
Quantal analysis 
 

Background 
From Hardingham et al 2006: 
“Histograms of amplitude frequency distributions of excitatory postsynaptic potential 
(EPSPs) from stable periods of data often (~50% of recordings) contained regularly 
spaced peaks, indicative of a quantal release of neurotransmitter at the synapses. It has 
been shown that neocortical synapses relating to individual connections appear to operate 
with similar release probabilities, which are target derived (Koester and Johnston, 2005) 
and so can be approximated with a simple binomial model. Therefore, the working 
hypothesis was that the EPSP amplitudes were drawn from a simple binomial distribution 
characterized by the number of release sites (n), release probability (p), and quantal size 
(q) (Larkman et al., 1997).” 
 
This program attempts to fit n, p and q, along with some other parameters. 
 
 

Getting started 
FitData6 is the "main" file -- Type FitData6 at the command window to start things off.  
 
 
In the Matlab command window, go to the directory where the files are and type 
“FitData6”. The following window should open: 



 
 

Experimental data 
The data should be in text files with one EPSP value per row. The "default directory" 
field of the GUI tells the program where to look for these. Results files get written there 
too, so you can look up what fits were tested and compare the results of different 
methods. 
 
Type the location of your datafiles into the “Data directory” window. 
This will bring up a list of available .amp files. This should be a text file containing a list 
of EPSP amplitudes, one on each row of the file, e.g. 

 
Click on the file you want to select its data. The data will then be displayed: 
 



 
 

Plot options 
In “Plot Options” on the right, you can change how the data is plotted: 



 
 
Note that this has no effect on the fits. The number of bins is purely for display purposes. 
Fits are done to the raw data, not to binned data. This is why I show the cumulative 
distribution– it doesn’t require any choices about bins. 
 
 

Model 
 
The probability density function for the EPSP size v is: 
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v = amplitude of EPSP 
v0 = offset, assumed to be added to all EPSPs. This allows for the fact that the mean 
amplitude of failures may differ slightly from zero, because of extracellular field effects 
(Stricker et al., 1996). 
σnoise = SD of experimental noise, assumed to be Gaussian 
n = number of release sites.  
q = quantal size  
p = release probability at each release site 
pstim = probability that stimulation results in an action potential which reaches the release 
sites 



σq = quantal variance; =SD on first peak in absence of noise. 
σm = variance affecting the mth peak; m ranges from 0 to n.  

For Type I quantal variance, σm
2 = σnoise

2+mσq
2;  

for “flat” quantal variance, σm = σnoise for m=0; σm
2 = σnoise

2+σq
2 for m>0. 

 
 
The idea behind the above equation is: 
You have a recording between a pair of connected neurons, neuron A and neuron B. 
When neuron A fires an action potential, in general you record an EPSP in neuron B. 
This EPSP represents the release of m vesicles of neurotransmitter, each contributing an 
average amount q to the EPSP (a quantum). Two complications are  

(i) there may be a offset  v0 such that the EPSP amplitude is measured as being non-
zero even when no vesicles are released. v0 is fixed for a given recording but 
varies between recordings. 

(ii) quanta are not exactly the same on every occasion. With Type 1 quantal variance, 
we assume that each quantum is drawn from a Gaussian with mean q and SD 
σq. In this case, if m quanta are released, their total effect is drawn from a 
Gaussian with mean mq and SD σq√m. With “flat” quantal variance, we 
assume that the SD is independent of the number of quanta released (above 0), 
so that the total effect of m quanta is drawn from a Gaussian with mean mq 
and SD σq.   

We further assume that the total effect is then subject to Gaussian noise. 
 
The number of quanta released depends on two factors. 
First, an action potential in neuron A may somehow fail to reach the synapse. We define 
pstim to be the conductance probability, i.e. the probability that the action potential reaches 
the synapse. If it does not reach the synapse, 0 quanta are released and the EPSP 
amplitude v is drawn from a Gaussian with mean v0 and noise σnoise. 
If the action potential does reach the synapse, then each of the n release sites has 
probability p of releasing one quantum (whose amplitude is drawn from a Gaussian 
distribution as described above). 
 
This model results in the probability distribution given above. 
 
Glitch rate 
At one point I modified the code to allow for a glitch rate g. Any EPSP generated by the 
above quantal model has a probability g of being replaced with a random number 
between gmin and gmax. In my code, gmin is set to be 1 less than the lowest EPSP in the 
data-set, and gmax to be 1 more than the highest. So the effect of g depends to some extent 
on the data-set. I don’t regard this as a big problem, since the whole point is that the best 
fit should be largely independent of g, except possibly if g=0. 
The final PDF is then 

ffinal(v) = (1-g)f(v) + θ(v-v0) g/(gmax-gmin), 
where θ(v) is 0 for v<gmin and v>gmax, and 1 elsewhere. 
 



If glitchrate is set to 0, it will have no effect. However, if you come across an example 
where you think one outlier is throwing things off, try setting glitchrate to 0.01 or 0.05, 
and see if that improves things. NB if glitchrate is non-zero, then the program draws two 
fits over the data histogram. The one in red is what was actually fitted, ie the model 
including the non-zero glitchrate. The dotted pink line is what the PDF would look like if 
all the parameters were the same except glitchrate was 0.   
 
However I subsequently hard-wired the glitch rate to 0, which is where it is currently. 
 

Fitting 
When you hit the Fit button, the program will try and fit model parameters to the data. It 
uses the method of maximum likelihood, i.e. it tries to find the parameters which make 
the data most likely given the model. 
There are potentially 8 free parameters: 
n = number of release sites, an integer between 1 and nmax, set in the GUI. 
p = release probability, a real number between 0 and 1 
q = quantal size, a positive real number  
σq = “quantal variance” (actually quantal SD), a positive real number  
Quantal variance type, a binary variable which describes how σq is used (Type 1 or flat) 
σnoise = experimental noise, a positive real number  
pstim = conductance probability, a real number between 0 and 1 
v0 = offset, a real number 
 
 
The fitting is done with FMINSEARCH; see Matlab's help on that. NB it minimises not 
maximises, so everything's upside-down -- I actually minimise -sum(log(p)) instead of 
maximising sum(log(p)) etc.  
 
Fitting usually takes a while. The program goes through all the allowed values of n, from 
1 to nmax, and maximizes the other fit parameters. It will then report the value of n that 
gave the maximum likelihood. 
 
This is what the GUI looks like while it’s fitting: 



 
 
When it’s finished, it will draw the model in red for you over the data: 
 



 
Here, in a fully unconstrained fit, the model decided there were probably 3 release sites, 
with a quantal size of around 200uV and release probability 0.625. The conductance 
probability was 0.7, meaning that on around a third of trials, the action potential didn’t 
make it to the synapse. That explains the big peak at zero.  

Things you can change about fitting 
You can change the maximum number of release sites, “Max n” in the GUI. There is 
generally no point fitting more than 10, as you don’t find connections with 11 clear 
peaks. Making “Max n” bigger will slow down run time and won’t necessarily improve 
your results. Keep it as low as your physiology suggests is sensible. 
 
You can change the number of randomly-chosen starting points for the fitting. This helps 
to avoid the algorithm getting stuck at local optima. This is “No. starts” in the GUI. 
Making it bigger makes your results more reliable but the run time slower. 
 
You can change the maximum number of function evaluations in fminsearch – see 
Matlab’s documentation. That’s “Max. evals” in the GUI. Again, making it bigger makes 
your results more reliable but the run time slower. 
 
You can also constrain some of the parameters. This is generally a good idea if possible, 
as it will make run times faster and fits more reliable. For example, you may be able to 
estimate the experimental noise independently, in which case feed that into the fit. 
 



Note that if you only have two peaks in your histogram, probably there is only one 
release site. In that case it makes absolutely no sense to fit the conductance 
probability. There is probability (1-pstim)+pstim(1-p) that 0 quanta are released, and 
probability pstimp that 1 quantum is released. You have no way of distinguishing between 
pstim and p. So if your data looks as if you have only one release site, you should 
definitely  set pstim=1. 
 
In the example below, say I estimated that σnoise=50uV, the offset seems so close to 0 it’s 
not worth fitting, and I wanted to constrain pstim to be 1. Now, the program came up with 
the following fit: 

 
 
 

Testing your fit 
How do you know your fit bears any resemblance to reality? The short answer is you 
don’t but my code provides two ways for you to do a sanity check. 
 

Adequacy 
Is it possible that the observed data came from the given model? The model CDF never 
matches the experimental one exactly, but are the discrepancies reasonable given the 
amount of data?  (ie your statistical power to detect a difference) 
 



This is described in Hardingham et al (2006) as follows: 
“Adequacy of fitted model. To test whether the proposed fit was acceptable as a model of 
the experimental data, seven goodness-of-fit statistics were considered: the sum of the 
squared differences between the model and data cumulative distributions,  C, the 
Kolmogorov–Smirnov D statistic (Press et al., 1993), and the χ2

 statistic for five different 
bin sizes. The power of the χ2

 statistic depends strongly on the bin size used. With too 
few bins, the test is too coarse to catch local deviations of the data from the model 
predictions. Conversely, if too many bins are used, the number of data points falling in 
any one bin is small and subject to large sampling fluctuations, so the statistic again 
tolerates poor fits. The optimal number of bins depends on the data set. By using a range 
of different bin numbers (20, 30, 50, 75, and 100) for each data set, we ensured that each 
data set would be exposed to a rigorous test. The distributions of these statistics under the 
null hypothesis, that the experimental data had actually been drawn from the fitted model, 
were obtained by Monte Carlo simulation (implemented in MATLAB on a personal 
computer). Five thousand sets of simulated data, each the same size as the experimental 
data set, were generated from the fitted model, and the seven goodness-of-fit statistics 
were calculated for each simulated data set. For each statistic, we calculated what 
proportion ( f ) of simulated data sets yielded higher values of the statistic (indicating 
worse fits) than the experimental data. A value of f<5% means that the null hypothesis 
cannot be rejected at the 5% level on the basis of the statistic. Finally, we applied an 
additional test, using the proportion of events that failed to evoke a simulated EPSP, pfail. 
The Monte Carlo distribution of failure rates could then be compared with the pfail 

observed experimentally. The failure rate test is a two-tailed test, so the null hypothesis is 
accepted at the 5% level provided that the experimental pfail lies in between the 2.5 and 
97.5% quantiles of the Monte Carlo distribution.”  
 
To assess this, hit “Test”. That will bring up the following dialogue box. 

 
What this is asking for is your estimate of the proportion of trials which failed to elicit a 
non-zero EPSP. Given the noise, this can’t be gathered unambiguously from the raw data. 



You might do something like, say, assume that all the EPSPs below the “notch” visible 
above at 200uV are actually failures. In the data set above, that gives you a proportion 
0.452. You could then feed that into the dialogue box, and then the program will test that 
that proportion of failures could occur with the fitted model.  
 
Here are the outputs for the one-sided test: 

 
 
Hopefully this is clear given the explanation about. For example, C is the sum of the 
squared differences between the model and data cumulative distributions, summed over 
all EPSPs in the data file. This was 0.08082 for the actual data and the model fitted to the 
actual data (vertical blue line). 
What we did now was generate 5000 sets of simulated data, using the probability density 
function f(v) of the fitted model. For each of these, we computed the C between that 
simulated data and the fitted model. You can see this varied between close to 0 and close 
to 1. 95% of these C were less than 0.4212 (vertical dotted line). Clearly the empirical C 
is well below this. This means that the model agrees with the empirical data as well as 
can be expected (at least as measured by C). 
 
The other plots do the same thing for some other common test statistics, as described 
above. This model is clearly “adequate” as measured by the above one-sided tests, i.e. it 
cannot be rejected given the data. 
 
The second window is for the two-sided tests: 
 



 
 
The first two of these weren’t discussed in Hardingham et al (2010). The first is just 
using –ln(L), the negative log likelihood, and the second the skew of the data. These just 
check that the empirical value of these quantities (vertical line) are also consistent with 
the range of values produced by the fitted model. 
 
The third is pfailure, discussed above. Here, you can see that the model rejects the idea 
that the proportion of failures can be as high 0.452. The model predicts that the 95% 
confidence interval for pfail is 0.234 to 0.348, so 0.452 is grounds for rejecting the 
model. This would be a good reason to relax the constraint that pstim=1 and allow the 
model to fit a lower value which would allow the model to predict higher pfailure. 
 
You also get a little window telling you where these plots are saved, as jpgs: 

 
 
 

Uniqueness 
 
The problem is of course that there are usually many many models which cannot be 
rejected given the data. This problem gets worse the less peaky the histograms are – if 
your histograms have lots of clear peaks, the parameters are probably well constrained; if 
they look like a mixture of two Gaussians, the parameters very much aren’t. 
 
 
To assess this, hit “Resample” in the GUI. This will use bootstrap resampling as 
described in Hardingham et al (2010). 



“Bootstrap resampling. Bootstrapping was used to estimate confidence intervals on fitted 
quantal parameters (Efron, 1979; Stricker et al., 1994). For each connection, we had n 
trials of recorded EPSPs. We generated new sets of data referring to sets of EPSP 
amplitudes for each connection by randomly selecting, with replacement, n EPSPs from 
the original set. Thus, some of the original EPSPs might appear more than once in the 
new set, whereas others might not appear at all. To avoid having several identical EPSPs 
in the new sets (which was correctly rejected by our battery of adequacy tests as being 
essentially impossible), we added a small amount of jitter to these resampled EPSPs. To 
each resampled EPSP, we added a random number drawn from a Gaussian, with a mean 
of 0 and an SD of one-quarter of the fitted noise SD (or five on the rare occasions in 
which one-quarter of the fitted noise SD was less than five). We then rounded the result 
to the nearest whole number to make all resampled EPSPs into integers, as they were in 
the original data (expressed as microvolts). This set of resampled EPSPs was then fitted 
in exactly the same manner as the original EPSPs were, and the resampled fit was tested 
for adequacy using the same selection of statistical tests that were applied to the original 
fit. If the resampled fit passed these tests, it was accepted as a valid resampled fit. The 
entire procedure was then repeated until 100 valid resampled fits had been acquired for 
each connection, giving 100 estimates of Q, N, and Pr for each connection”  
 
100 resamples will take a long time to run. You can control how many resamples are 
done in the box in the GUI below “Resample”. In the following example, I’ve reduced 
“No starts” to 8 and max n to 5, to speed things up. 
  

 
 



The program prints out example resampled data & fits as it goes: 
 
 

 
You can see that the “data” is similar to but slightly different from the original 
experimental data in the main GUI. 
 
The results are written out into the data directory (same filename as the data but with 
RESAMP at the end). 
 
This is a text file so you can open it up in a text editor of your choice. It’s a wide file 
though so may not look good if the text wraps wron. 
This is how it looks in Windows 10 Notepad++: 



 
 
Hopefully this is self-explanatory. Obviously you don’t get confidence intervals for the 
parameters that were constrained, like offset and pstim in this example. 
As noted in Hardingham et al (2010), “For most connections, these confidence intervals 
were large”. For example, above, p varies from 0.439 to 0.919.  
 
 
 
 

Default parameters 
Any changes you make in the GUI are written to FitParameters.jfit. This is just a text file. 
You can modify it manually if you like but you don’t need to. This just ensures that the 
next time you fire up the program, it starts with whatever you set the parameters to the 
last time, making it more convenient. 
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