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Stereo vision displays a well-known anisotropy: disparity-defined slant is easier to detect for rotations about a horizontal
axis than about a vertical axis, and low-frequency sinusoidal depth corrugations are easier to detect when the corrugations
are horizontal than when they are vertical. Here, we determined disparity thresholds for vertically and horizontally oriented
depth corrugations with both sinusoidal and square-wave profiles. We found that the orientation anisotropy for square
waves is much weaker than for sine waves and is almost independent of frequency. This weaker anisotropy for square
waves can be explained by considering the Fourier harmonics present in the stimulus. Using linear models imported from
the luminance and texture perception domain, the disparity thresholds for square waves can be very well predicted from
those for sine waves, for both horizontally and vertically oriented corrugations. For horizontally oriented corrugations,
models based on the root mean square of the output of a single linear channel or the output of multiple linear channels
worked equally well. This is consistent with previous evidence suggesting that stereo vision has multiple channels tuned to
different spatial frequencies of horizontally oriented disparity modulations. However, for vertically oriented corrugations, only
the root mean squared output of a single linear channel explained the data. We suggest that the stereo anisotropy may arise
because the stereo system possesses multiple spatial frequency channels for detecting horizontally oriented modulations in
horizontal disparity, but only one for vertically oriented modulations.
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Introduction

Just as luminance gratings have been widely used to
probe information processing within the visual system,
disparity gratings or depth corrugations have been used to
probe stereo vision. For example, Rogers and Graham
(1982) and Tyler (1974) examined the disparity sensitivity
function, the analogue of the contrast sensitivity function
in the luminance domain. Disparity sensitivity is the
reciprocal of disparity threshold, which is the minimum
disparity amplitude needed to detect a corrugation with
85% accuracy. The maximum sensitivity (lowest disparity
threshold) of the human visual system occurs between
0.2 and 0.6 cycle/deg; outside this range there is a fall-off in
sensitivity for both lower and higher spatial frequencies
(Bradshaw & Rogers, 1999; Rogers & Graham, 1982;
Tyler, 1991). Thus, the disparity sensitivity function has
an inverted U-shape similar to that found with luminance
gratings (Campbell & Robson, 1968), possibly because
the same type of operations are involved in detecting both
disparity corrugations and luminance modulations. For
example, lateral inhibition may reduce the sensitivity to
sinusoidal corrugations of low spatial frequencies (Tyler,
1991).

The preeminence of sine-wave gratings in the lumi-
nance domain stems from Campbell and Robson’s
groundbreaking demonstration that the visibility of lumi-
nance gratings with different profilesVe.g., square wave
or sawtoothVcan be predicted from the contrast sensitiv-
ity function obtained with sine gratings. The different
Fourier components combine almost linearly, suggesting
that the visual system analyzes luminance within inde-
pendent linear channels tuned to a limited range of spatial
frequency and orientation. Accordingly, almost all studies
of disparity corrugations have used gratings with a sine-
wave depth profile. Yet the evidence that linear systems
theory holds in the stereo domain is much less secure than
for luminance. Masking and adaptation results suggest
that stereo vision does contain multiple channels tuned to
the spatial frequency of disparity modulation (Schumer &
Ganz, 1979), but that these have much wider bandwidth
than in the luminance domain. Furthermore, the percept
caused by gratings whose frequency is too high to be
detected suggests an important qualitative difference
between the encoding of disparity and that of luminance.
High-frequency, high-contrast luminance gratings appear
as a uniform gray equal to the average luminance of
the black and white stripes. Yet high-frequency, large-
amplitude disparity corrugations can readily be distinguished
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from a flat surface with uniform disparity equal to the
average disparity of the near and far stripes. Rather, the
percept is of a thickened surface, with elements at all
disparities present in the grating.
In this paper, we measure disparity thresholds for

horizontally and vertically oriented square-wave disparity
corrugations (see Figures 1c and 1d). If the linear system
analysis pioneered by Campbell and Robson in the
luminance domain also holds for disparity, we should be
able to predict the thresholds for these two stimuli from
the thresholds measured with sine-wave corrugations. This
is a particularly interesting stimulus to study, since stereo
vision displays a striking orientation anisotropy that has
no counterpart in the luminance domain. Sinusoidal
disparity corrugations at low spatial frequencies are much
easier to detect when the corrugations are horizontally
oriented than when they are vertically oriented (Bradshaw,
Hibbard, Parton, Rose, & Langley, 2006; Bradshaw &
Rogers, 1999; van der Willigen, Harmening, Vossen, &
Wagner, 2010). No one has yet examined whether this
anisotropy holds for square-wave corrugations.

Methods

Subjects

We obtained data from a total of 5 human subjects;
2 authors (ISP, JCAR) and 3 observers unaware of the
purpose of the study, all of them with experience in
psychophysical observation (in total, 4 males, 1 female,
aged between 18 and 37 years). All subjects had normal
or corrected-to-normal refraction and normal visual
acuity. Experimental procedures were approved by

Newcastle University’s Faculty of Medical Sciences Ethics
Committee.

Equipment

The experiments were carried out in a dark room.
Stimuli were presented on a rear projection screen (300 �
200 cm, Stewart Filmscreen 150, www.stewartfilm.com,
supplied by Virtalis, Manchester), frontoparallel to the
observers, who viewed it from a distance of 120 cm. A
chin rest (UHCOTech HeadSpot) was used to stabilize the
subject’s head and to control the observation distance.
Each eye’s image was presented using a separate F2x+
Digital Light Processing projector (ProjectionDesign,
Gamle Fredrikstad, Norway; www.projectiondesign.com)
driven by an NVIDIA GeForce 8600 GT graphics card, with
a spatial resolution of 1400 � 1050 pixels (horizontal �
vertical) and a temporal resolution of 60 Hz. Both displays
were gamma corrected using aMinolta LS-100 photometer.
Polarizing filters ensured that each eye saw only one
projector’s image; the interocular cross-talk was less than
2%. The images were carefully aligned to within a pixel
everywhere within the central 30- to ensure that as far as
possible the only disparities were those introduced by the
experimenter (Serrano-Pedraza & Read, 2009b). The pro-
jected image was 71 � 53 cm subtending 33- � 25-. Each
pixel thus subtended 1.41 minutes of arc (arcmin). The
stimuli occupied the central 500�500 pixels (12- � 12-).
All experiments were controlled by a DELL workstation
running MATLAB 7.5 (R2007b) with the Psychophysics
Toolbox extensions (Brainard, 1997, Pelli, 1997, www.
psychtoolbox.org).
White on our display had a luminance of 4 cd/m2

and reduced to 2.8 cd/m2 when viewed through the polar-
izing glasses; the black background had a luminance of
0.07 cd/m2 and reduced to 0.05 cd/m2.

Figure 1. Anaglyph samples of random Gaussian dot stereograms used in the experiments. (a) Example of a stimulus with vertical
sinusoidal wave corrugations defined by horizontal disparities. (b) Horizontal sinusoidal wave corrugations. (c) Vertical square-wave
corrugations. (d) Horizontal square-wave corrugations. Spatial frequency: 0.4 cycle/deg. The sketches representing the 3D percept
produced by these stimuli are represented in Figure 2a. (Note that the real stimuli were presented in a window of 12- � 12- and were
perceived through polarizing filters.)
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Stimulus generation

All stimuli were random-dot stereograms consisting of
white dots on a black background. The dots were isotropic
two-dimensional Gaussians with a standard deviation
of Adot = 1.44 arcmin (the dots had a dimension of 5 �
5 pixels). Dots were scattered randomly but without
overlap. The luminance of each pixel was calculated
according to the value of the Gaussian function at the
center of the pixel, thus allowing subpixel disparities. Dot
density was > = 14.08 dots/deg2, giving a Nyquist limit
of fN = 1.87 cycles/deg ( fN = 0.5

ffiffiffi
>

p
; see Figure 1).

Each dot was given a horizontal disparity % on the
screen, according to the desired waveform, e.g., % =
TA/2cos(2:fy) for a horizontally oriented sine wave; % =
TA/2sgn(cos(2:fx)) for a vertically oriented square wave,
where A/2 is the disparity amplitude of the grating and
f is its spatial frequency. Dots were given uniform
disparity and remained circular even when depicted as
lying on the sloping regions of sine-wave corrugations.
The dot size was much less than the shortest spatial period
used (50 arcmin), and disparity amplitudes were small; as
we shall see in the Results (Figure 2), the maximum value
of fA was 0.02 while the maximum f was 1.2 cpd. Thus,
the disparity change that should have occurred across a
dot, 2:Adot fA, never exceeded 0.15 arcmin or 11% of the
grating amplitude.
There are intrinsic problems with using horizontal

disparity to depict vertically oriented depth corrugations.
First, such corrugations necessarily include variations in
dot density, which could provide a monocular cue to depth.
In practice, these are only visible for disparity amplitudes
well above threshold (Bradshaw & Rogers, 1999, Tyler
& Raibert, 1975), and in any case cannot explain why
performance is worse on vertically oriented gratings.
For vertically oriented gratings, the period of the

stimulus imposes an upper limit on the disparity range.
Because our experiments measured thresholds and thus
used very small disparities, we do not approach this limit.
Additionally, for vertically oriented square-wave gra-

tings, one has to decide whether to depict dots on

transparent or opaque surfaces. To depict an opaque black
surface, one must remove dots at the edges of the far slats,
which are hidden from view by the near slats. We did not
do this, thus depicting dots lying on a transparent surface.
Both the previous points depend on the ratio between

the disparity amplitude and the half-period of the grating:
fA, which in our stimuli does not exceed 0.02. This means
that the disparity amplitude is much less than the upper
limit, and the distinction between opaque and transparent
surfaces is negligible (because areas that would have been
occluded by an opaque surface form a tiny fraction of the
stimulus).

Procedure

In this experiment, we compared two depth corrugations
(sinusoidal vs. square wave) defined by horizontal
disparity. Corrugations had two possible orientations
(vertical vs. horizontal) and six corrugation frequencies
(0.05, 0.1, 0.2, 0.4, 0.8, and 1.2 cycles/deg) with phase 0 rad
(see examples of the stimuli in Figure 1). The random-dot
stimuli were 12- � 12- (500 � 500 pixels). To obtain the
lowest spatial frequency, 0.05 cycle/deg, we used the same
on-screen stimulus as for 0.1 cycle/deg but reduced the
distance to the screen from 120 cm to 60 cm.
Peak-to-trough amplitude disparity thresholds were

measured using adaptive Bayesian staircases (Treutwein,
1995) in a two-interval forced-choice task where random
dots were presented with zero disparity in one presentation
interval and with corrugation in the other. The task was to
indicate the interval containing the disparity corrugation.
A different uniform random distribution of dots was

presented in each interval. Corrugation spatial frequencies
were blocked, but orientations and type of wave modu-
lations (sinusoidal or square wave) were interleaved.
To minimize vergence movements, the subjects were

instructed to maintain fixation on a small cross (0.3- �
0.3-) in the center of the screen, flanked by vertical and
horizontal Nonius lines of length 0.6-, presented in between
stimuli. Each presentation interval was preceded by these
Nonius lines presented for 300 ms followed by 200 ms of
a blank screen. The presentation intervals lasted 250 ms,
so the total trial duration was 1500 ms (Nonius lines +
blank + first interval + Nonius lines + blank + second
interval). A new trial was initiated after the participant’s
response, thus the experiments proceeded at a pace
determined by the observer. In general, between 6 and
8 min were required per disparity threshold estimation.
No feedback about correctness on individual trials was
given.
The characteristics of the Bayesian staircases were:

(1) the prior probability density function was uniform
(Emerson, 1986; Pentland, 1980); (2) the model like-
lihood function was the logistic function adapted from
Garcı́a-Pérez (1998, Appendix A) with a spread value of
0.8 (with delta parameter equal to 0.01), a lapse rate of

Figure 2. Disparity thresholds for five subjects, i.e., peak-to-trough
range of the disparity corrugation at which performance was 85%
correct. (a) Sketches representing the 3D percept produced by
sinusoidal and square corrugation with horizontal and vertical
orientations. Color of the sketches matches the corresponding
results in the panels. (b, d) Mean + SD of disparity thresholds (arc
sec) as a function of the spatial frequency (cycles/deg) of the
corrugations. (c, e) Ratio between disparity thresholds with the
same corrugations but different orientations (vertical divided by
horizontal) as a function of the spatial frequency. The ratio value
of 1 corresponds to identical disparity thresholds, and values
greater than 1 correspond to higher threshold (lower sensitivity) to
detect the vertical corrugations. The rightmost panels with gray
background in (d) and (e) show the mean T SEM of all subjects.
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0.01, and a guess rate of 0.5; (3) the value of the disparity
in each trial was obtained from the mean of the posterior
probability distribution (King-Smith, Grigsby, Vingrys,
Benes, & Supowit, 1994); (4) the staircase stopped after
50 trials (Anderson, 2003; Pentland, 1980); and (5) the
final threshold was estimated from the mean of the final
probability density function. The disparity threshold
corresponded to the value 0.85 of the subject’s psycho-
metric function. Two threshold estimations per condition
were obtained for each subject. A total of 24 conditions
(6 corrugation frequencies� 2 waveforms� 2 orientations)
were tested over several experimental sessions.

Results

We examined two corrugation waveforms (sinusoidal
and square wave) at two orientations (vertical and
horizontal; see sample stimuli in Figure 1). Figure 2
shows the results for five subjects. Figures 2b and 2d show
the disparity thresholds (i.e., the minimum peak-to-trough
amplitude disparity needed for 85% correct performance)
for four stimuli as a function of the spatial frequency of
the corrugation.
Open and filled circles show the data for sinusoidal

wave corrugations; green filled circles for vertical ori-
entation and red open circles for horizontal orientation.
Open and filled squares show the data for square-wave
corrugations; brown filled squares for vertically oriented
corrugations and blue open squares for horizontal.
Disparity thresholds for all 4 corrugation stimuli show

the classical U-shape (Bradshaw & Rogers, 1999; Rogers
& Graham, 1982; van der Willigen et al., 2010), with a
fall-off in sensitivity for low and high frequencies similar
to that found in the luminance domain (Campbell &
Robson, 1968). From the average data (Figure 2d, right-
most panel), the minimum disparity threshold (maximum
sensitivity) in all conditions was found for a corrugation
frequency about 0.4 cycle/deg, in agreement with previous
reports (Bradshaw & Rogers, 1999; Rogers & Graham,
1982; Tyler, 1991).
The data in Figure 2 exemplify the well-known stereo

anisotropy for sinusoidal disparity corrugations. At fre-
quencies below about 0.4 cycle/deg, disparity thresholds
are much lower for horizontal sinusoidal corrugations
(green filled circles) than for vertical sinusoidal corruga-
tions (red open circles; Bradshaw et al., 2006; Bradshaw
& Rogers, 1999; van der Willigen et al., 2010).
Figures 2c and 2e plot the ratio of the threshold for

vertical corrugations to that for horizontal corrugations.
Values greater than 1 indicate an anisotropy such that
sensitivity is greater for horizontal corrugations. All subjects
show this anisotropy for sinusoidal corrugations with
spatial frequencies G0.4 cycle/deg; for subjects ISP and

OO, this anisotropy disappears again at the lowest spatial
frequency tested. Averaged over all 5 subjects, vertical
sinusoidal corrugations of 0.1 cycle/deg require seven
times the amplitude to be detected, compared to horizontal
corrugations. At high frequencies, the anisotropy virtually
disappears.
In contrast, for square-wave corrugations, the aniso-

tropy is much weaker (threshold ratio of 1.5–2.5) and is
almost independent of spatial frequency. Horizontally
oriented square- and sine-wave corrugations have similar
thresholds (slightly lower for square wave); vertically
oriented square-wave corrugations are slightly harder
again, whereas vertically oriented sine-wave corrugations
are much more difficult still.

Linear system analysis

To explore whether these results can be explained with
a linear system analysis, we examine three common linear
models used in luminance and in texture perception
(Campbell & Robson, 1968; Kingdom & Keeble, 1996),
summarized in Figure 3. In this section, we will explain
how the disparity threshold for square-wave corrugations
can be predicted from the thresholds measured for sine-
wave corrugations (with the same orientation), for each of
the three models.

Peak detector single-channel model (peak)

This model assumes that the signal is detected by a
single channel. The input waveform is filtered through this
channel, and the output waveform is detected if its peak
exceeds some threshold. In this model, the filter applied
by this channel can be read out from the disparity
sensitivity function DSF(3), the inverse of the peak-to-
trough disparity threshold function obtained with sinu-
soidal corrugations (see Figures 2 and 6). Thus, to predict
the threshold with this model, we first multiply the Fourier
transform of the signal by the disparity sensitivity function,
then take the inverse Fourier transform and finally calculate
the peak value of the output signal (Campbell & Robson,
1968, their Figure 3).
The peak of the output waveform for a square-wave

corrugation with peak-to-trough amplitude Asq is

P ¼ Asqmax
4

:

XV
n¼1;3;5I

DSFðnf1Þ
n

sin 2:nf1xð Þ
" #

; ð1Þ

where f1 is the spatial frequency of the fundamental or
first harmonic.
We used linear interpolation to estimate the DSF at the

spatial frequencies where we do not have data. We have
not normalized the filter, since this will cancel out below.
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For a sine wave of peak-to-trough amplitude Asin, the peak
of the filtered waveform is

P ¼ AsinDSFð f1Þ: ð2Þ
Let us say that P is the threshold for detection. Then, Asin

is, by definition, the peak-to-trough disparity threshold for
detecting a sine wave of frequency f1, and therefore
AsinDSF( f1) = 1. The peak-to-trough disparity threshold
for square waves of fundamental frequency f1 is therefore
predicted to be

Apeak
sq f1ð Þ ¼ 1

max
4

:

XV
n¼1;3;5I

DSFðnf1Þ
n

sin 2:nf1xð Þ
" # :

ð3Þ
This prediction is plotted with empty upward triangles
in Figures 4 and 5. For comparison, in the lower panels

we also plot the ratio of the peak-to-trough threshold
amplitude for sine waves to that for square waves:

Rpeak f1ð Þ ¼ Apeak
sin ðf1Þ

Apeak
sq ðf1Þ

¼
max

4

:

XV
n¼1;3;5I

DSFðnf1Þ
n

sin 2:nf1xð Þ
" #

DSFðf1Þ : ð4Þ

Root-mean-squared single-channel model (rms)

Here, the predictions were obtained in the same way as
the peak detector model, but we assume that the input
waveform is detected when the root-mean-squared (rms)
value of the output waveform, not its peak, exceeds some
threshold (Kingdom & Keeble, 1996). The rms of the

Figure 3. Schematic explaining the principles behind each model. The stimulus waveform is shown on the left of each row. In each case,
the first step is to Fourier transform the waveform so as to obtain the amplitude of each component. In the single-channel models, this is
then multiplied by the disparity sensitivity function (DSF) and inverse-transformed so as to produce a new waveform, which is the input
convolved with a spatial linear operator whose Fourier transform corresponds to DSF. (a) The peak model postulates that the stimulus is
detected if the peak amplitude of this filtered waveform exceeds some threshold value; (b) the rms model postulates that it is detected if its
rms value exceeds some threshold. (c) The mdh model assumes that the stimulus is analyzed separately within each Fourier harmonic
and is detected if any one of its harmonics exceeds the threshold needed to detect that harmonic in isolation.
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output waveform for a square-wave corrugation that peaks
at Asq/2 is

P ¼ Asqrms
4

:

XV
n¼1;3;5I

DSFðnf1Þ
n

sin 2:nf1xð Þ
" #

; ð5Þ

while for a sine wave of peak-to-trough amplitude Asin, it is

P ¼ Asinffiffiffi
2

p DSF f1ð Þ: ð6Þ

Thus, the predicted peak-to-trough disparity thresholds
(empty circles in Figures 4 and 5) for square-wave corru-
gations are

Arms
sq f1ð Þ ¼ 1ffiffiffi

2
p

rms
4

:

XV
n¼1;3;5I

DSFðnf1Þ
n

sin 2:nf1xð Þ
" # ; ð7Þ

Figure 4. Data and model predictions for horizontally oriented square-wave corrugations. Results are presented in two panels. (Top) Blue
squares show themean of disparity thresholds + SD as a function of the spatial frequency of the horizontal square-wave corrugation. Empty
circles show the predicted thresholds assuming the rms detection model (rms); upward triangles show the prediction assuming the peak
detection model (peak); and downward triangles show the prediction using the most detectable harmonic model (mdh). The goodness of fit
between the model thresholds (m) and the data (d) was calculated using #2 = @[(d j m)2/m]. (Bottom) Blue squares show the ratio between
the disparity thresholds of horizontally oriented sine- and square-wave corrugations. Black circles, upward triangles, and downward
triangles show the predicted ratio using the predicted disparity thresholds for square-wave corrugations assuming the three models: rms,
peak, and mdh, respectively. The dotted line represents the value 4/: = 1.2732. The rightmost panels with gray background show the mean T

SEM of the disparity thresholds of all subjects and the predictions of the three models obtained from the mean of disparity thresholds.
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and the predicted ratio of sine-wave to square-wave
thresholds is

Rrms f1ð Þ ¼ Arms
sin ðf1Þ

Asq
rmsðf1Þ

¼

ffiffiffi
2

p
rms

4

:

XV
n¼1;3;5I

DSFðnf1Þ
n

sin 2:nf1xð Þ
" #

DSFðf1Þ :

ð8Þ

Most detectable harmonic multiple-channel model
(mdh)

This model assumes that the signal is detected by
multiple channels. We assume that a waveform is detected
whenever any one of its harmonics exceeds the peak-to-
trough disparity threshold function (DTF) for that fre-
quency. Thus, a square wave of peak-to-trough amplitude
Asq is detected if and only if

4Asq

:n
Q DTF nf1ð Þ for any odd n: ð9Þ

Figure 5. Data and model predictions for vertically oriented square-wave corrugations. Results are presented in two panels. (Top) Brown
squares show the mean of disparity thresholds + SD as a function of the spatial frequency of the vertical square-wave corrugation. Empty
circles show the predicted thresholds assuming the rms detection model (rms); upward triangles show the prediction assuming the peak
detection model (peak); and downward triangles show the prediction using the most detectable harmonic model (mdh). (Bottom) Brown
squares show the ratio between the disparity thresholds of vertically oriented sine- and square-wave corrugations. Black circles, upward
triangles, and downward triangles show the predicted ratio using the predicted disparity thresholds for square-wave corrugations
assuming the three models: rms, peak, and mdh, respectively. The rightmost panels with gray background show the mean T SEM of the
disparity thresholds of all subjects and the predictions of the three models obtained from the mean of disparity thresholds. Other details as
for Figure 4.
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At threshold amplitude, the equality holds, and we have

4Asq

:
max
n

1

nDTFðnf1Þ ¼ 1: ð10Þ

Rearranging, and expressing in terms of DSF for
consistency with the previous expressions, we find that
the predicted disparity thresholds (empty downward
triangles in Figures 4 and 5) for a square-wave corrugation
are

Amdh
sq f1ð Þ ¼ :

4
min

n

DSFðnf1Þ
� �

; ð11Þ

and the predicted ratio of sine-wave to square-wave
thresholds is

Rmdh f1ð Þ ¼ Amdh
sin ðf1Þ

Asq
mdhðf1Þ

¼ 4maxðDSFðnf1Þ=nÞ
:DSFðf1Þ ; ð12Þ

where the minimum is taken over odd values of n. If the
most detectable harmonic is the fundamental spatial
frequency (if n = 1), then the ratio will be 4/:.

Model results

Figure 4 shows the predictions of these three linear
models for horizontal square-wave corrugations, for each
of our 5 subjects individually as well as for the data
averaged across subjects. In each case, the blue squares
show the psychophysical data, and the black symbols
show the predictions of the three models. We show the
predictions both as disparity thresholds for the square-
wave corrugations (upper panels) and as the ratio of the
thresholds for the two corrugations. The goodness of fit
between the predicted thresholds and the data is repre-
sented by #2; the lower the values, the better the fit. Note
that the predictions from the three models are identical for
spatial frequencies higher that 0.4 cycle/deg, so both here
and in the next figure, the thresholds measured at low
spatial frequencies are critical for distinguishing between
the models.
We consider first the mdh model (l symbols). Since a

square wave’s higher harmonics have much lower ampli-
tude than its fundamental, and the disparity sensitivity
function measured with horizontal sine corrugations is
relatively shallow, the fundamental is in most cases the first
component to rise above threshold. Thus, the mdh model
usually predicts that the ratio of disparity threshold with
horizontal sine waves to that with horizontal square waves
is 4/: = 1.273, the amplitude ratio of their fundamental
components. This model predicts experimental thresholds
well in all subjects.

The rms model (:) produces very similar predictions
to the mdh. The mean of the #rms

2 values over the five
subjects is 6.92, slightly worse than the mean of 4.02 for
#mdh
2 . In almost all cases, the peak model ($) is far worse

at predicting the experimental data.
We conclude that both the rms and mdh models are

adequate to account for detection thresholds for square-
wave horizontally oriented disparity corrugations. Thus,
the data so far do not enable us to distinguish clearly
between single-channel and multi-channel models for
disparity detection.
Figure 5 shows the results with the predictions for

vertical square-wave corrugations. The most noticeable
difference in the data, compared to horizontal corruga-
tions, is the high ratio of sine/square thresholds, well in
excess of 4/: at low frequencies. The mdh model (l)
does go some way toward capturing this. For vertically
oriented corrugations, the threshold ratio predicted by the
mdh model can exceed the classic value of 4/:. This
interesting effect is due to the very steep increase in
threshold at low frequencies, which does not occur for
horizontally oriented disparity corrugations, nor in the
luminance domain. As frequency increases from 0.05
cycle/deg, disparity thresholds for sine corrugations fall
faster than the 1/n decay in harmonics of the square wave.
This means that it is possible for the square-wave’s fifth
harmonic at 5f1, for example, to be above threshold, while
its fundamental at f1 is still undetectable. Thus, the mdh
model produces threshold ratios approaching 5 in some
subjects. However, its threshold ratios are still substan-
tially smaller than those observed experimentally: subjects
do much better on the square-wave corrugations than
predicted by this model.
The peak model ($), in contrast, predicts that subjects do

too well on the square-wave corrugations; its predicted
thresholds are consistently too low at the lowest spatial
frequencies. However, the rms model (:) shows the best fit
of all three models, capturing the data remarkably well for
all subjects and frequencies, without any free parameters.
Since this model also accounted well for the horizontal
data (Figure 4), as far as our data are concerned, a single
linear channel could underlie the detection of both hori-
zontally and vertically oriented square-wave corrugations.

Discussion

We began this study by replicating some well-known
results concerning disparity corrugations. Like previous
workers, we find a strong stereo anisotropy affecting
sinusoidal disparity corrugations of spatial frequencies
below 0.4 cycle/deg, whereby the threshold for a vertically
oriented corrugation is higher than for the same corrugation
oriented horizontally (see Figure 4; Bradshaw et al., 2006;
Bradshaw & Rogers, 1999). We also reproduced the
U-shape of the disparity thresholds and the maximum

Journal of Vision (2010) 10(12):10, 1–11 Serrano-Pedraza & Read 9



sensitivity about 0.4 cycle/deg (Bradshaw & Rogers, 1999;
Rogers & Graham, 1982; van der Willigen et al., 2010).
Interestingly, we have shown that the disparity thresholds

for square-wave corrugations do not show this strong
anisotropy at low spatial frequencies. Although the dispar-
ity thresholds for vertically oriented square corrugations
were in general higher than those obtained with horizon-
tally oriented corrugations, this difference was independent
of the spatial frequency.
We have examined three different linear models (peak,

rms, and mdh) imported from the domain of luminance and
texture domain (Campbell & Robson, 1968; Kingdom &
Keeble, 1996) to see whether they can predict thresholds
for square-wave gratings from the values measured for sine
waves. These differ in the number of disparity channels
they postulate, using “channels” in the sense of “linearly
operating independent mechanisms selectively sensitive to
limited ranges of spatial frequencies” (Campbell &
Robson, 1968). The peak and rms models are both based
on a single, broadly tuned channel, while the “most
detectable harmonic” or mdh model goes to the other
extreme and assumes each harmonic is detected by a
separate channel. The peak model could not explain the
results well for either horizontally or vertically oriented
gratings and can therefore be rejected.
For horizontally oriented corrugations, both the single-

channel rms and the multi-channel mdh models explained
our data equally well. Both models successfully account for
the weak orientation anisotropy observed for horizontal vs.
vertical square-wave corrugations at all frequencies,
despite the strong anisotropy observed for horizontal vs.
vertical sine-wave corrugations at low frequencies. Thus,
our data provide little reason to choose between the rms
and mdh models. However, much previous evidence

(Cobo-Lewis & Yeh, 1994; Lee & Rogers, 1997; Tyler,
1975; Schumer & Ganz, 1979) indicates that there are
multiple disparity spatial frequency channels, just as in the
luminance domain, albeit more broadly tuned. Thus, for
horizontally oriented corrugations, the multi-channel mdh
model is most consistent with both the present data and
the previous literature.
For vertically oriented corrugations, only the single-

channel rms model (Kingdom & Keeble, 1996) could
explain our results. All previous investigations of disparity
channels have used horizontally oriented gratings, so there
is no evidence for multiple disparity spatial frequency
channels tuned to vertical orientations. We therefore
suggest that vertically oriented disparity modulations may
be detected by a single channel. This idea is supported by
Figure 6, which shows the disparity sensitivity functions
we have obtained for horizontally and vertically oriented
sinusoidal disparity corrugations. The peak sensitivity is
similar, but the vertical sensitivity function is much
narrower. It has a full-width half-amplitude bandwidth
of 2.1 octaves, comparable with previous estimates for the
bandwidth of individual channels tuned to horizontally
oriented disparity modulations (2–3 octaves, Schumer &
Ganz, 1979). In contrast, the horizontal sensitivity function
has a bandwidth of 3.8 octaves. We suggest that this may be
because the vertical sensitivity function represents a single
disparity channel, whereas the horizontal sensitivity func-
tion is the envelope of two or more such channels. This
difference in channel number may be the underlying reason
for the famous stereo anisotropy.
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