
 

 
 

 

 

SuppFig 1. Intuitive argument for why TE neurons must have a local extremum at the stimulus disparity. a-c: 
left and right receptive fields (RFs) for neurons tuned to different position disparities. a: RFs tuned to 
stimulus disparity Δxstim; b,c: RFs tuned to stimulus disparity ± ε (RFs in a are shown with dotted lines for 
comparison). d: population response of tuned-excitatory neurons tuned to different position disparities, 
showing that this response is symmetric about the stimulus disparity.  
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SuppFig 2. As Fig. 2, except at a slightly different point in the scene.  Now, the stimulus disparity falls at a 
local minimum with respect to the cells’ preferred position disparity, although still, as always, at a local 
maximum wrt their phase disparity. Once again, the true stimulus disparity (cyan) can be read off from the 
population response in c, since it is the only point on the blue line which is both an extremum wrt position 
disparity and a maximum wrt phase disparity. 
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SuppFig 4. Population response to an anti-correlated image. As Fig. 2, except that the contrast of the right 
image has been inverted, equivalent to a stimulus phase disparity of π. 
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SuppFig 1. Results returned by the algorithm for a slanting surface. The stimuli were noise images with a 
horizontal compression, representing a surface slanting about a vertical axis. A horizontal size ratio H 
corresponds to a slant of S relative to gaze-normal, where H = [2R – I tanS]/ [2R + I tanS], I is the 
interocular distance and R the distance of the surface. (a) H = 98%, representing a slant of 6° at 30cm, 9° at 
50cm or 18° at 1m; (b) H = 85%, representing a slant of 38° at a distance of 30cm, and even more extreme 
slants at further distances. 100 such stereograms were generated; in each, the disparity at the centre of the 
receptive field (really 0°) was estimated by 6 channels (2 spatial frequencies 1 octave apart, and 3 
orientations 60° apart). The frequency histogram sums individual results for all channels. Errors were counted 
as those where the algorithm returned a disparity of > 0.025° in magnitude (i.e. outside the central bin). In 
this simulation, the algorithm was constrained to return an answer between ± 1° (or none). The dashed line 
shows where the bars would lie if the algorithm were returning random numbers in between this range 
(chance accuracy = 2.5%).  
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SuppFig 5. Results for the Pentagon stereogram. Disparity maps returned by single channels tuned to 
different spatial frequencies (rows) and orientations (columns). Colorscale shows estimated disparity for each 
point in the image; pseudocolor as in Fig. 5; gray = no estimate returned. Contours show example RF for 
each channel. Contours are drawn at ± 0.1%, 20%, 40%, 60% and 80% envelope maximum amplitude; black 
lines show positive values (ON regions) and white show negative (OFF). 
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SuppFig 3: Two different approaches to framing the stereo correspondence problem. a: pick a feature in one 
eye (red dot), seek its match in the other eye (blue lines represent possible matches). b: pick a visual 
direction (black), and seek the stimulus disparity at this point (red, blue represent possible left- and right-eye 
positions). The top row represents the two approaches in terms of position in space (eyes are viewed from 
above); the bottom row represents them in terms of matching receptive fields on the two retinae. The black 
arrows in the lower panels represent different possible matches between left (red) and right (blue) receptive 
fields. 
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Why build sensors for impossible stimuli? 
Stereo correspondence with position and phase disparity 

 
Jenny C. A. Read & Bruce G. Cumming 

Supplementary Note 
 

MATHEMATICAL PROOFS 
In the paper, we claimed that, for uniform-disparity images, the true match is 
distinguished by (A) being at zero phase disparity, (B) being at a local extremum 
(maximum or minimum) with respect to position disparity, and (C) being at a local 
maximum with respect to phase disparity. We shall first justify this with an intuitive 
argument, and secondly with a formal mathematical proof. 
 
We shall prove these results for an energy-model linear simple cell, i.e. a unit with only 

a single receptive field in each eye, whose response is ( )2RLE += . Since the sum of 
two functions which each have a maximum at x also has a maximum at x, the same 
results also hold for an energy-model complex cell, which is the sum of 2 such linear 
simple cells. Claim (A) above is simply a property of the stimulus (if the stimulus has 
zero phase disparity, then the true stimulus match is in cells tuned to zero phase 
disparity). This leaves us with two claims to prove, which we express formally as 
follows. 
 
We consider the output of a population of binocular energy-model linear simple cells to 
be a function of two variables: the preferred position disparity Δxpref and the preferred 
phase disparity Δφpref of each cell. Then we are seeking to prove two claims concerning 
the behaviour of this function at the stimulus disparity (i.e. when Δxpref = Δxstim and 
Δφpref = 0). 
Theorem B: At the stimulus disparity, the function has a local extremum (maximum or 
minimum) with respect to preferred position disparity. 
Theorem C: At the stimulus disparity, the function has a local maximum with respect to 
preferred phase disparity. 
 

Intuitive argument for Theorems B and C 

Formally stated, these theorems may sound complicated, but they are in fact 
straightforward to the point of being obvious. We therefore begin not with a formal 
proof, but with an intuitive justification. By hypothesis, the left image is a shifted 
version of the right, with only position disparity (no phase disparity). This is shown in 
SuppFig 1: in each panel the top row shows the right eye’s image, while the bottom 
row shows the left eye’s image, which is identical apart from being shifted to the left. 
Consider a TE neuron, with (by definition) no phase disparity, and with the position 
disparity that matches the stimulus. The image patches seen by its receptive fields are 
identical (receptive fields marked in blue (right eye) and red (left eye) in SuppFig 1a). 
Now consider increasing the preferred disparity of the receptive fields by some amount 
ε while keeping the same cyclopean position. This means displacing the receptive fields 
by equal amounts in opposite directions (SuppFig 1b). The images seen by the 
receptive fields are now different. However, compare the effect of decreasing the 
preferred disparity by ε (SuppFig 1c). Now, the image patch seen by the right eye’s RF 
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in SuppFig 1c is the same as the image patch seen by the left eye’s RF in SuppFig 1b. 
However, for a TE neuron the left and right RF profiles are identical, by definition. Thus, 
the fact that left and right RFs are swapped over in SuppFig 1c compared to SuppFig 1b 
makes no difference to the response of the neuron. This means that the response at a 
preferred disparity of (Δxstim + ε) is the same as that at (Δxstim – ε), i.e. the population 
response, as a function of preferred position disparity, is symmetric about the stimulus 
disparity (SuppFig 1d). Unless the response is completely flat, this means that there is 
an extremum – either a maximum or a minimum – at the stimulus disparity (as well, of 
course, as a large number of other extrema which are not at the stimulus disparity!). 
 
At the correct stimulus disparity (a), the left and right receptive fields are viewing 
identical image-patches. As the neuron’s disparity moves away from this (b,c), the 
binocular correlation reduces. This in turn usually reduces the response of the energy-
model unit, meaning that the response is usually a maximum at (a). However, the 
response of binocular energy-model cells does not depend solely on binocular 
correlation: contrast energy also affects their response. If the mismatched image-
patches viewed in (b,c) have significantly more contrast energy than the matching 
patches, it is possible for the response at (a) to be a minimum.  
 
By a similar line of reasoning, it is clear that the response as a function of preferred 
phase disparity must also be symmetric about the stimulus phase disparity (which, for 
normal images, is zero). In fact, it can be proved that the response is always a 
maximum at the stimulus phase disparity (see below).  
 
Thus, if we consider a neuronal population varying in preferred position and phase 
disparity but not in cyclopean position, the stimulus disparity lies at the centre of two 
axes of symmetry. In theory, either or both of these could be used to identify the 
stimulus disparity. However, identifying the centre of symmetry along the position-
disparity axis is likely to be challenging, given a finite range of position disparities in the 
population, since the centre of symmetry may lie out towards one end of this range, 
and may be at either a maximum or a minimum. The symmetry along the phase-
disparity axis is much more straightforward to use, since for natural images the 
stimulus disparity always lies at the centre of the population of phase-disparity sensors, 
and is a maximum. We suggest that the brain constructs phase-disparity sensors in 
order to take advantage of this. 

Mathematical proof of Theorems B and C 

We now prove Theorems B and C formally. These theorems hold for a wide range of 
receptive fields, more general than the Gabor functions used in our computer 
simulations. In our proof, we allow the receptive field envelope to be an arbitrary 
function V(x,y), not necessarily a Gaussian, and we allow both vertical and horizontal 
position disparity. As before, we assume that the left- and right-eye receptive fields 
differ only in their position and phase.  
 
We can therefore write the receptive fields as: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡ Δ
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
+

Δ
+=

222
cos

2
,

2
, prefpref

y
pref

x
prefpref

L

y
yk

x
xk

y
y

x
xVyx

φ
φρ  

( ) ⎥
⎦

⎤
⎢
⎣

⎡ Δ
+−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ Δ
−

Δ
−=

222
cos

2
,

2
, prefpref

y
pref

x
prefpref

R

y
yk

x
xk

y
y

x
xVyx

φ
φρ  

Equation 1 

8



The output from each eye is the convolution of the retinal image I(x,y) with the 
receptive field ρ(x,y): 
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For a stimulus with uniform position disparity and no phase disparity, the left and right 
images may be regarded as shifted versions of a “cyclopean” image I. Allowing both 
horizontal and vertical stimulus disparity, we write:  
( ) ( )2/,2/, stimstimL yyxxIyxI Δ+Δ+= , ( ) ( )2/,2/, stimstimR yyxxIyxI Δ−Δ−=  

Equation 3 

Then, we can rewrite Equation 2 as 
( )prefstimprefstimpref yyxxFL φΔΔ−ΔΔ−Δ= ,,  

( )prefstimprefstimpref yyxxFR φΔ−Δ+Δ−Δ+Δ−= ,,  

where the function F is 
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Equation 4  

In the energy model, the output of a disparity-tuned simple cell is given by the squared 
sum of left and right inputs: 

 ( ) LRRLRLE 2222 ++=+= . 
 
Now consider differentiating L2 with respect to Δxpref, holding all other variables 
constant.  We shall denote the result as 

 ( ) ( )prefstimprefstimprefprefstimprefstimpref
pref

yyxxFyyxxF
x
L φφ ΔΔ−ΔΔ−Δ′ΔΔ−ΔΔ−Δ=

Δ∂
∂ ,,,,2 1

2
. 

where Fi’, Fi” represents the first, second partial derivative of F with respect to its ith 
argument, with the other arguments held constant. For R2, there is an additional minus 
sign: 
 

( ) ( )prefstimprefstimprefprefstimprefstimpref
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yyxxFyyxxF
x
R φφ Δ−Δ+Δ−Δ+Δ−′Δ−Δ+Δ−Δ+Δ−−=

Δ∂
∂ ,,,,2 1

2
. 

Now evaluate the these derivatives for the case where the cell’s disparity tuning 
matches the stimulus: Δxpref = Δxstim, Δypref = Δystim and Δφpref = 0. Here, the first 
derivative of L2 is ( ) ( )0,0,00,0,02 1FF ′ , while the first derivative of R2 is the same but with 

the opposite sign. Thus, the first derivative of ( )22 RL +  with respect to horizontal 
position disparity is zero. Exactly the same argument holds for the derivatives with 
respect to vertical position disparity Δypref and phase disparity Δφpref. Thus, the sum of 
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these terms has a local extremum (not necessarily a maximum) at the correct stimulus 
disparity. 
 
We now consider the remaining term 2LR: 

( ) ( )prefstimprefstimprefprefstimprefstimpref yyxxFyyxxFLR φφ Δ−Δ+Δ−Δ+Δ−ΔΔ−ΔΔ−Δ= ,,,,
 
The first derivative of this with respect to preferred horizontal position disparity, 
evaluated at the correct stimulus disparity, is 
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When these are evaluated at the stimulus disparity, Δxpref = Δxstim, Δypref = Δystim and 
Δφpref = 0, these terms cancel out, meaning that the binocular term LR also has an 
extremum at the stimulus disparity. Again, this argument works for differentiation with 
respect to  Δypref and Δφpref as well. Thus, the total energy model response, E = L2 + R2 + 
2LR, has a local extremum at the correct stimulus disparity, along all three dimensions 
of preferred disparity (horizontal position, vertical position and phase). 
 
To examine the nature of this extremum, we need to calculate the second derivatives, 
again evaluated at the stimulus disparity. Doing this for the individual terms L2, R2 and 
2LR, and then summing all three, we obtain the second derivative of the energy-model 
response E: 
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Equation 5 

Differentiating F (Equation 4) with respect to preferred phase disparity, we find that  
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, which is always negative. This means that, as we vary 

preferred phase disparity for a fixed position disparity preference, the energy model 
response E has a local maximum at a phase disparity of zero (the phase disparity of the 
stimulus). However, no such neat result follows for the second derivatives with respect 
to position disparity. These can be either positive or negative. Therefore, the true 
stimulus disparity may be at a maximum or a minimum with respect to preferred 
position disparity. 
 
SuppFig 2 shows a situation where the stimulus disparity is at a local minimum wrt 
preferred position disparity. 

Note on how to search for stereo matches 
Note that in order for theorems B and C to hold, it is essential that all cells be tuned to 
the same cyclopean location in the visual field. This was specified in Equation 1 by 
shifting the receptive fields symmetrically in opposite directions: thus, the mean 
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position of the two eyes’ receptive fields is the same for all neurons in the population 
(SuppFig 3b). Previous workers have often varied disparity by fixing the receptive field 
in one eye and varying it in the other, so that cyclopean location varies along with 
disparity tuning (SuppFig 3a). This is the reason, for example, why Fig. 1 of Chen & 
Qian22 at first sight appears to contradict the results proved here: in their plot of 
population response as a function of position disparity tuning, there is usually no 
extremum at the stimulus disparity. This led them to conclude that position-disparity 
encoding is intrinsically less accurate than phase disparity, a conclusion we reject (see 
Discussion). Of course, both approaches sketched in SuppFig 3 are in principle equally 
valid as a way of framing the correspondence problem. The brain contains neurons with 
receptive fields at all possible cyclopean positions and disparities (up to some maximum 
disparity), so it is merely a question of which neurons are considered as “belonging” 
together for the purposes of reading out the population. Chen & Qian chose to group 
neurons with a given left-eye receptive field, so that the choice of right-eye receptive 
field then determined both the neuron’s disparity tuning and its cyclopean location 
(SuppFig 3a). This is responsible for the “noise” in their position disparity detectors. In 
contrast, we have chosen to look at a group of neurons with one particular cyclopean 
location, i.e. with monocular receptive fields on either side of this fixed central location 
(SuppFig 3b). This choice has significant practical advantages. With this grouping, pure 
position disparity detectors are guaranteed to have an extremum at the stimulus 
disparity. For pure phase disparity units, this is true only when the stimulus disparity is 
zero; as Chen & Qian found, for realistically broad-band receptive fields, pure phase 
disparity units become less and less reliable as stimulus disparity increases. Thus when 
the neuronal population is read out as we propose, position disparity units are actually 
slightly more reliable than phase disparity units, as demonstrated in Fig. 3 (green vs 
purple histograms). It might be argued that the simulation of Fig. 3 is not a fair test for 
phase-disparity units, since the stimulus disparity exceeds half a cycle. Broad-band 
phase-disparity units become less and less accurate – even counting as correct any 
estimate that is an integral number of cycles away from the stimulus disparity – the 
further the stimulus disparity is from zero. Chen & Qian envisaged phase-disparity 
detectors being used for fine disparity judgments once the stimulus disparity had been 
located to the nearest cycle. To address this, we repeated the simulation of Fig. 3 using 
a stimulus disparity of 0.03 cycles, and limiting the range of both position- and phase-
disparity detectors to ± 0.5 cycles  (not shown). A maximum-energy algorithm using 
pure phase-disparity detectors is now 44% accurate, while a maximum-energy 
algorithm using pure position-disparity detectors is 84% accurate.  
 

Theorem D: Stereo energy is a sine function of phase disparity, with period 2π 
In the paper, we also claimed that the response of a population of phase disparity 
detectors all tuned to the same position disparity is a sinusoidal function of their 
preferred phase disparity. Here, we give a formal proof of this. As before, the proof is 
for simple cells. Since the sum of two sinewaves with period 2π is also a sinewave with 
period 2π, the same result holds for complex cells.  
 
Our starting-point is the expressions for L and R given in Equation 2. Notice that these 
are valid for any image-pairs IL and IR; the two eyes’ images could be completely 
uncorrelated and these equations would still hold. We now consider the response of an 
energy-model linear simple cell, E = L2 + R2 + 2LR. Squaring Equation 2 and shifting the 
range of integration for convenience, and then using a trigonometric identity to replace 
the product of cosines with a sum of cosines, we obtain 
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Equation 6 

The expression for R2 is similar, except that IL is replaced with IR, and the sign of every 
disparity (Δxpref, Δypref and Δφpref) is inverted. Similarly, the binocular term 2LR is: 
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Equation 7 

Notice that, after the integration has been carried out, each of the expressions for L2, R2 
and 2LR will contain one term which is independent of the cell’s preferred phase 
disparity, and one term which varies as a sinusoidal function of phase disparity, with 
period 2π. The total energy model response, E = L2 + R2 + 2LR, is therefore also a 
sinusoidal function of phase disparity. While the response of a population of energy-
model units as a function of position disparity for any fixed phase disparity is “noisy”, 
full of arbitrary peaks and troughs which reflect the particular properties of the images, 
the response as a function of phase disparity for any fixed position disparity is smooth 
and predictable, completely specified by the baseline, amplitude and phase of the 
sinusoid. This is evident in the cross-sections shown in Fig. 2c, SuppFig 2c and SuppFig 
4c. 
 

Anti-correlated images 
In the paper we briefly discussed the population response to anti-correlated images, 
when the contrast polarity in one eye has been inverted, equivalent to a stimulus phase 
disparity of 180°. SuppFig 4 provides a concrete example. All details are as in Fig. 2, 
except that the polarity of the right image has been inverted. Now, the response of 
cells tuned to the stimulus position disparity, blue dashed line in SuppFig 4c, is 
enhanced by phase disparity (since the stimulus itself has phase disparity). This means 
that the maximum occurs at a neuronal phase disparity of 180°. There are no local 
extrema along the line of zero phase disparity (blue line in SuppFig 4c) which are also 
local maxima with respect to phase disparity. For example, the extremum at the correct 
stimulus position disparity (cyan dot in SuppFig 4c) now falls at a local minimum with 
respect to phase disparity (SuppFig 4d). 
 

OBTAINING DISPARITY MAPS 
We tested our algorithm by calculating disparity maps, showing estimated disparity 
across the visual field for an example image. In this section, we record in detail how 
this was implemented. Rather than include a range of cells tuned to different overall 
phases φ, we calculated the population activity for complex cells, representing the sum 
of two binocular simple cells whose phases differ by 90° 1. Thus, the complex cell’s 
response was 
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3
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Equation 8 

where L1,R1 are given by Equation 2 with φ = 0 and L2,R2 is given by Equation 2 with φ 
= π/2. Similar results were obtained with simple cells. We also shift both receptive 
fields to different cyclopean positions (xpref,ypref) in order to obtain maps of disparity 
across the whole image. Thus the left- and right-eye receptive fields are given by  

( ) ( )
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prefprefprefprefR

prefprefprefprefL

yyxxxyx

yyxxxyx

φφρρ

φφρρ

Δ−−Δ−−=
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where the function ρ(x,y) is given in Equation 2 of the main paper. 
 
We then apply our algorithm to obtain an estimate of the stimulus disparity at that 
point in space, from that particular channel: Δxest(xpref,ypref;f,θ). For this, it is not 
necessary to simulate the full hybrid population shown in Fig. 2; we only calculated 
cross-sections through it, as illustrated in Fig. 4. We first evaluate the complex cell 
response (Equation 8) for a subpopulation of pure position disparity units, all with 
preferred phase disparity 0 and with preferred position disparity ranging between ± 0.2° 
(blue horizontal cross-section in Fig. 2ac and Fig. 4). We locate any extrema, ΔxTP, 
along this cross-section, both maxima and minima. If there are no extrema between ± 
0.2°, we say that this channel returns no estimate (gray regions in Fig. 5d-i and 
SuppFig 5). Obviously, this is most likely to happen for low spatial frequencies, where 
the response varies slowly as a function of disparity tuning. For high-frequency 
channels, there will be many extrema within the range ± 0.2° (e.g. for the highest 
frequency, 16cpd, the allowed disparity range used for the Pentagon test image is more 
than 6 periods). The challenge is to identify which represents the true stimulus 
disparity.  
 
To achieve this, for each extremum, we examine a subpopulation of hybrid 
position/phase disparity detectors, all with position disparity ΔxTP but with varying 
phase disparity. This corresponds to a vertical cross-section (green curve in Fig. 2cd 
and Fig. 4). We locate the phase disparity, Δφmax(ΔxTP), of the maximally-responding 
cell in the subpopulation with position disparity ΔxTP. For a uniform-disparity stimulus, 
this Δφmax would be zero when ΔxTP is equal to the stimulus disparity. So, we estimate 
the stimulus disparity as being the value of ΔxTP for which Δφmax is closest to zero. 
 
In this way, we obtained the single-channel estimates shown in SuppFig 5. The 
colorscale represents the estimated stimulus disparity; gray shows where no estimate 
was returned by this channel because no extremum was found within the allowed 
range. Note that the disparity maps are rather insensitive to the orientation of the 
receptive fields: essentially the same maps are produced for each of the 6 orientations, 
including 90° (horizontal). This refutes the idea, sometimes encountered, that 
horizontal disparity can be encoded only by vertically-oriented sensors; see section 3.3 
of Read (2005), Progress in Biophysics and Molecular Biology 87, 77-108 for a discussion. 
 

Numerical details 

Complex cell response was initially calculated for preferred phase disparity = 0 and for 
preferred position-disparities Δxpref between fixed limits at intervals of either λ/5 or 
0.1°, whichever is smallest, where λ is the spatial period of the channel. For the 
Pentagon image, the disparity range was ± 0.2°; for Sawtooth, ± 18 pixels, and for 
Venus and Tsukuba, –18 to +3 pixels. 
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These initial calculations provide coarse sampling of the horizontal cross-section shown 
in blue in Fig. 2. If these responses were monotonic as a function of Δxpref, this channel 
returned no estimate of stimulus disparity (gray regions in SuppFig 5). Otherwise, the 
maxima and minima estimated from these coarsely-sampled responses were used as 
the starting-point for a search algorithm (Matlab’s FMINSEARCH), which located the 
extrema with high accuracy. For each extremum ΔxTP, a second optimization then 
located the value of Δφpref which maximises response of cells tuned to that position 
disparity:  

( ) ( )( )θφφ
φ

,,,,,maxargmax fxyxCx prefTPprefprefTP
pref

ΔΔ=ΔΔ
Δ

.  

The estimated stimulus disparity is then taken as that of the extremum where Δφmax 
was closest to zero:  

( ) ( )( )TPprefprefest xfyxx ΔΔ=Δ maxminarg,;, φθ . 

 
This algorithm requires calculating the convolutions Li,Ri many, many times, for 
different values of position and phase disparity Δxpref, Δφpref. We employed various 
short-cuts to speed this up. First, according to Parseval’s theorem the same results are 
obtained by evaluating the convolutions in Fourier space as in physical space. We 
therefore employed whichever could be made fastest for the channel in question. For 
high-frequency channels, the receptive fields were small (Fig. 5, SuppFig 5), so we cut 
down the image to a rectangular strip centred on the particular cyclopean position 
under consideration. This strip extended 5 RF standard deviations σ vertically, and 
(0.4°+5σ) horizontally to allow for the different horizontal position-disparities. Thus, for 
each RF that would need to be evaluated, the cut-down image extended at least 5σ 
from the RF center, ensuring that we included all points where the receptive field 
envelope exceed 4×10–6 of its maximum value. This small image was then passed to the 
routine that evaluated Δxest(xpref, ypref ; f, θ) for that cyclopean position and channel, and 
used to evaluate the convolutions in physical space.  
 
For low-frequency channels, the receptive fields are large, so most of the original image 
falls within 5σ of an RF centre. However, its Fourier power spectrum is weighted very 
heavily towards the lowest frequencies present. Therefore, we can evaluate these 
convolutions most quickly in Fourier space, cutting down the Fourier spectrum to 
include only frequencies where the power was > 4×10–6 of maximum. This cut-down 
power spectrum was passed to the algorithm along with the Fourier spectrum of the 
images, similarly cut-down. The phase of the RF spectrum was then adjusted internally 
to produce Fourier spectra corresponding to RFs with different retinal locations and 
phases, and used to evaluate the convolutions in Fourier space.  
 

SLANTED SURFACES 
Our algorithm is guaranteed to work only where the disparity is uniform across the 
receptive field. To investigate how it performs when this condition is violated, we first 
tested it with noise images portraying slanted surfaces. SuppFig 6 shows the 
distribution of disparities returned by our algorithm for 100 different white-noise 
images portraying slanted surfaces. In each case, the right image had uniform power at 
all spatial frequencies up to some maximum; the Fourier spectrum of the left image 
was generated by horizontally compressing the Fourier spectrum of the right image by 
2% (i.e. horizontal frequencies are multiplied by 0.98, SuppFig 6a) or 15% (SuppFig 
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6b). Each pair of noise images was fed into our algorithm to obtain an estimate of the 
disparity at the centre of the surface (true disparity = 0°). For each stimulus, we 
obtained an estimate from 6 channels (2 spatial frequencies and 3 orientations). The 
distributions in SuppFig 6 show all these single-channel estimates pooled together. 
Where the compression was 2%, corresponding to a surface slant of 9° viewed at 50cm, 
the single-channel estimate was correct 90% of the time. Where the compression was 
extreme, 15%, the single-channel estimate was correct only around half the time. 
 
Errors made by different channels were largely uncorrelated. After removing correct 
answers (i.e. those inside the central bin), the pairwise correlation between the 
erroneous answers returned by different channels was on average  0.04. Thus, 
considerable improvements in accuracy are possible by combining the outputs of 
several channels. If we construct a robust average from the 6 channels in this 
simulation, by removing the 3 most outlying estimates for each stimulus, then the 
correct disparity is obtained in every single image with a compression factor of 98%, 
and in 86% of images with a compression factor of 85%. 
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