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Stereo vision is an area in which we are increasingly able to construct detailed numerical models of the computations
carried out by cerebral cortex. Piecewise-frontoparallel cross-correlation is one such model, closely based on the known
physiology and able to explain important aspects of human stereo depth perception. Here, we show that it predicts
important differences in the ability to detect disparity gratings with square-wave vs. sine-wave profiles. In particular, the
model can detect square-wave gratings up to much higher disparity amplitudes than sine-wave gratings. We test this
prediction in human subjects and find that it is not borne out. Rather there seems to be little or no difference between the
detectability of square- and sine-wave disparity gratings for human subjects. We conclude that the model needs further
refinement in order to capture this aspect of human stereo vision.
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Introduction

Stereopsis, the ability to estimate 3D depth based on
binocular vision, is one of the best understood aspects of
human perception. One hundred and fifty years of
psychophysical experiments have documented in detail
how binocular disparities between the eyes result in a
depth percept (Howard & Rogers, 1995), while in the last
two decades, physiological experiments have mapped how
disparities drive the firing rates of individual neurons in
visual cortex (Roe, Parker, Born, & DeAngelis, 2007).
Stereo vision has thus emerged as a paradigm for relating
perceptual experience to neuronal activity.
A recent, highly successful example has been the

development of a computational model explaining the
spatial resolution of stereopsis in terms of the properties of
neurons in primary visual cortex (Banks, Gepshtein, &
Landy, 2004; Filippini & Banks, 2009; Nienborg, Bridge,
Parker, & Cumming, 2004). Stereo spatial resolution is
traditionally assessed using sinusoidal “disparity gra-
tings,” corrugated surfaces that go back and forth in depth
(Figure 1A). The upper frequency limit at which such
disparity gratings can be perceived has been found to be
around 3–4 cycles per degree (Banks et al., 2004;
Bradshaw & Rogers, 1999; Filippini & Banks, 2009;
Tyler, 1974), much lower than the corresponding limit for
luminance gratings, which can be as high as 50–60 cpd
under optimal luminance conditions (Campbell & Green,
1965). In a linked pair of papers, Banks et al. (2004) and

Nienborg et al. (2004) explained this limit in terms of the
receptive field size of disparity-selective neurons in
primary visual cortex (V1).
Their analysis was based on the stereo energy model, in

which disparity is encoded by a local cross-correlation
between the two eyes’ images (Banks et al., 2004;
Filippini & Banks, 2009; Nienborg et al., 2004; Ohzawa,
DeAngelis, & Freeman, 1990, 1997). In this model,
interocular correlation is measured locally within a finite
window corresponding to the neuronal receptive field, and
the stereoresolution limit is determined by the smallest
window size available. When the frequency is high
enough that the disparity changes significantly within this
window, the effective interocular correlation is reduced
and the signal is lost in the noise (compare Figure 2B with
Figure 2A). It is this which eventually limits the ability to
resolve the grating. Banks, Cumming, and colleagues
showed that the stereoresolution of human and monkey
observers was remarkably consistent with the size of
receptive fields in V1. Thus, the local cross-correlation
model is a noteworthy example of how perceptual abilities
can be successfully related to the properties of nerve cells
recorded in cerebral cortex.
An important feature of this model is that the initial

encoding of disparity is piecewise frontoparallel. That is,
the model neurons respond best when the disparity within
their receptive field is constant. This explains why the
resolution for disparity gratings is so much lower than for
luminance gratings. V1 receptive fields typically have
several different ON or OFF subregions, which respond to
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different luminance polarities. The limiting period for
luminance gratings reflects the size of these subregions,
not the receptive field as a whole. In contrast, in the stereo
domain, V1 receptive fields appear to prefer uniform
disparity (Nienborg et al., 2004).
Sine-wave disparity gratings (Figure 1A) are always a

suboptimal stimulus for this population, since their
disparity is never even locally constant. Square-wave
disparity gratings, on the other hand, consist of regions of
locally constant disparity (Figure 1B). When the grating’s
period exceeds the window size used for local cross-
correlation, the disparity within the window is constant.
Neurons with the optimal tuning (black ellipses in Figure 2)
should thus experience an interocular correlation of near
unity. Critically, this statement is true independent of the
grating’s amplitude (compare Figure 2C with Figure 2A,
blue curves). In contrast, for sine-wave gratings, the range

Figure 1. Physical surfaces implied by (A) sine-wave and
(B) square-wave disparity gratings.

Figure 2. Sketch of sine- and square-wave gratings and a receptive field. The red and blue curves show the profile of (respectively) sine-
and square-wave disparity gratings, with disparity varying as a function of vertical position in the visual field. The 4 panels show gratings
with low (A, C) and high (B, D) spatial frequencies and with small (A, B) and large (C, D) amplitudes. The black ellipse shows the receptive
field of a model neuron tuned to the largest disparity in the grating. At low frequencies (A, C), the period of the grating is large compared to
the correlation window (black lines), and the grating can be resolved. At high frequencies (B, D), the period is small compared to the
window, and the grating cannot be perceived. At low frequencies (A, C), the square wave presents only a single disparity within the local
correlation window. This is not so for the sine wave. For low amplitudes, the range of disparities within the receptive field is small (green
shaded region in A), but as the amplitude increases, this range increases (green shaded region in C), even for low-frequency sine waves.
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of different disparities falling in a window depends on
the amplitude of the grating (compare Figure 2C with
Figure 2A, red curves and green-shaded regions).
From this qualitative argument, we expected that the

piecewise-frontoparallel model should find it easier to
detect square-wave disparity gratings than sine-wave
gratings, especially at high frequencies and/or amplitudes.
If this prediction were borne out in human observers, this
would be a powerful confirmation of the model. In this
paper, then, we first carry out computer simulations to
establish whether the piecewise-frontoparallel model
really does respond better to square-wave than sine-wave
disparity gratings, and whether this is sensitive to the
precise way in which the model is implemented. We
next carry out psychophysical experiments to compare
human performance to the predictions of the piecewise-
frontoparallel model.

Methods

Psychophysics
Experimental setup

The experiments were performed using a mirror stereo-
scope. The stimuli were displayed on the left and right
halves of a single LCD monitor with a physical display
size of 41� 25.5 cm and a resolution of 1440� 900 pixels.
The size of the images was 350 � 350 pixels. With the
viewing distance of 308 cm, the images subtended 1.8- �
1.8- and each pixel subtended 0.3 arcmin. The mirrors were
aligned to make the vergence distance 308 cm. The monitor
was linearized (gamma-corrected) using a Minolta LS-100
photometer. White pixels were 240 cd/m2 and black pixels
were 0.26 cd/m2.

Stimuli

Stimuli were presented using Matlab (The Mathworks,
Natick, MA, USA; www.mathworks.com) with the
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997).
The grating stimuli used were random dot stereograms
depicting horizontally oriented depth corrugations with
either sine-wave or square-wave profiles (Figure 1). We
varied the amplitude, frequency, and phase of the gratings.
Amplitude is defined as half the peak-to-trough range of
the waveform, (max j min)/2, except in the Frequency
analysis section, where the amplitude of the fundamental
is specified. The dots were 2 � 2 pixels, 0.6 � 0.6 arcmin,
and were white on a black background. Anti-aliasing,
implemented in-house in our own Matlab code, was used
to place dots at subpixel locations. The long viewing
distance (308 cm) and small pixel size (0.3 arcmin, less
than the retinal cone spacing) were used to ensure that the
range of disparities and frequencies perceived by human
observers was not limited by the resolution of the display.

For the highest grating frequencies used in this study
(5.7 cpd), sine- and square-wave profiles could be readily
perceived and distinguished from one another when the
stimuli were viewed up close in anaglyph, although they
became invisible as the observer walked further away.
This demonstrates that the limits on grating detectability
were contained in the observer’s visual system, not the
physical display.

Task

A two-interval forced-choice task was used, where one
temporal interval contained a disparity grating and the
other contained disparity noise (described below). The
task was to report, by a button press, which interval
contained the disparity grating. For three subjects, the
length of the temporal intervals was 500 ms, with a 100-ms
blank between the intervals. A fourth subject was allowed
to view each of the intervals for as long as he wanted before
making a choice. Experimental trials were organized in
blocks, most of which consisted of 240–280 trials, where
the frequency of the gratings was kept constant in each
block. The two waveforms and the different phases were
always interleaved in blocks of experimental trials and in
most cases different amplitudes were interleaved as well.
On each trial, the disparity noise image was generated

by assigning each dot a disparity drawn at random from
the same distribution as the disparity grating presented in
the other interval. Thus, in trials where the grating was a
square wave with amplitude A, the disparity noise dots
had disparity +A or jA with equal probability. On sine-
wave trials, they had a disparity in the range [jA, +A]. In
the grating stimuli, all dots at a given vertical position had
the same disparity, but in the noise stimuli, disparity was
picked without reference to vertical position, so dots in the
same row would have different disparities.

Observers

The 4 observers were the two authors, one additional
experienced psychophysical observer and one inexper-
ienced observer.

Data analysis

A truncated probability density function of a gamma
distribution was fit to the data for each frequency. This
was simply a descriptive function without any theoretical
significance. The Matlab function FIT, using non-linear
least squares, was used to do the fitting.

Model
Stimuli and task

The same stimuli that were used in the psychophysics
were also used in the modeling. The model had the same
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task as the human subjects: in each trial it was presented
with two image pairs, one containing a grating and one
containing a noise pattern and it had to judge which one
contained the grating.

Preprocessing

The model used here was based on the piecewise-
frontoparallel local cross-correlation-based model of
Banks et al. (2004). The left- and right-eye images were
first preprocessed to simulate the effects of the eye’s
optics, and then passed to a cross-correlator.
The preprocessing consisted of convolving the images

with the point-spread function of the well-focused eye:

hðx; yÞ ¼ a * h1ðx; yÞ þ ð1jaÞ * h2ðx; yÞ; ð1Þ

where

hiðx; yÞ ¼ ðsi
ffiffiffiffiffiffi
2:

p
Þj2ej0:5ðx2þy2Þ=s2i ; ð2Þ

and a = 0.583, s1 = 0.443 arcmin, and s2 = 2.04 arcmin
(Filippini & Banks, 2009; Geisler & Davila, 1985). The
images were then scaled to make the distance between
rows and columns 0.6 arcmin. This was done to make sure
the resolution of the images was no higher than the
spacing between cones at the fovea (Filippini & Banks,
2009; Geisler & Davila, 1985; Rossi & Roorda, 2009).

Cross-correlator

The preprocessed images were then passed to the cross-
correlator. A window was moved along a vertical line in

one eye’s image. For each vertical position of that
window, a second window in the other image at the same
vertical position was moved across an interval of
horizontal positions centered on the horizontal position
of the first window. For each combination of window
positions, the correlation between the contents of the
windows was recorded. The correlation was defined as

C y;$xð Þ ¼ covðLw;RwÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
covðLw;LwÞcovðRw;RwÞ

p ; ð3Þ

where Lw and Rw are the contents of the windows in the
left and right images multiplied by the window function
and cov is the covariance. The window functions used to
obtain the main results presented here were Gaussians
centered on the current window position (that is, ($x/2, y)
in one eye and (j$x/2, y) in the other) and cut off two
standard deviations from the center in each direction. The
output from the cross-correlator was a two-dimensional
image of correlation as a function of the horizontal
disparity, $x, between the windows as well as the vertical
position of the windows, y (see Figure 3). The disparities
used were in the range from j25 to 25 arcmin with a step
of 0.6 arcmin (1 pixel in the scaled images). The step in
the y-position was also 1 pixel in the scaled images.

Decision rule 1: Autocorrelation

Two different methods were used to make a decision on
which interval contained the gratings based on the
correlation images. The first was based on autocorrelation,
and the second on template matching. The method based
on autocorrelation started by finding the maximum

Figure 3. Examples of output from the cross-correlator for one sine-wave and one square-wave grating, both with a frequency of 1.9 cpd.
A Gaussian window with 2 * A = 6 arcmin was used.
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correlation across all horizontal window positions, $x, for
each vertical window position, y, and recording the
difference in horizontal position between the two windows
as an estimate of the horizontal disparity at that vertical
position:

$xestðyÞ ¼ arg maxðCðy;$xÞÞ: ð4Þ

The autocorrelation of the resulting curve of estimated
disparity as a function of vertical position, $xest(y) was
then calculated as

acn ¼

XNjn

i¼1

ð$xestðyiÞj 2Þð$xestðyiþnÞj 2Þ

ððNj nÞ * A2Þ ; ð5Þ

where 2 is the mean and A is the standard deviation of
$xest. Two examples of what the autocorrelograms looked
like are given in Figure 4. Finally, both a sine wave and a
triangular wave, which are the autocorrelation functions of
a sine wave and a square wave, respectively, with the
same frequency used in the stimulus were fit to the

autocorrelogram and the r2 value of the best fit was
recorded. For each pair of a wave and a noise pattern,
making up a single trial, the image pair that got the highest
r2 value was guessed to contain the grating (Figure 5).

Decision rule 2: Template matching

This method used a set of templates of the correlator
output for the disparity gratings (grating templates) as
well as a set of templates of the correlator output for the
two types of noise patterns (noise templates). The set of
grating templates covered all frequencies, amplitudes, and
phases used in the simulations as well as both waveforms.
The set of noise templates covered all the amplitudes (the
noise patterns were by their nature independent of
frequency and phase). For each interval, the grating
template and the noise template with the highest correla-
tion to the correlator output were chosen. The correlations
were calculated as follows:

Cn ¼
PððCOð$x; yÞj2COÞÞðTnð$x; yÞj2Tn

ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðCOð$x; yÞj2COÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðTnð$x; yÞj2Tn

Þ2
q ;

ð6Þ

Figure 4. Examples of estimated disparity curves and their autocorrelograms for one square wave and one sine wave both with a
frequency of 1.9 cpd. A Gaussian window with 2A = 6 arcmin was used. The estimated disparity curve for the sine-wave grating is
quantized because the model only included detectors tuned to integer pixel disparities.
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where CO is the correlator output, Tn is one of the
templates, 2CO and 2Tn are the means over all disparities
$x and all y-positions of the correlator output and
template Tn, respectively. All sums were performed over
disparity and y-position. The interval for which the
difference between the correlation to the grating template
and the correlation to the noise template was the highest
was guessed to contain the grating.
For each grating profile (sine vs. square wave), fre-

quency, amplitude, and phase, the corresponding template
was generated by presenting 100 different random dot
stereograms to the cross-correlator, after the same prepro-
cessing steps used in the main model. The resulting set of

100 correlation images were then used to calculate the
average for each pixel (see Figure 6). The phase of the
disparity gratings was varied in steps of 10- when
generating the templates and when testing the model the
phase was randomly chosen at each trial to be one of the
36 different phases represented in the set of templates.
The template amplitudes were 0.3, 1.3, 2.5, 5.1, 7.6, 10.1,
15.2, and 20.2 arcmin. The template frequencies were 1.9,
2.5, 3.2, 3.8, 4.4, 5.1, 5.7, 6.3, 7.0, and 7.6 cpd. Thus, there
were 5760 grating templates and 16 noise templates.
We have also examined a somewhat different template

matching rule, where the correlator output was matched
only to templates of the same frequency, where no noise

Figure 5. Example of autocorrelation for the corresponding noise patterns to one square wave and one sine wave. A Gaussian window
with 2 * A = 6 arcmin was used.

Figure 6. Examples of templates for (left) sine waves and (right) square waves with a frequency of 1.9 cpd.
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templates were used and where the matching was based on
sums of squared differences instead of correlation. This
decision rule performed slightly worse in general, but the
results were qualitatively very similar to the results with
the decision rule described in this section.

Results

We begin by examining the behavior of the two
correlation-based models, and then compare this to the
performance of our human observers.

Model
Decision rule 1: Autocorrelation

Figure 7 shows the results for the model with Decision
rule 1 (autocorrelation). The boxed panel summarizes the
results by plotting maximum performance over all

amplitudes against frequency. In this and all further
graphs, the error bars show 95% confidence intervals,
the red curves show data for sine waves, and the blue
curves show data for square waves.
When the maximum performance over all amplitudes is

plotted against frequency, there is very little difference
between the curves for the two different waveforms
(boxed panel (K) in Figure 7). However, when we
examine how performance depends on disparity amplitude
(Figures 7A–7J), a key difference emerges between the
two waveforms. At the smallest amplitude tested, per-
formance is near chance but rapidly rises to its peak value.
For sine-wave disparity gratings, performance then
declines again as the disparity amplitude increases further.
For the square-wave gratings, in contrast, performance
remains at its peak value as the amplitude increases.
This is readily explicable. The model is built from local

correlation detectors tuned to constant disparity. They
respond well if disparity remains roughly constant over
their window, and they do not respond well when there are
steep disparity gradients. For sine-wave gratings, increasing

Figure 7. Performance as a function of amplitude and frequency for the model with the decision rule based on autocorrelation and a
window with 2 * A = 6 arcmin. The boxed plot (K) shows the maximum performance over all amplitudes for each frequency.
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the disparity amplitude also increases the disparity
gradient at every point (except the turning points),
reducing performance. This reduction of performance
with increasing disparity gradient was also found by
Banks et al. (2004) and Filippini and Banks (2009) and
was predicted by Kanade and Okutomi (1994) for a
slightly different cross-correlation model. For square-
wave gratings, the disparity gradient is zero everywhere
except at the discontinuities, and this remains true as the
amplitude increases. Thus, performance remains high, as
long as the amplitude does not go outside the range of
disparities to which the model is sensitive. The reason
why performance is low for the lowest amplitude is
because this amplitude, 0.3 arcmin, is lower than the step
in the range of correlation detectors, which is 0.6 arcmin.
The closest detectors are therefore at 0 and 0.6 arcmin,
which are equally far from 0.3 arcmin and they will
therefore be close to equally strongly activated by this
disparity. The autocorrelation-based rule only uses the
detector with the strongest response at each y-position and
the detector for 0.6 arcmin can only be the most strongly
activated one when the entire window or very close to the
entire window is seeing 0.3 arcmin. This can only happen
for the square waves, and it is only for the lowest
frequency that it happens for a large enough range of y-
values to allow detection.
Given that the model is built to respond to locally

constant disparity, it is perhaps surprising that at low
amplitudes (above 0.6 arcmin) it performs as well with sine
waves as for square waves. Figure 3 shows that the peak
cross-correlator output reached for sine-wave gratings does
fluctuate across the cycle, beingVunsurprisinglyVlower
where the disparity gradient is higher. However, recall
that our model estimates disparity from the correlation
detector reporting the largest response. Thus, so long as
the peak is above the background noise, the correct
disparity will still be identified. In addition, the decision
rule (here, based on the autocorrelation of the estimated
disparity profile) can still correctly identify which
interval contains the grating, even if the estimated
disparity is not accurate everywhere. We have examined
the behavior of this model with different window sizes.
Quantitatively, as the window size increases, perfor-
mance naturally starts dropping at lower frequencies.
Banks et al. found that decreasing the window size
improves performance up to a limit that depends on the
level of blur (Banks et al., 2004; Filippini & Banks,
2009). For optical levels of blur, they found the limiting
window size to be about 6 arcmin, the value used in
Figure 7. Window size does not affect the qualitative
behavior of the model. In particular, we continue to find
that (1) maximum performance as a function of frequency
remains the same for both sine- and square-wave gratings
(see the boxed panel in Figure 7); and (2) performance
declines as a function of amplitude for sine-wave gratings
but remains at its peak value for square-wave gratings (see
Figure 7).

Decision rule 2: Template matching

It is important to be clear whether these features of the
model performance reflect the low-level, correlation-based
encoding of disparity, or whether they are specific to the
particular decision rule chosen. In this section, we there-
fore present results from a more elaborate decision rule.
This rule is based on matching the output of the
correlation detector to any one stimulus, to a set of stored
template responses to grating patterns. The template set
includes responses to both sine- and square-wave gratings,
and the decision rule uses whichever matches.
The results for this decision rule are shown in Figure 8,

in the same format as in the previous section. The
modeling results with the decision rule based on template
matching are qualitatively very similar to the results with
the autocorrelation-based decision rule. The main differ-
ences seem to be that, for a given window size, perfor-
mance starts dropping at slightly lower frequencies and
that for the lowest frequencies performance for the sine-
waves remains high up to the highest amplitude tested.
The reason for the higher performance for high amplitude
sine waves may be that the template matching rule
requires accurate disparity detection at a smaller
percentage of y-positions to identify a grating; high
correlation in small regions close to the peaks of the sine
waves (see Figure 13) may be enough since the relevant
template has the same pattern. The drop in performance
for the lowest amplitude happens only to a lesser degree for
the template matching rule than for the autocorrelation-
based rule. This is because the template matching rule
uses the outputs from all the correlation detectors and not
just the one that has the strongest response at each y-
position. However, critically, both decision rules show the
same key features highlighted at the end of the previous
section. In particular, as disparity amplitude increases,
performance remains high for the square-wave gratings
and declines for the sine wave. The alternative template
matching approach mentioned in the Methods section also
showed this behavior (results not shown). Thus, this key
behavior is not dependent on any particular decision rule.
As explained in the previous section, we attribute it to the
properties of the initial disparity encoding performed by
correlation detectors tuned to uniform disparity.

Psychophysics

We now examine the performance of human subjects, in
order to compare it with the predictions of the model.
Figure 9 shows the data for four subjects. The boxed
panels summarize the results by plotting the maximum
performance over all amplitudes for each frequency.
In striking agreement with the predictions of the

correlation-based model of Banks et al., we find that the
best performance reached at a given frequency is the same
for both waveforms. The boxed panels (FLRX) in Figure 9
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show this best performance obtained at any disparity
amplitude, plotted as a function of the frequency. None of
our 4 subjects shows any significant difference in perfor-
mance between sine- and square-wave gratings.
However, when we examine the graphs showing

performance against disparity amplitude for individual
frequencies, we find a significant departure from the
model predictions. After initially rising to a peak value,
performance then declines as disparity amplitude increases
further. The model shows this decline only for sine-wave,
not for square-wave gratings. However, for humans, the
rate of decline is extremely similar for both sine-wave and
square-wave gratings. Where significant differences do
exist (e.g., subject PFA, discussed in more detail below),
performance is better for the sine grating, not the square
wave as predicted by the model.
Ultimately, of course, the performance of any realistic

system must decline, as the disparity of the stimulus
moves beyond the range to which its detectors respond.
This effect was not included within our model (previous
section), which contained an equal number of detectors

for all disparities used. However, we do not believe that
this omission can account for the difference between
model and human performance we observe. We could
force the model’s performance down for large-amplitude
square-wave gratings by reducing the range of disparity
detectors. However, the resulting reduction in perfor-
mance would not be specific to square-wave gratings but
also affect sine gratings. It thus could not reconcile the
model with human performance. It would also be
unrealistic, because the disparity amplitudes used here
are very small, well below Dmax (Glennerster, 1998;
Read & Eagle, 2000) and perfectly detectable in other
contexts. This is clear from our own data. Disparity
amplitudes that our subjects find easy at low frequencies
become impossible at higher frequencies. For example, at
a frequency of 1.9 cpd, subject ISP performs at virtually
100% out to amplitudes as large as 10 arcmin, the largest
examined. Yet at a frequency of 5.1 cpd, he is at chance
for this amplitude, for both sine- and square-wave
gratings. This cannot be because he lacks neuronal
mechanisms capable of encoding disparities of 10 arcmin,

Figure 8. Performance as a function of amplitude and frequency for the model with the decision rule based on template matching and a
window with 2A = 6 arcmin. The boxed plot (H) shows the maximum performance over all amplitudes for each frequency.
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since he perceived 10 arcmin perfectly at the lower
frequency. Equally, it cannot be because 5.1 cpd is too
high a frequency compared to the window size of his
correlation detectors, because he reaches 80% correct for
both grating profiles when the amplitude is smaller, 2–
3 arcmin. His poor performance can only be due to the
particular combination of frequency and amplitude.

Frequency analysis

This suggests that the correlation-based model may fail
to capture some aspects of human depth perception. We
now examine another influential approach to human
perception, the Fourier or frequency-based analysis pio-
neered in the luminance domain by Campbell and Robson
(1968), and later applied to disparity (Cobo-Lewis & Yeh,
1994; Grove & Regan, 2002; Schumer & Ganz, 1979;
Tyler, 1975b).
In Fourier analysis, a square-wave grating can be

decomposed into a sum of sine-wave gratings: a sine
wave of the same period as the square wave but with 4/:
its peak-to-trough range, plus successive lower amplitude
sine waves. As the grating period decreases to the limit of
detectable frequencies, a point is reached where the
fundamental frequency is still above threshold, but the

third harmonic is already below threshold. Sine- and
square-wave gratings thus become indistinguishable. Most
of our data fall within this domain, since for most subjects
the highest frequency tested was just at the threshold of
discriminability, whereas the lowest frequency tested was
more than one-third of this value. This means that even at
the lowest frequency tested, the third harmonic distin-
guishing the square-wave from the sine-wave grating
would be nearly undetectable if presented alone. Thus if
the linear theory is correct, if we plot performance as a
function of the amplitude of the fundamental, instead of
the whole-waveform amplitude used so far in this paper,
performance should become the same for square-wave and
sine-wave gratings.
This is examined in Figure 10. This figure shows the

same data as Figure 9 but now plotted as a function of the
amplitude of the fundamental. The sine (red) data are thus
unchanged, while the square (blue) data and fits are
shifted to the right by a factor of 4/:. To assess whether
this manipulation brings performance for the two wave-
forms closer together, we used the curves fitted to each set
of data. For each frequency, we computed the integral of
the absolute difference between the curves for the sine
waves and the square waves, first for the original data and
then for the adjusted data. If this integral was smaller for

Figure 9. Performance as a function of amplitude and frequency for each subject. The squares and circles are data points and the lines
are fits. The boxed plots (F, L, R, X) show, for each frequency, the maximum performance obtained at any amplitude.

Journal of Vision (2010) 10(8):17, 1–16 Allenmark & Read 10



the adjusted data, this indicated that the shift to funda-
mental amplitude had brought the results closer together.
This is indicated with a + symbol at the bottom left of the
panels in Figure 10; a j symbol indicates that the shift to
fundamental amplitude brought the fits further apart.
Bootstrap resampling was used to estimate the signifi-
cance of any change. The asterisks in Figure 10 indicate
p G 0.05 (two-tailed test), while NS indicate that the
adjustment had no significant effect either way.
For subject PFA, who performed the most repetitions

per condition, plotting performance as a function of
fundamental amplitude brings the curves closer together
at every frequency. Plotted as a function of peak-to-trough
amplitude (Figure 9), PFA often performed slightly better
for the sine waves. When the data are adjusted so
performance is a function of the fundamental amplitude
(Figure 10), this effect is almost totally abolished, and the
two sets of data overlap almost perfectly. However, this
improvement was significant for only frequency, 2.5 cpd.
For the other subjects, there is little evidence of any
systematic effect one way or the other. Thus, our results
provide little support for the linear Fourier analysis of
disparity. Subjects perform very similarly for high-
frequency sine-wave and square-wave gratings, but their

performance does not seem to be set by the amplitude of
the fundamental.

Disparity gradient limit

Several previous studies have suggested that stereopsis
may be limited by the disparity gradient, rather than
disparity per se (Banks et al., 2004; Burt & Julesz, 1980;
Filippini & Banks, 2009; Kanade & Okutomi, 1994;
McKee & Verghese, 2002; Tyler, 1975a). To examine
this, in Figure 11 we plot the performance of all subjects
on sine-wave gratings of all frequencies plotted against
the amplitude of the gratings (ACEG) as well as the
maximum disparity gradient in the gratings (the product of
frequency and amplitude, BDFH). In order to test whether
plotting against disparity gradient brings the curves closer
together, we used the fits after extending them to end at
the same point and cutting them to only include the
portion of the curve after the peak. The standard deviation
of the set of y-positions that the different curves passed
through was computed at each x-position and the mean of
this standard deviation over all x-positions was used as a
measure of how closely the curves were superimposed.
Bootstrap resampling was used to estimate the significance

Figure 10. Performance as a function of amplitude and frequency for each subject, with the square-wave data plotted against the
amplitude of the fundamental frequency component of the waves. The symbols at the bottom left of each panel show whether this has
improved (+) or worsened (j) agreement between the sine- and square-wave results, and whether this is significant at the 5% level (*) or
not (NS).
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of any difference between the two ways of plotting the
data. The curves were found to be significantly more
superimposed (p G 0.05) when plotting against disparity
gradient for three out of four subjects (PFA, OO, and ISP).
For the fourth subject, no significant difference either way
was found. Thus, our data are consistent with the idea that
performance at high amplitudes is limited by the highest
perceivable disparity gradient.

Figure 12 shows the same plots for the model with the
autocorrelation decision rule (similar results were
obtained for the model with the template matching
decision rule, not shown). Again, performance on sine
waves of different frequencies is plotted against either the
amplitude (A) or the maximum disparity gradient (B) of
the grating. To test whether the model results super-
imposed better when plotted against disparity gradient, we

Figure 11. Performance plotted against amplitude (A, C, E, G) and maximum disparity gradient (B, D, F, H) for sine waves of all
frequencies, for each of the 4 subjects.

Figure 12. Performance plotted against (left) amplitude and (right) maximum disparity gradient for sine waves of all frequencies for the
model with the decision rule based on autocorrelation.
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used the parts of the curves from the peak to the last data
point for the lowest frequency. As for the human data, the
standard deviation of the set of y-positions that the
different curves passed through was computed at each
x-position and the mean of this standard deviation over all
x-positions was used as a measure of how closely the
curves were superimposed. Bootstrap resampling was used
to estimate the significance of any difference between the
two ways of plotting the data. No significant difference
was found for the results with either of the decision rules.
Thus, for the model results, the curves do not superimpose
any better when the data are plotted against disparity
gradient. Rather, the performance of the model depends
separately on frequency and amplitude, and not simply on
disparity gradient (amplitude � frequency). This is not
surprising given that the model has no mechanisms that
specifically detect disparity gradient. The observed
dependence of frequency and amplitude may be because
the correlation output from the first stage of the model has
the highest correlation in the regions close to the flat parts
of the sine wave (see Figure 13). Thus, performance may
be limited by the size of the regions that are flat enough to
generate high correlation, rather than by the maximum
disparity gradient in the stimulus.

Discussion

In recent years, many models of human stereopsis have
proposed that the initial encoding of disparity occurs in
the primary visual cortex, V1, by disparity-selective
neurons whose major properties are captured by the stereo
energy model (Cumming & DeAngelis, 2001; Ohzawa
et al., 1990; Qian, 1994; Qian & Zhu, 1997; Read, 2005).
The neurophysiological evidence suggests that V1 neu-
rons respond optimally to disparity that is constant across
their receptive field (Nienborg et al., 2004). In higher
brain areas, neurons that respond best to particular
patterns of varying disparity are found (Janssen, Vogels,
& Orban, 1999; Nguyenkim & DeAngelis, 2003; Sakata
et al., 1999; Sugihara, Murakami, Shenoy, Andersen, &
Komatsu, 2002). However, current models propose that
these higher level neurons are built by combining the
outputs of uniform-disparity V1 neurons (Bredfeldt &
Cumming, 2006; Bredfeldt, Read, & Cumming, 2009;
Thomas, Cumming, & Parker, 2002). Thus, Banks et al.
(2004) and Filippini and Banks (2009) have argued that
the initial piecewise-frontoparallel encoding of disparity
imposes a fundamental limit on stereo resolution. In this

Figure 13. Examples of output from the cross-correlator for square waves and sine waves at low and high amplitudes. The quality of the
correlation image remains high for the high-amplitude square wave but drops for the sine wave, with high correlation only near the peaks.
These results are for a frequency of 1.9 cpd and a Gaussian window with 2A = 6 arcmin.
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view, the high-frequency limit for perceiving disparity
gratings is imposed right down in V1, by the receptive
field size of disparity-selective neurons.
This piecewise-frontoparallel theory of disparity encod-

ing is quite different from the Fourier or frequency-based
analysis pioneered in the luminance domain by Campbell
and Robson (1968), and later extended to disparity (Cobo-
Lewis & Yeh, 1994; Grove & Regan, 2002; Schumer &
Ganz, 1979; Tyler, 1975b). In that picture, the quantity of
interest (disparity or luminance) is initially encoded by a
set of frequency channels. The basic “unit” in which the
quantity is represented is the sine wave (or a local version
of it, like a Gabor), not a constant-value patch as in the
piecewise-frontoparallel theory. In linear Fourier theory,
square-wave and sine-wave gratings with the same
fundamental amplitudes should become equally detectable
at high frequencies, once the third harmonic of the square
wave has passed above the frequency threshold. In
contrast, if the piecewise-frontoparallel theory is correct,
it should be easier to perceive a square-wave disparity
grating than a sine-wave grating, because the square-wave
grating consists of locally frontoparallel regions of
disparity, and so should drive V1 neurons more strongly.
It is of course possible that there are frequency channels
that are built by combining the outputs of uniform-disparity
V1 neurons. If so, the initial frontoparallel representation
of disparity will still set limits on performance, even
though the later processing needed to construct the
frequency channels may limit performance further.
We tested the behavior of the piecewise-frontoparallel

model by running simulations. We verified that the model
does indeed find it easier to detect square-wave gratings,
which are piecewise-frontoparallel, than sine-wave gra-
tings, which everywhere have a non-zero disparity
gradient. In particular, for square-wave gratings the model
was able to perform well out to high amplitudes (limited
only by the range of preferred disparities included within
the model neuronal population), whereas for sine-wave
gratings, performance declined at high amplitudes. This
behavior is what we expected given the structure of the
model, cf. Figure 2. We confirmed that it does not depend
critically on the particular details of the model implemen-
tation; for example, we obtained the same behavior with
two quite different decision rules. Rather, it reflects the
initial stage of local cross-correlation. Figure 13 shows the
output of this stage for both sine- and square-wave
gratings, at low and high amplitudes, for a relatively low
frequency, 1.9 cpd. At low amplitudes, the piecewise-
frontoparallel model can successfully track the disparity
of both grating profiles (Figures 13A and 13B). In
contrast, at high amplitudes (Figures 13C and 13D), only
the very peaks of the sine-wave grating remain visible
(where the disparity gradient is briefly zero), while the
square-wave grating remains just as clear as at low
amplitude. Thus, our simulations confirm our intuitions

about the behavior of models based on piecewise-
frontoparallel disparity encoding.
However, to our surprise, our psychophysical results

were quite different. There was no evidence that perfor-
mance was ever significantly better for square-wave than
sine-wave gratings. Like the model, the maximum
performance possible at a given frequency was indistin-
guishable for the two waveforms. However, after initially
rising to a peak, human performance declines as a
function of amplitude for both sine- and square waves.
This is quite different from the behavior of the piecewise-
frontoparallel model, where performance declines only for
sine-wave gratings and remains high for the square-wave
gratings out to large amplitudes. The decline in the
performance of human observers occurs for disparity
amplitudes that are clearly detectable at lower frequen-
cies. This shows that the poor performance is caused by
the frequency of disparity alternation, not the intrinsic
detectability of the disparities present in the stimulus.
Thus like Banks et al., we find that the piecewise-

frontoparallel model based on local cross-correlation does
an excellent job of capturing human performance on sine-
wave gratings. However, the discrepancy with square-
wave gratings indicates that the model is incomplete as a
model of human stereo vision.
A limitation of this model is that it only includes the

initial encoding of disparity in V1, not the higher level
neurons that respond to varying disparity (Janssen et al.,
1999; Nguyenkim & DeAngelis, 2003; Sakata et al., 1999;
Sugihara et al., 2002). Prominent among these are the
class of disparity-edge detectors in V2 (Bredfeldt &
Cumming, 2006; von der Heydt, Zhou, & Friedman,
2000). There is considerable psychophysical evidence
suggesting that “edges” or discontinuities in disparity are
particularly salient for stereo vision (Andrews, Glennerster,
& Parker, 2001; Gillam, Blackburn, & Brooks, 2007;
Serrano-Pedraza, Phillipson, & Read, 2010), presumably
reflecting the activation of these neuronal disparity-edge
detectors. Square-wave gratings contain sharp disparity
edges, whereas sine-wave gratings do not. This is
probably why disparity thresholds are consistently better
for square-wave than for sine-wave gratings at low
frequencies (below 2 cpd; Serrano-Pedraza & Read,
2009). Thus, the model’s failure to include known
mechanisms of edge detection should, if anything, bring
square-wave performance closer to sine wave. This
deficiency, therefore, also cannot explain the discrepancy
between model and human results.
Our psychophysical results did not provide compelling

evidence that disparity is encoded within a set of inde-
pendent frequency channels. A linear frequency analysis
would suggest that, at high frequencies, performance on
the two types of grating should become more similar when
the amplitude of the grating was expressed as the
amplitude of the fundamental, rather than as half the
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peak-to-trough distance. This was the case for only one of
our four subjects. In contrast, our results were more
clearly consistent with previous work indicating that
disparity gradient is critical to perception (Burt & Julesz,
1980; McKee & Verghese, 2002; Tyler, 1975a).
If neither the piecewise-frontoparallel model, nor a

linear frequency analysis, seems capable of fully explain-
ing our results, how should we proceed in order to achieve
an accurate model of human stereo depth perception? It
may be necessary to invoke further processing happening
after the cross-correlation stage. Alternatively, it may be
possible to modify the cross-correlation model so as to
reconcile it with our results. For example, our current
model contains equal numbers of sensors with different
disparity tuning, whereas V1 neurons are tuned predom-
inantly to near-zero disparities (Prince, Cumming, &
Parker, 2002). It also assumes that the “window” size
used for cross-correlation is constant, whereas V1 neurons
tuned to larger disparities tend to have larger receptive
fields (Prince et al., 2002), reflecting the size/disparity
correlation deduced from psychophysical results (McKee
& Verghese, 2002; Smallman & MacLeod, 1994; Tsirlin,
Allison, & Wilcox, 2008; Tyler, 1975a). Incorporating
such sophistications into our model may help it account
for human performance with sine-wave and square-wave
gratings.

Conclusion

Piecewise-frontoparallel local cross-correlation success-
fully captures many aspects of human stereo vision.
However, at least as currently implemented, it predicts
that humans should be better at detecting square-wave
disparity gratings than sine-wave gratings, when the
frequency and amplitude of the gratings are high. In fact,
humans perform almost equally well on both grating
profiles. In particular, human performance declines as a
function of amplitude for both square- and sine-wave
gratings, whereas the model predicts a region where
performance is independent of amplitude for square-wave
gratings. We conclude that the model needs to be refined
in order to capture this aspect of human depth perception.
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