are produced by a model which does not

know frequency.

This method used a set of templates of the correlator output,

representing the brain’s prior knowledge of the average V1 activity

caused by different stimuli. This is closely based on the approach

taken by Tsai & Victor [19]. We assume that the brain knows (or is

able to reconstruct) the activity expected in response to all the

different stimuli used in our experiment, both gratings and noise,

based on prior experience. This assumption is discussed further in

the Discussion.

The template for each type of stimulus was generated by making

100 different random dot stereograms, preprocessing them with

the same preprocessing steps that were used in the main model,

and then passing them to the cross-correlator. The mean and

standard deviation for each position y and disparity Dx were then

calculated based on the resulting set of 100 correlation images (see

Figure 4). This process was repeated for gratings of different

frequencies, amplitudes, phases and waveforms (sine vs square).

The phase of the disparity gratings was varied in steps of 10u.
When testing the model, the phase was randomly chosen at each

trial to be one of the 36 different phases represented in the set of

templates. The disparity amplitudes were 0.3, 1.3, 2.5, 5.1, 7.6,

and 10.1 arcmin. Thus there were 432 grating templates per

frequency, reflecting 36 phases66 amplitudes62 grating wave-

forms. Noise templates were by their nature independent of

frequency and phase, so there were 12 noise templates in total,

reflecting 6 amplitudes62 waveforms.

To simulate an experiment, we assumed that the frequency was

known, so the model was using the 432 grating templates for the

correct stimulus frequency, as well as the 12 noise templates. In

each interval, the correlator output from this stimulus was

Figure 3. Examples of correlator output. Legend: Examples of output from the cross-correlator for one sine-wave and one square-wave disparity
grating, both with a frequency of 1.3 cpd. A Gaussian window with s= 3+0.032*(Dx)2 arcmin was used. The black lines shows the extent of the
correlation window, taken to be the 1SD contour of the Gaussian.
doi:10.1371/journal.pcbi.1002142.g003
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compared to each of the 432 grating templates, by calculating the

Pearson correlation coefficient between the current and each

different grating template [20]. The quality of the match to the

best-fitting grating was taken to be

Mgrating~ max
n

P
((C(Dx,y){mC)(Tn(Dx,y){mTn

))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(C(Dx,y){mC)2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
(Tn(Dx,y){mTn

)2
q ð4Þ

where C is the correlator output, Tn is the nth_ grating template, mC

and mTn
are the means over all disparities Dx and all y-positions of

the correlator output and template Tn respectively, and the sums

are over all Dx and all y. The maximum is taken over all values of

n, from 1 to 432.

We then calculated the difference (Mgrating-Mnoise) for each

interval, and judged the grating to be in the interval for which this

difference was greater.

Results

Cross-correlation can be obtained from energy-model
units

The cross-correlation coefficient used in the present paper as

well as by Banks et al. differs in a number of ways from the

cross-correlation implemented by the energy model. First, it is

normalized to lie between 1 (for perfect interocular correlation) and

21 (for anti-correlated stimuli). Second, it operates on the retinal

images directly, not the images after filtering by a bandpass

receptive field. Finally, the multiplication of the two images is

performed first, followed by integration over space, unlike the

energy model where the images are integrated over space first and

the results are then multiplied together. This has the consequence

that the cross-correlation model used here depends more critically

on the exact relative positioning of visual features in the two images

compared to an energy model unit of the same window-size, and

that its disparity tuning is finer and independent of window size.

Given that we are claiming our results show that disparity resolution

is limited by activity in primary visual cortex, it is important to be

clear how the idealized cross-correlation computed in our model

relates to more realistic models of individual neurons.

To this end, we begin the Results section by showing that the

output of a Banks-style cross-correlator can be approximated by

suitably combining the responses of many complex cells tuned to

different orientations and frequencies.

In the standard energy model the response of a stereo energy

unit is described by the equation:

E~(SL1zSR1)2z(SL2zSR2)2

Figure 4. Examples of grating templates. Examples of templates for sine-waves (left) and square-waves (right) with a frequency of 1.3 cpd. The
upper row shows the mean and the lower row shows the standard deviation for cross-correlators tuned to vertical position y and disparity Dx,
estimated from 100 different random-dot disparity gratings. Figure 3 showed analogous results for a single grating.
doi:10.1371/journal.pcbi.1002142.g004
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where

SL1~

ð
dxdyIL x,yð Þexp {

x{xLð Þ2z y{yLð Þ2
� �

2s2

0
@

1
A

cos(kxxzkyyzwL) and

SL2~

ð
dxdyIL x,yð Þexp {

x{xLð Þ2z y{yLð Þ2
� �

2s2

0
@

1
A

sin(kxxzkyyzwL)

and IL is the left eye’s image, the wavenumbers kx and ky together

specify the spatial frequency and orientation of the cells receptive

field, xL and yL specify the position of the center of the left eye’s

receptive field, wL is the phase of the receptive field, and s is the

standard deviation of the Gaussian envelope of the receptive field.

SR1 and SR2 are defined analogously. We assume that, due to

adaptation at lower levels of the visual system, the image is defined

relative to the overall mean luminance, so that averaged across the

whole image,
Ð

dxdyIL x,yð Þ~
Ð

dxdyIR x,yð Þ~0.

Let us assume there are also monocular complex cells which

compute

L~SL1
2zSL2

2 and R~SR1
2zSR2

2:

The response of the energy model unit can be split into a binocular

part B and monocular parts L and R:

E~BzLzR

where

B~2SL1SR1z2SL2SR2

Now we compute the total response of all cells at this location

which have phase disparity zero and position disparity Dx,

summing over cells tuned to a range of spatial frequencies and

orientations. In Text S3, we show that integrating B in this way

over all spatial frequencies and orientations gives us

Bint~2

ð
dx’dy’ exp {

x’{xð Þ2z y’{yð Þ2
� �

2s2

0
@

1
A

IL x’,y’ð Þexp {
x’{x{Dxð Þ2z y’{yð Þ2

� �
2s2

0
@

1
AIR x’,y’ð Þ

Approximating the integrals with a sum over pixels, and using LW

to represent the image after multiplication by the window

function, this is

Bint~2
X

i,j

Lw i, jð ÞRw i, jð Þ:

This is simply the covariance of the weighted image-patches, plus a

term reflecting the average pixel-value within the window:

Bint~2n cov Lw,Rwð Þz�LLw
�RRw½ �

where n is the total number of pixels included in the sum.

Similarly, integrating the monocular terms over all spatial

frequencies and orientations, we obtain

Lint~n cov Lw,Lwð Þz�LLw
2

h i
and Rint~n cov Rw,Rwð Þz�RRw

2
h i

:

Now we use the monocular terms to normalise the binocular term

[19–21]:

Cint~
2Bintffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LintRint

p ~2
cov Lw,Rwð Þz�LLw

�RRwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov Lw,Lwð Þz�LLw

2
h i

cov Rw,Rwð Þz�RRw
2

h ir

The normalisation ensures that Cint remains between +1 (for units

tuned to the stimulus disparity, where Lw = Rw) and 21 (for anti-

correlated stimuli, where Lw = 2Rw).

For random-dot patterns where the correlation window is large

compared to the dot-size, the average pixel-value within each eye’s

window will be very nearly the same as the average pixel-value

across the whole eye’s image, which is zero by definition. For such

images, Cint reduces immediately to C as defined in Equation 1.

For natural scenes or other images where the luminance under-

goes large-scale changes across the image, this would not be the

case, and Cint would not be zero for binocularly uncorrelated

images. Real neurons have not been studied with such images, so it

is not possible to say whether Cint or C as defined in Equation 1

would be more appropriate in that case.

This analysis shows that the key features of the Banks model –

units sensitive to the precise location of features within the

window, isotropic windows, disparity tuning curves whose width

is independent of window size – can be produced within a more

physiologically-realistic model, simply by combining the outputs

of energy-model units tuned to many spatial frequencies and

orientations. Essentially, the Banks model is a computational

short-cut which enables us to approximate the properties of a

much larger population of energy-model units at vastly reduced

computational cost. This is somewhat analogous to how the

energy-model itself uses a quadrature pair of units with 0 and p/2

phase to approximate the output of a large number of subunits

tuned to a range of phases. This derivation gives us confidence

that the encoding stage of our model, while clearly highly

idealised, is nevertheless consistent with the physiology of early

visual cortex.

We now move on to examine how the model performs when its

outputs are used to perform our psychophysical task, under

various different decision models.

Size-disparity correlation makes sine- and square-wave
gratings equally detectable

Figure 5 shows the results of the model. Panels A–H show the

model’s performance (percent correct judgments) as a function of

disparity amplitude for different grating frequencies and the final

panel shows the maximum performance, i.e. that at the optimal

disparity amplitude for each frequency, as a function of frequency.

Red circles show results for sine-wave gratings; blue squares those

for square-wave gratings. Throughout, error bars show 95%

confidence intervals. Critically, the results are now very similar for

both sine- and square-wave disparity gratings – like human

observers and unlike the original model (Figure 2). Like human

observers, as disparity amplitude increases beyond its optimal

value, performance for both grating waveforms decays back to

chance.

Spatial Stereoresolution for Depth Corrugations
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Similar figures are given in Text S1 and Text S2 for alternative

decision models (Figure S1-1 in Text S1 and Figure S2-2 in Text

S2). Unsurprisingly, there are quantitative differences between the

results from different decision models, especially in the percent

correct at the lowest disparity amplitude. This amplitude, 0.3

arcmin, is below the step size of 0.6 arcmin in the range of

correlation detectors, and the decision models vary in how efficient

they are at extracting information at this sub-step-size disparity.

Similarly, the decision models vary somewhat in the frequency at

which peak performance first starts to decline. We know in

principle how to match human performance on both of these.

Capturing sensitivity to small disparity amplitudes would require

the right minimum spacing in the population of cross-correlators,

plus the addition of noise to limit the ability to discriminate tiny

disparities. Capturing the correct frequency at which performance

declines would require us to tweak the minimum window-size, i.e.

the value of the first term in Equation 3, as done by Banks et al

[6,8]. Given the long simulation run-time and the fact that these

issues are solved in principle, we have not here attempted to chase

down these parameters further.

In Figure S2-2 in Text S2, showing results for a decision model

based on auto-correlation, there are a couple of frequencies where

performance starts dropping for the sine-waves at slightly lower

amplitudes than for the square-waves. Interestingly, 2 of our 4

human observers also displayed this tendency (Figure 10 of [10]),

while neither humans nor model ever displayed an earlier drop for

square-waves than for sine-waves.

Form of the size-disparity correlation is not critical
The results in Figure 5 assumed a quadratic relationship

between a correlator’s window-size and its preferred disparity. The

psychophysical data suggests there may be noticeable inter-subject

variation in the relationship between spatial scale and disparity

correlation, with Smallman & McLeod’s two subjects showing

linear and quadratic relationships respectively. However, all our

subjects showed near-identical performance on sine- and square-

wave gratings [10]. We therefore wanted to check that the precise

form assumed for the size-disparity correlation was not critical for

our results. To this end, we also tested the model with a linear

size/disparity correlation (Equation 3). The results (Figure 6) are

similar to those obtained with the second order polynomial size/

disparity correlation (Equation 2), and in particular the key result

holds: differences between the sine-wave and square-wave results

remain negligible. This suggests that several different forms of the

Figure 5. Model results with the quadratic size-disparity correlation. Legend: Model performance on the grating detection task as a function
of amplitude and frequency. The last plot (I) shows the maximum performance over all amplitudes for each frequency. This is for the model with the
template matching decision model with known frequency and a quadratic size-disparity relationship (Equation 2).
doi:10.1371/journal.pcbi.1002142.g005

Spatial Stereoresolution for Depth Corrugations

PLoS Computational Biology | www.ploscompbiol.org 7 August 2011 | Volume 7 | Issue 8 | e1002142



size/disparity correlation may be consistent with the human data

in our previous paper [10].

Model with size-disparity correlation explains disparity
gradient limit for sine and square-wave gratings

Many previous studies have suggested that human depth

perception is limited in the disparity gradients it can detect

[4,6,8,15,22,23]. For example, Tyler found that, for sinusoidal

disparity gratings, the highest disparity amplitude which can be

perceived is inversely proportional to grating frequency (i.e. lies on

a line with a slope of minus one in log-log coordinates [4]; black

symbols in Figure 7), as if perception is limited by the maximum

gradient present in the grating. This observation does not require a

size-disparity correlation; for example, Filippini & Banks [8]

successfully reproduced it with their local cross-correlation model

which incorporates no relationship between size and disparity

tuning of detectors (Figure 7A). However, Tyler also found the

same relationship between upper depth limit and frequency in

square-wave disparity gratings. He argued that this does imply a

size-disparity correlation. No computational model has yet

reproduced this observation. To examine this, we re-ran our

simulations using a larger range of correlation detectors, including

detectors tuned to disparities up to 140 arc min. This enabled us to

probe the model’s upper depth limit even at frequencies ,1 cpd,

where performance remains perfect up to tens of arc min.

The coloured symbols in Figure 7 shows the upper limit of

disparity amplitude, defined as the maximum amplitude for which

performance exceeds 80% on our grating detection task, as a

function of grating frequency. For comparison, Tyler’s results are

replotted in black. Figure 7A shows our results with the original,

constant window-size model. For sinusoidal disparity gratings, the

upper limit falls as a power-law with frequency, replicating the

finding of Filippini & Banks. However, the model fails completely for

square-wave gratings. No results are shown since the model has no

upper depth limit for square-wave gratings; performance remains

optimal at all amplitudes up to Panum’s fusional limit, with no trade-

off between upper depth limit and frequency. This is inconsistent

with Tyler’s data showing that, for human subjects, the upper depth

limit for square-waves falls with increasing frequency in the same

way as it does for sine-waves [4], as well as with our own data [10].

Figure 7B shows the results of the new model using a linear

size/disparity correlation (Equation 3). For both square-wave and

sine-wave gratings, the upper depth limit is inversely proportional

to frequency, in agreement with the human data. However, in the

Figure 6. Model results with the linear size-disparity correlation. Model performance on the grating detection task as a function of
amplitude and frequency. The last plot (I) shows the maximum performance over all amplitudes for each frequency. This is for the model with the
template matching decision model with known frequency and a linear size-disparity relationship (Equation 3).
doi:10.1371/journal.pcbi.1002142.g006
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model results the sine- and square-wave curves overlap almost

perfectly while they are offset by a constant amount in Tyler’s

data. Tyler’s data were obtained using a different stimulus, line

stereograms rather than random dot stereograms, and while

similar results have also been obtained with random dot

stereograms for sine-waves [3], to our best knowledge the

frequency dependence of the upper depth limit for square-waves

has only been measured with line stereograms, making it hard to

say whether this difference reflects a real problem with the model

or if it is just a consequence of using a different stimulus. In the

human data in our previous paper [10], some subjects seem to

show a difference in the same direction as Tyler, though smaller,

while others show almost no difference. But our paper only looked

at high frequencies and the experiments were not designed

specifically to test the upper disparity limit. Clearly, more data on

the upper disparity limit for sine- vs. square-wave disparity

gratings in random dot stereograms would be needed to test

whether the lack of an offset between the sine- and square-wave

results reflects a remaining problem with the model.

Figure 7C shows the results of the new model using a quadratic

size/disparity correlation (Equation 2). The results for sine-waves

and square-waves are again very similar, but now the upper depth

limit rises less steeply as frequency is reduced, or put another way,

the highest frequency detectable for a given amplitude decreases at

an accelerating rate as the amplitude increases.

Discussion

The idea of primary visual cortex as a cyclopean retina goes

back to Julesz [24]. Recently, the suggestion has emerged that

certain key aspects of human depth perception, notably the low

spatial resolution for stereo depth, are set by the initial encoding of

disparity in primary visual cortex (V1). This suggestion has been

quantified with models closely based on known physiology, in

which disparity is encoded via a local cross-correlation of the two

eye’s images, within a finite window [6,8,23]. In a previous study

[10], we identified a problem with the current implementation of

this model. The model predicts a difference between the

detectability of sine- vs square-wave gratings which is not observed

in humans. The model predicts that, for sine-wave gratings,

performance should decline from its peak value as disparity

amplitude increases, while for square-wave gratings, performance

should remain high. In humans, performance declines for both

types of gratings. Clearly, the model needed to be altered to

account for these observations.

This then raised the question of what sort of modifications were

needed. Potentially, the discrepancies might reflect the model’s

failure to include more elaborate disparity processing in extra-

striate cortex. For example, some extra-striate areas contain

neurons that are tuned to disparity-defined edges, slant and

curvature [11–14,25,26]. These are not included in the model. If

such extra-striate mechanisms turn out to play a critical role in

setting spatial stereoresolution, this would undermine the claim

that stereoresolution is limited by the initial encoding of disparity

performed in striate cortex. However, current models also ignore

many known features of primary visual cortex, partly for practical

reasons (simulation runtimes rapidly become unmanageable if one

attempts to include all known variations) and partly for theoretical

ones (insight is gained by abstracting out the key features which are

responsible for a particular behaviour). Thus, it seemed to us that

the first line of inquiry should be to explore whether a more

realistic representation of the initial disparity encoding stage could

reconcile the model with human behaviour.

One obvious property neglected by the current model is the

tuning of neurons in early visual cortex to luminance spatial

frequency and orientation. Rather, as we have shown in the first

section of the Results, the model’s idealised, isotropic cross-

correlators represents the combined output of many such tuned

neurons (as for example in [21]). For the broad-band random-dot

patterns used here, we believe that this simplification is adequate,

and unlikely to affect the model’s performance on the particular

tasks under consideration. We therefore chose to address, instead,

another property ignored by current models, namely the size/

disparity correlation. Much previous psychophysical work has

indicated a correlation between the spatial scales over which

disparity is extracted, and the amplitude of the disparity itself

Figure 7. Comparison between model results and human data on the frequency dependence of the upper depth limit. The maximum
amplitude at which sine- and square-wave disparity gratings can be detected with .80% accuracy, as a function of frequency. The black squares and
circles show human data for square- and sine-waves replotted from Tyler [4]. The red circles show model results on sine-waves and the blue squares
show model results on square-waves. A: Results with the old constant window-size model. No square-wave results are shown because the constant
window-size model does not have an upper depth limit for square-waves. B: Model results using a linear size/disparity correlation in the encoding
population (Equation 3). C: Model results using the same decision model but a quadratic size/disparity correlation (Equation 2).
doi:10.1371/journal.pcbi.1002142.g007
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[4,15–17]. Physiologically, this implies that a population of

neurons tuned to low spatial frequencies would encode disparities

over a larger range than a population with tuned to high spatial

frequencies. There is some physiological evidence supporting this

[18]. In the correlation model, spatial frequencies are not explicitly

represented, but the integration implicitly includes all spatial

frequencies with the same weighting (a limitation we discuss

further below). Thus it is difficult to incorporate a relationship

between disparity and spatial frequency tuning. However, it is easy

to incorporate a relationship between disparity and receptive field

size. We believed that such a size/disparity correlation could

potentially account for the poor human performance on square-

wave gratings. Our reasoning was that square-wave gratings

present a greater magnitude of disparity, averaged across a cycle,

than sine-wave gratings of the same amplitude. Thus, their

disparity should be encoded by cross-correlators with larger

average window-size than sine-wave gratings. When the window-

size associated with the largest disparity in the grating is

comparable to or larger than half the spatial period of the grating

this effect will tend to reduce performance on square-wave gratings

relative to sines, although the piecewise-frontoparallel nature of

square-wave gratings will tend to enhance performance relative to

sines. We wondered whether, with an appropriate relationship

between window-size and disparity magnitude, these two effects

could cancel out and thus account for the very similar human

performance on both types of gratings.

In this paper, we have shown that our intuition was correct.

Introducing a size/disparity correlation into the initial stage of

disparity encoding, such that larger disparities are detected using

larger correlation windows, solves both of the problems we

identified with earlier version of the model. We have investigated

various decision models, and shown that the model’s performance

does not depend critically on the particular decision model used.

Rather, it reflects the information available at the initial encoding

stage, for the reasons we now discuss.

How it works: why a size-disparity correlation reconciles
the model with human performance on square-wave
gratings

Correlation-based models are built of disparity detectors which

respond maximally, i.e. with correlation output 1, to uniform

stimulus disparity at their preferred value. Stimulus disparities

away from the preferred value cause a decline in the reported

correlation output. In this type of model, the rate of the decline is

ultimately limited by the point-spread function of the eye, with an

SD of around 2 arcmin.

In the old, fixed-window-size model, the quality of the

correlator output declines with increasing amplitude for the sine-

waves, but not for the square-waves. Figure 8 shows examples of

the old model’s correlator output for sine- and square-waves with

low and high amplitude, for a frequency of 3.8 cpd. The white

Figure 8. Examples of correlator output for low and high amplitude disparity gratings with the old fixed window-size model.
Examples of output from the cross-correlator for the old model at a frequency of 3.8 cpd. The top row shows output for a sine-wave (A) and a square-
wave (B) with low amplitude (4 pixels = 1.3 arcmin) while the bottom row shows output for a sine-wave (C) and a square-wave (D) with high
amplitude (24 pixels = 7.6 arcmin). Notice that the quality of the correlator output remains high for the high amplitude square-wave (D) while only the
regions close to the peaks are visible in the output for the high amplitude sine-wave (C).
doi:10.1371/journal.pcbi.1002142.g008
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lines show which disparity was actually presented at each vertical

position. The black lines show the extent of a correlation window,

defined as the 1SD contour of the Gaussian. For the low amplitude

gratings (Figure 8AB), the correlator output is of high quality for

both waveforms. It is maximal at the front and back surfaces of

each waveform, where the range of stimulus disparities within the

correlation window is smallest. In this example, the grating half-

period is 7 arcmin, so for the square-wave, detectors positioned at

the center of the grating’s front and back surfaces experience

uniform stimulus disparity everywhere within their 6-arcmin

correlation window. Detectors tuned to the stimulus disparity will

therefore respond close to their maximum possible value of 1.

Even at the edges of the square-wave the window will only

experience two disparities, each covering half the window,

allowing the correlation to be relatively high (close to 0.5) for

detectors tuned to either of these two disparities. For the sine-

wave, the stimulus disparity is constantly varying. However,

detectors positioned at the peak and trough of the gratings

experience only a small (0.8-arcmin) range in disparity within their

correlation window, so the response is still high at the front and

back surfaces. Even detectors at the centre of the grating (zero

disparity) experience a range of only 2.4-arcmin disparity, and so

give a clear, though reduced, response.

For the high-amplitude sine-wave grating, Figure 8C, the

situation is very different. Detectors at the centre of the grating

now experience a 14-arcmin range of stimulus disparities. There is

thus almost no visible response to the slanting regions of the

grating which can be distinguished from chance responses to

particular random dot patterns within the stimulus. Detectors

centred on the peaks and troughs of the sine-wave experience a

lower disparity range of 4.8 arcmin, and periodic blobs of higher

activation are still just visible here. Thus overall, the high-

amplitude sine-wave grating is barely visible in the correlator

output. For the high-amplitude square-wave, Figure 8D, little is

changed compared to the low-amplitude case, Figure 8B.

Detectors in the center of the grating’s front and back surfaces

still experience uniform disparity, and so their response is

undiminished. Detectors at the edges of the square-waves still

only experience two disparities. That these are now further apart

makes no difference: each disparity is still seen by half the window

allowing correlations of about 0.5 even close to the edges. This is

why the old model performed so much better with high-amplitude

square-waves than with sines (Figure 2, bottom row).

How does the size/disparity correlation change things?

Figure 9AB shows correlator output for our new model, for high

amplitude sine- and square-waves at 3.8 cpd, the same frequency

that was used in Figure 8. For the low amplitude gratings, the

correlator output remains almost exactly the same as shown in

Figure 8AB, since the window-size remains close to that used in

the fixed- window-size model. For high-amplitude gratings on the

other hand, considerably larger windows will be used to detect the

large disparities, as indicated by the black lines. For sine-wave

gratings, this has relatively little effect. Detectors at the peaks and

troughs of the grating now have a window-size of 2s= 10 arcmin.

The range of disparity they experience within their correlation

window is therefore larger, at 10.7 arcmin as compared to 4.8 in

Figure 8C. The correlation output in Figure 9A is therefore

somewhat reduced compared to the old model, Figure 8C (note

slightly different colorscale), but the grating is still visible in the

periodic ‘‘blobs’’ of higher correlation. For the square-wave, on

the other hand, the increase in window-size has a more serious

effect. The window now exceeds the grating half-period, meaning

that correlation detectors at the middle of the front or back

surfaces no longer sample only their preferred disparity, but also

some disparities 15 arcmin away from their preferred value.

Detectors at different vertical positions now vary only in the

proportion of dots which are at their preferred disparity.

Accordingly, not only are the ‘‘blobs’’ marking each front and

back surface now lower in amplitude, but critically, they are no

longer separated by clear regions of low activation (compare

Figure 9B vs Figure 8D).

This is very damaging to the model’s performance. Recall that,

in order to assess spatial resolution, observers were asked to

discriminate stimuli in which disparities were arranged as a

periodic function of position (gratings) from those in which the

same disparities were scattered at random (noise). Figure 9CDEF

shows the mean correlator output for both types of stimuli: that is,

the grating templates for this frequency and amplitude

(Figure 9CD), and the noise templates for this amplitude

(Figure 9EF). The model’s task, then, is essentially to decide

whether the output to a given stimulus, Figure 9A and B, is a

better match to the grating templates in Figure 9CD or to the

noise templates in Figure 9EF. These are distinguished only by

their periodicity.

For the square-wave grating, the periodicity was perfectly clear

with the fixed-window-size model (Figure 8CD), and is much less

obvious with the size-disparity correlation model (Figure 9AB),

thanks to the larger window sizes at the relevant disparities. In the

new model, both the sine-wave and the square-wave output is now

hard to distinguish from the noise patterns. This is why all our

decision models gave similar results for both square-wave and sine-

wave gratings. For the frequency and amplitude used in this

example, the template matching decision model with known

frequency performed at about 80% correct for both.

Initial encoding not decision model is critical
Although we have concentrated on the template-matching

decision model when explaining why the size-disparity correlation

has the effect it does, qualitatively similar results were obtained

from all four decision models examined (see Text S1 and Text S2).

We conclude that stereoresolution is limited by the initial encoding

of disparity, not by the particular read-out we have adopted.

Similar conclusions were reached by Banks [6,8] and Harris et al

[27].

Size-disparity correlation and the disparity gradient limit
Previous studies have suggested that our perception of depth

patterns containing a large range of disparities may be limited by

disparity gradient rather than the large disparities as such

[6,8,15,22,23]. In particular a study by Tyler [4] found that the

maximum depth limit, the disparity amplitude at which depth

differences are no longer perceived in sinusoidal and square-wave

disparity gratings, depends on corrugation frequency in a way that

approximately corresponds to a straight line with slope 21 in log-

log coordinates. Banks et al. [8] had previously shown that a

constant window size local cross-correlation model performed in a

qualitatively similar way when tested with sinusoidal disparity

gratings. Here, we have replicated this finding and shown that

when a size/disparity correlation is incorporated into the model it

performs in the same way for square-wave disparity gratings,

consistent with Tyler’s results. The model achieves this despite

lacking any sensors tuned to non-zero disparity gradients. Banks et

al. suggested that the disparity gradient limit was a by-product of

using local cross-correlation to estimate disparity [6,8]. However,

as Tyler [4] recognized, this alone cannot explain why the

frequency dependence of the upper depth limit exists for square-

waves as well as for sine-wave gratings. We have found that

incorporating a size/disparity correlation into a correlation-based
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model makes it perform consistently for random-dot patterns

depicting both square-wave and sine-wave disparity gratings. This

supports Tyler’s conclusion [4] that the disparity gradient limit

reflects a size/disparity correlation, rather than being solely a by-

product of local cross-correlation.

Relationship to previous models
Models of stereopsis based on cross-correlation of local patches

of the two eyes’ images have a long history [23,28–30]. They are

widely used in computer vision as a fast and relatively reliable

approach of achieving stereo correspondence. They have often

been used to model human vision [6,8,27,31]. Local cross-

correlation is closely related to the ‘‘stereo energy’’ computation

performed by cells in primary visual cortex [32–35], although cells

spectrally filter the local image patches before cross-correlating

them. Models based on stereo energy units have also been used as

models of human vision [19,21,35–38]. All these implementations

have recognized that useful disparity estimates require the outputs

of many stereo energy units to be combined in some way. For

example, models have estimated disparity by combining the

outputs of stereo energy units with different spatial locations

[35,39], or different spatial frequencies and/or orientations

[21,36,40]. As we show in this paper, combining stereo energy

units tuned to many different spatial frequencies and orientations

can produce something which is formally identical to local cross-

correlation of the unfiltered image.

Stereo energy units based on phase disparity [32,41] naturally

incorporate a size-disparity correlation. In this type of disparity

encoding, the unit’s preferred disparity Dx is roughly Dw/2pf,

where Dw is its preferred phase and f its preferred spatial

Figure 9. Comparison between single image correlator output, grating templates and noise templates at a high spatial frequency.
The top row shows examples of output from the cross-correlator for the new model at a frequency of 3.8 cpd for sine-waves (A) and square-waves
(B). The middle row shows grating templates at the same frequency for sine-waves (C) and square-waves (D). The bottom row shows noise templates
for sine-waves (E) and square-waves (F). The correlator output matches the grating templates better than the noise templates.
doi:10.1371/journal.pcbi.1002142.g009
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frequency. If the largest phase disparity and bandwidth are the

same for all spatial scales, then the largest preferred disparity is

inversely proportional to frequency and thus proportional to size.

Tsai & Victor [19] used stereo energy units with phase disparity

which therefore incorporated a size-disparity correlation. They

showed that this model, with template-matching, was able to

account for stereoacuity as a function of frequency in sine-wave

luminance gratings (NB these are luminance gratings at a constant

depth, not random-dot patterns depicting sinusoidal depth

modulation as in the present paper). Our model uses position

disparity, in which size-disparity correlation does not arise

naturally, but has been built in by design. This leads to an

important difference between the two implementations. Our size-

disparity correlation links disparity to the size of the window across

which disparities are sought, but not to spatial frequency. Our

correlation-based model includes information from all spatial

frequencies, independent of window-size. Thus, the meaning of

‘‘size-disparity correlation’’ is somewhat different in the two cases.

Limitations of the model
Our model suffers from many limitations, most of which were

forced on us by the difficulty of running simulations with large

numbers of neurons. Most previous studies have either used

stimuli with a uniform disparity profile, meaning that it suffices to

model neurons at only one location in the visual field [19–21], or

have modelled neurons at several locations but with only one

spatial frequency and orientation [37]. In order for the model to

detect gratings that vary in depth, we needed to compute responses

in many locations in the visual field. It would have been very costly

also to model the responses of stereo energy units tuned to many

different spatial frequencies and orientations. We therefore used

the cross-correlation technique [6,8,27,37] as a convenient short-

cut to approximate the responses of many stereo energy units

tuned to all possible frequencies and orientations.

Our analysis showing how local cross-correlation can be

implemented exactly by stereo energy units is clearly idealized.

Most notably, we integrated the response over all spatial

frequencies, while keeping the receptive field size constant.

Extending the integration to infinite spatial frequency is obviously

unrealistic, although in practice will not greatly affect the results,

since unrealistically high spatial frequencies will be removed from

the images by the optical blurring and pre-processing. Keeping the

receptive field size constant is a more serious limitation. Of course,

primary visual cortex contains cells with a range of receptive field

sizes. We have included only one window-size (receptive field size)

at each preferred disparity. Once again, this was for reasons of

computational economy. We regard the window-size within our

model as representing the smallest receptive field sizes which

contribute significantly to disparity detection. Ideally, we would

have included a range of window-sizes at every disparity, with the

smallest window-size at each disparity increasing as a function of

disparity. However, since stereoresolution is limited by the smallest

windows present, we would not expect this to alter our results

substantially.

Keeping the receptive field size constant corresponds to

postulating that bandwidth declines with spatial frequency, as it

does in the macaque [42]. Assuming Gabor receptive fields, a

Gaussian envelope with standard deviation 3 arcmin implies a

bandwidth of 0.5 octaves at 15 cpd; at 5 cpd the bandwidth ranges

from 1.5 octaves (sine phase) to 2.0 octaves (cosine phase), while at

0.5 cpd the bandwidth is 1.8 octaves for sine phase (cosine-phase

cells are low-pass). These values are consistent with those reported

in macaque [42]. At a given frequency, the bandwidth will be

narrower for large RFs than for small ones.

As mentioned in the previous section, our correlation-based

model includes information from all spatial frequencies, indepen-

dent of window-size. This is a consequence of the mathematical

trick we have used to integrate over frequencies. In fact, several

lines of evidence suggest that larger disparities are detected

predominantly by mechanisms tuned to lower spatial frequencies

in the luminance domain [16,43,44]. Thus, it would be more

realistic to include a weight term in the integration over luminance

spatial frequency, weighting the integral towards lower frequencies

at the larger disparities/window-sizes, and towards higher

frequencies at the smaller disparities/window-sizes.

We have not included any neuronal noise within our model, nor

have we attempted to reproduce human stereoacuity for gratings,

i.e. the smallest disparity amplitude detectable at each frequency.

In principle, it would be simple to add this. Stereoacuity is limited

by the spacing of disparity detectors, and by neuronal and

stimulus-dependent noise (random correlations between non-

corresponding parts of the dot pattern, for example). However,

stereoacuity is also clearly limited by processing in higher cortical

areas and not solely by the information available in V1 [45,46].

This means that the model’s assumptions about extra-striate

processing would probably play a much more critical role in

reproducing stereoacuity data than they have done here in

reproducing stereoresolution.

We have only modeled the detection of horizontally-oriented

disparity gratings. Humans find these easier to detect than

vertically-oriented gratings [7,47–49]. It is currently unclear

what model features would be required to match this feature of

stereo vision. However, a clue may be that the disparity tuning

surfaces of real cortical neurons are extended horizontally and

are relatively narrow vertically [50]. In any stereo algorithm, the

choice of window-size represents a trade-off between resolution

and accuracy. Large windows collect support over a wider

region of the image, enabling greater accuracy and robustness

against false matches. However, they also lose the ability to

track rapid changes in depth. For this reason, disparity steps are

detected most accurately by windows which are elongated

parallel to the edge and narrow orthogonal to the edge [23].

Thus, the horizontally-elongated disparity tuning surfaces of

real neurons would be expected to give greater sensitivity to

changes in depth along a vertical direction in the image, as

observed in humans. Further modelling work is required to

examine whether models which incorporate this known

anisotropy in V1 neurons can reproduce the anisotropy in

human depth perception.

A great deal is now known about how disparity is encoded

within V1. Much less is known about how this activity is read out

in higher areas to result in depth perception and judgments on

tasks such as our grating detection [51]. Thus, our model is

necessarily much more speculative here. Is it realistic to assume

that our brains have access to ‘‘templates’’ representing the

expected V1 output for different stimuli? Physiologically, these

templates could be represented as the synaptic weights between V1

and ‘‘grating detector’’ units in a higher visual area (see [20] for a

more detailed account). While neurons specifically tuned for

disparity gratings have not been reported, ‘‘grating detector’’ units

would also respond preferentially to disparity curvature and slant,

and such neurons are known to exist in areas IT and MT [11,12].

Alternatively, such neurons might be constructed as required. In

areas such as LIP, neurons quickly adapt their responses to the

particular task requirements at hand [52]. In this view,

participants may be able to construct adequate templates simply

from the few disparity gratings they are shown as demonstration

stimuli.
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Conclusions
Local cross-correlation within a fixed window has been

postulated as a model of human stereo vision. This model accounts

for stereoresolution when depth is modulated sinusoidally, but gives

incorrect predictions for square-waves. We have shown that

introducing a size/disparity correlation, such that larger disparities

are detected within coarser windows, reconciles the local cross-

correlation model with human stereoresolution on both square- and

sine-wave disparity gratings. This supports the original conclusion of

Banks et al. [6] that the limit on spatial stereoresolution is set by the

smallest receptive field size of V1 neurons, which respond best to

locally frontoparallel surfaces [6,8]. There is thus no need to invoke

further limits imposed by cells in extrastriate cortex tuned to more

complicated aspects of disparity such as slant and curvature. Such

cells can be created by combining the outputs of V1 neurons with

different preferred disparities, but in this view, they inherit a

fundamental limit on stereoresolution, set in primary visual cortex.
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