
An FPGA-based Hardware Accelerator for
Simulating Spatiotemporal Neurons

Ghaith Tarawneh and Jenny Read
Institute of Neuroscience, Newcastle University

Framlington Place, Newcastle upon Tyne NE2 4HH, UK
Email: {ghaith.tarawneh, jenny.read}@ncl.ac.uk

Abstract—Simulating spatiotemporal neurons is fundamental
to understanding motion detection mechanisms in the primary
visual cortex and cloning these mechanisms in digital systems.
We present a hardware accelerator that leverages the parallelism
of a modern Field Programmable Gate Array (FPGA) to increase
the speed of spatiotemporal computations by 1∼2 orders of
magnitude for video framebuffer sizes up to 128×128×25 pixels.
The accelerator is primarily intended for running simulations
of large spatiotemporal neuron populations but can also be
used in computer vision applications that require high-speed
spatiotemporal processing such as realtime motion detection.

Index Terms—Hardware acceleration, Gabor filter, spatio-
temporal neuron, motion detection

I. INTRODUCTION

Bio-inspired primitive visual processing units such as Re-
ichardt detectors [1] and Gabor Filters [2] have demonstrated
remarkable efficiency and robustness in a wide range of
computer vision applications. In both biological and silicon
systems, the outputs of these smaller units are combined in
a hierarchical order to create complex filters that extract high-
level visual information (e.g. global motion) irrespective of
other features of the visual input such as phase or spatial scale.
Such filters are realized in very dense arrays in the mammalian
primary visual cortex [3] and are computationally intensive
to simulate/compute by digital systems. This poses a chal-
lenge to neuroscientists trying to understand computational
mechanisms in the visual cortex and computer vision system
designers hoping to replicate these mechanisms in silicon.

The computational gap is particularly large in the case of
spatiotemporal Gabor filters. These filters combine visual data
over space and time and are biologically realized by spatio-
temporal neurons whose regions of sensory inputs (receptive
fields) extend in the visual x-y-t space. Simulations of these
filters and their neuronal underpinnings are used by studies
of local motion integration [4], complex cells in the visual
cortex [5] and first and second-order motion detection sys-
tems [6]. In computer vision, spatiotemporal Gabor filters are
used in motion detection [7], optical flow sensing [8], object
recognition [9] and have been successfully applied in video
quality assessment [10] and facial expression recognition [11].

Computing the output of a spatiotemporal filter requires
cross-correlating two three-dimensional sets of the data (the
filter’s impulse response and input visual data in x-y-t) and
is computationally intensive. This sets an upper bound on

the number of filters that can be simulated in a given du-
ration or computed in realtime. Fortunately, visual systems
are inherently parallel and part of the gap between biology
and silicon can be bridged by hardware acceleration. This
potential is demonstrated by several VLSI implementations of
Reichardt detector arrays that were modeled after insect vision
systems [12] [13] [14]. FPGAs have recently become a popular
medium for these implementations due to their relatively short
development cycles and growing densities which are now
enabling the integration of a sufficient number of primitive
visual units for many real-time applications.

This paper presents an FPGA-based hardware accelerator
for simulating spatiotemporal neurons. The accelerator is
primarily intended for running simulations of large populations
of spatiotemporal neurons but can also be used as a generic
spatiotemporal processing unit in applications such as motion
detection. Existing work has presented similar acceleration
techniques for 2D Gabor filters with emphasis on generating
filter coefficients efficiently [15], optimizing filter window
sweeping across spatial dimensions [16] and exploring the
algorithmic and numerical representation options for applying
Gabor filters [17]. The presented architecture targets 3D Ga-
bor filters specifically and proposes an efficient pipeline to
compute the response of 3D Gabor-modeled neurons given
a temporal stream of 2D images as an input. The accelerator
delivers 1∼2 order of magnitude speedup compared to a soft-
ware implementation running on a high-end desktop machine.

The contributions of the paper are as follows. First, we
present an architectural solution with an efficient pipeline
for simulating spatiotemporal neurons on modern FPGAs.
Second, we explore design options to maximize the utilization
of dedicated memory elements and multiplier circuits when
computing 3D Gabor filter responses in hardware. Third,
we evaluate the performance of the accelerator by running
simulations of neuron-based motion detectors.

The remainder of the paper is organized as follows. Sec-
tion II provides essential background on Gabor filters and
describes how several 3D Gabor filters can be used to create
a motion detector. Section III presents the accelerator and
discusses its organization. Section IV presents resource uti-
lization and speedup figures obtained by running simulations
of neuron-based motion detectors on both the accelerator and
a high-end desktop computer. Section V concludes with some
remarks.

978-1-4799-4242-8/14/$31.00 c©2014 IEEE 618

t = 1 sec t = 2 sec t = 3 sec t = 4 sec

Fig. 1: Motion detection by cross-correlating a 3D spatio-
temporal pattern (top) with a matching 3D filter (bottom)

II. BACKGROUND

A 2D Gabor filter g(x, y) is the product of a Gaussian
envelope (of a standard deviation σ and an aspect ratio γ)
and a sinusoidal wave (of a frequency f and phase φ):

g(x, y) = exp(−x
′2 + γ2y′2

2σ2
)× cos(2πfx′ + φ) (1)

where x′ and y′ are orthogonal coordinates specified by the
filter’s orientation θ:

x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)

Conventionally, two out-of-phase Gabor filters (a quadra-
ture pair) are combined to create a phase-insensitive filter
and Equation 1 is referred to as the real part of the filter.

Convolving a 2D Gabor filter with an image returns a mea-
sure of the degree of matching between the local features of the
image and the spatial frequency and orientation of the filter.
Motion detection filters can be created by generalizing this
principle to three dimensions. An object moving in two dimen-
sions (x-y) can be represented as a three-dimensional spatio-
temporal pattern h(x, y, t) and detected by cross-correlating
this pattern with a matching three-dimensional filter g(x, y, t).
This is illustrated in Figure 1. The spatiotemporal filter can
be created by encoding motion velocity v as a change in the
phase of a conventional 2D Gabor filter as follows:

g(x, y, t) = exp(−x
′2 + γ2y′2

2σ2
)×cos(2π(fx′+vt)+φ) (2)

Convolving g(x, y, t) and h(x, y, t) returns a measure of
the degree of matching between g and the local features
of h. Specifically, correlation is highest for features of spatial
frequency f , orientation φ moving at a speed v. Studies of
the mammalian visual cortex has uncovered visual processing
mechanisms that are modeled accurately by such filters [18].

PCIe Controller Datapath

Nios II

Processor

Host PC

Altera Stratix IV GX

EP4SGX230 FPGA

Neuron Outputs

(unsigned 24-bit)

Pixel Data

(signed 8-bit)

Filter Coefficients

(signed 8-bit)

Gabor Filter

Parameters

Fig. 2: System-level Diagram

Simulations of these mechanisms involve computing spatio-
temporal neuron outputs wi, each modeled as a dot product
between a spatiotemporal receptive field response gi(x, y, t)
and the animal’s visual input h(x, y, t):

wi =
∑

X

∑

Y

∑

T

gi(x, y, t) · h(x, y, t) (3)

To simulate the transient output of a spatiotemporal neuron
for a given input video, the neuron receptive field is first
computed and stored in a 3D array. Video frames are then
loaded sequentially into a pipeline of 2D arrays (a 3D frame-
buffer). For each loaded frame, the framebuffer content are
dot multiplied with the neuron’s receptive field coefficients to
obtain the neuron output. Simulations of neuron populations
require instantiating multiple 3D receptive field arrays to
compute individual neuron responses.

III. PROPOSED ARCHITECTURE

Multi-dimensional dot products can be serialized and per-
formed efficiently by a pipelined array of multiplier circuits.
We have implemented a hardware accelerator for spatio-
temporal computations on a Terasic DE4 development board
(with an Altera Stratix IV GX EP4SGX230 FPGA device) to
exploit this property. The accelerator receives video frames
and computes the response of several neurons in parallel.
Neuron parameters are specified by a host computer prior to
the start of each simulation and are used by an embedded
soft processor to generate receptive field coefficients. Data is
exchanged between the accelerator and host computer using
the PCIe bus. The system-level schematic of the accelerator is
shown in Figure 2. Below we describe its organization.

A. Generating Receptive Field Coefficients

Although a hardware implementation of Equation 2 can be
used to generate receptive field coefficients, we have opted for
a software implementation that is executed by an embedded
soft processor (Altera Nios II). Computing the coefficients in
software is slow but is performed only once at the beginning of

619

×
64x32

pixels

64x32

pixels

×

...

Adder

Tree

... ...

...

8

8

8

8

×

RF Cofs.

Video Data

Output

Kernel

8

8

19

16

Cofs. Array Video Array

64x32

pixels

8 16 16

Fig. 3: Datapath Kernel

each simulation so its impact on simulation time is negligible
(assuming a sufficiently-large number of frames per simula-
tion). It also frees dedicated arithmetic resources for use in
the accelerator datapath and offers a greater degree of filter
design flexibility that is needed for simulating models with
Gabor receptive field variants [3].

B. Datapath

The core accelerator datapath consists of a number of kernel
units, each computing the dot product of 64×32×8 signed
8-bit pixel data and a corresponding coefficient array per
neuron. Arrays are serialized and stored in dedicated memory
blocks which have been configured as shift registers1 (the
mapping between x-y and linear coordinates is performed
in a consistent fashion to preserve the position correspon-
dence between video pixels and receptive field coefficients).
Element-wise multiplication is performed in parallel at 8
taps in the shift registers, placed at 2048 element intervals,
corresponding to the last position of each x-y slice. The 16-
bit products are summed by a pipelined adder tree per neuron.

After pushing coefficients into the coefficient shift register,
the latter is reconfigured to operate as 8 independent circular
shift registers (each representing a 64×32 pixel x-y slice).
As pixel data are pushed into the video framebuffer and
multiplied with their respective coefficients, the coefficients
are “recycled” and eventually restored to their initial positions
following the insertion of each complete frame (2048 pixels).

The dimensions of kernel 3D arrays are chosen to maximize
utilization of the limited number of dedicated multipliers and
memory blocks available to the datapath. In our implementa-
tion, the datapath is allocated 512 multipliers and 1 MB of
memory giving a 1/2048 multiplier-to-byte ratio so 3D arrays
were split into segments of 2048 elements which have been
arbitrarily arranged as 64×32 slices.

The datapath contains an array of 8 kernels, each computing
the dot product of an x-y-t sub-region of the video input for

1Dedicated memory blocks are featured in many modern FPGA archi-
tectures (M9K and M144K blocks in Altera Stratix IV devices) and offer
a compact way to implement shift registers without exhausting the FPGA’s
interconnection fabric.

Kernel

Video

Buffer

Filter

Cofs.

Buffer

Kernel

Kernel Kernel

Kernel Kernel

Kernel Kernel

Adder

Tree

Accum

ulator

Output Buffer

128

128

19

19

22

22

..
.

Fig. 4: Datapath Block Diagram

all simulated neurons. After preloading filter coefficients, the
input video is streamed from the host computer in 8-byte
chunks and distributed across the kernels. Kernel outputs are
summed by an adder tree, accumulated and then (following the
insertion of each complete frame) stored in a memory buffer
and reset. The content of the output buffer is periodically
flushed by the PCIe controller and sent to the host computer.

IV. BENCHMARK RESULTS

To evaluate the performance of the accelerator we ran
simulations of various-size neuron populations on both the ac-
celerator and a desktop computer (Intel Core i7-3770 3.4 GHz)
running Matlab. The simulated neurons had Gabor-modeled
receptive fields with different parameters and function col-
lectively as a motion detector. We have synthesized datapath
variants with different arrangements to explore resource uti-
lization and speedup figures. All synthesized datapaths were
optimized to run at 200 MHz.

A. Resource Utilization

Receptive field dimensions and the number N of neurons
that can be simulated in parallel are primarily constrained
by the number of dedicated memory elements available to
the datapath. In the used FPGA device, we were able to fit
datapaths ranging from 1 neuron with a 128×128×25 element
receptive field up to 256 neurons with 64×64×16 element
receptive fields. Simulations of larger populations were split
into batches of N -neuron simulations which required stream-
ing video input to the accelerator several times.

B. Speedup

The performance of the accelerator (expressed in
frames/second) is compared against that of the reference
desktop computer in Table I. The speedup figures range
from 30x to 219x depending on video frame dimensions
(higher speedup figures obtained for smaller dimensions). The
throughput drop at large video frame dimensions is due to
the transfer time of pixel data from the host computer to the
accelerator. In our implementation, pixel data was transferred
at 200 MBps using the PCIe bus but transfer times nonetheless
consumed about 88% of the roundabout processing time for

620

TABLE I: Accelerator Resource Utilization and Performance

Video
Dimensions

Neurons Kernels M9K Blocks Multipliers PC Throughput
(fps)

Accelerator Throughput
(fps)

Speedup

128×128×25 1 8 784 200 378 11316 29.9x

128×128×16 2 8 736 256 295 11315 38.3x

128×128×8 8 8 1024 512 148 11312 76.6x

128×128×1 64 8 16 512 148 11278 76.4x

96×64×25 6 3 1014 450 168 25275 150.5x

96×64×16 10 3 996 480 157 25262 160.4x

96×64×8 21 3 930 504 150 25229 168.2x

94×64×1 170 3 6 510 148 24785 167.2x

64×64×25 9 2 964 450 168 33541 199.7x

64×64×16 16 2 1024 512 148 33504 226.9x

64×64×8 32 2 928 512 148 33418 226.3x

64×64×1 256 2 4 512 148 32266 218.5x

frames sizes of 128×128 pixels. Using a faster communication
link between the accelerator and host computer can decrease
simulation time significantly but this is constrained by the
availability of high speed transceivers on the used FPGA
device. The number of dedicated M9K memory blocks and
multiplier circuits that could be allocated in each datapath
variant is close to the design limits (1024 M9K blocks and
512 multipliers) which demonstrates the efficiency of internal
kernel organization.

V. CONCLUSION

Spatiotemporal processing using 3D Gabor filters is a key
building block of motion detection systems in both biology
and silicon. We presented a hardware accelerator that increases
the speed of spatiotemporal neuron simulations up to 2 orders
of magnitude compared to a software implementation. The
accelerator datapath contains a number of kernels which
process individual x-y-t subregions of the video input and
have been optimized to maximize the utilization of dedicated
memory blocks and multiplier circuits. It is intended to run
simulations of large neuron populations but can also be used
in computationally intensive computer vision applications such
as realtime motion detection.

REFERENCES

[1] W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory
information by the central nervous system,” Sensory communication, pp.
303–317, 1961.

[2] D. Gabor, “Theory of communication. part 1: The analysis of in-
formation,” Electrical Engineers-Part III: Radio and Communication
Engineering, Journal of the Institution of, vol. 93, no. 26, pp. 429–441,
1946.

[3] N. Petkov and E. Subramanian, “Motion detection, noise reduction,
texture suppression, and contour enhancement by spatiotemporal gabor
filters with surround inhibition,” Biological Cybernetics, vol. 97, no. 5-6,
pp. 423–439, 2007.

[4] N. J. Majaj, M. Carandini, and J. A. Movshon, “Motion integration by
neurons in macaque mt is local, not global,” The Journal of neuroscience,
vol. 27, no. 2, pp. 366–370, 2007.

[5] S. Nishimoto and J. L. Gallant, “A three-dimensional spatiotemporal
receptive field model explains responses of area mt neurons to natural-
istic movies,” The Journal of Neuroscience, vol. 31, no. 41, pp. 14 551–
14 564, 2011.

[6] T. Nagano, M. Hirahara, and W. Urushihara, “A general model for visual
motion detection,” Biological cybernetics, vol. 91, no. 2, pp. 99–103,
2004.

[7] A. Spinéi, D. Pellerin, D. Fernandes, and J. Hérault, “Fast hardware
implementation of gabor filter based motion estimation,” Integrated
Computer-Aided Engineering, vol. 7, no. 1, pp. 67–77, 2000.

[8] D. J. Heeger, “Optical flow using spatiotemporal filters,” International
Journal of Computer Vision, vol. 1, no. 4, pp. 279–302, 1988.

[9] K. Takahashi, Y. Kuriya, and T. Morie, “Bicycle detection using pedaling
movement by spatiotemporal gabor filtering,” in TENCON 2010-2010
IEEE Region 10 Conference. IEEE, 2010, pp. 918–922.

[10] K. Seshadrinathan and A. C. Bovik, “Motion tuned spatio-temporal qual-
ity assessment of natural videos,” Image Processing, IEEE Transactions
on, vol. 19, no. 2, pp. 335–350, 2010.

[11] T. Wu, M. S. Bartlett, and J. R. Movellan, “Facial expression recognition
using gabor motion energy filters,” in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010 IEEE Computer Society Con-
ference on. IEEE, 2010, pp. 42–47.

[12] F. Aubépart, M. El Farji, and N. Franceschini, “Fpga implementation
of elementary motion detectors for the visual guidance of micro-air-
vehicles,” in Industrial Electronics, 2004 IEEE International Symposium
on, vol. 1. IEEE, 2004, pp. 71–76.

[13] A. Borst, K. Kuhnlenz, and M. Buss, “An FPGA implementation
of insect-inspired motion detector for high-speed vision
systems,” 2008 IEEE International Conference on Robotics
and Automation, pp. 335–340, May 2008. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543230

[14] T. Köhler, F. Röchter, J. P. Lindemann, and R. Möller, “Bio-
inspired motion detection in an FPGA-based smart camera module.”
Bioinspiration & biomimetics, vol. 4, no. 1, p. 015008, Mar. 2009.
[Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/19258686

[15] O. Y. Cheung, P. H. W. Leong, E. K. Tsang, and B. E. Shi, “A scalable
fpga implementation of cellular neural networks for gabor-type filtering,”
in Neural Networks, 2006. IJCNN’06. International Joint Conference on.
IEEE, 2006, pp. 15–20.

[16] Y. C. P. Cho, S. Bae, Y. Jin, K. M. Irick, and V. Narayanan, “Exploring
gabor filter implementations for visual cortex modeling on fpga,” in
Field Programmable Logic and Applications (FPL), 2011 International
Conference on. IEEE, 2011, pp. 311–316.

[17] N. Voß and B. Mertsching, “Design and implementation of an acceler-
ated gabor filter bank using parallel hardware,” in Field-Programmable
Logic and Applications. Springer, 2001, pp. 451–460.

[18] D. L. Ringach, “Mapping receptive fields in primary visual cortex,” The
Journal of Physiology, vol. 558, no. 3, pp. 717–728, 2004.

621

