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Abstract

Disparity-tuned cells in primary visual cortex (V1) are thought to play a significant role in the processing of
stereoscopic depth. The disparity-specific responses of these neurons have been previously described by an energy
model based on local, feedforward interactions. This model fails to predict the response to binocularly anticorrelated
stimuli, in which images presented to left and right eyes have opposite contrasts. The original energy model predicts
that anticorrelation should invert the disparity tuning curve (phase differencep!, with no change in the amplitude
of the response. Experimentally, the amplitude tends to be reduced with anticorrelated stimuli and a spread of phase
differences is observed, although phase differences nearp are the most common. These experimental observations
could potentially reflect a modulation of the V1 signals by feedback from higher visual areas (because anticorrelated
stimuli create a weaker or nonexistent stereoscopic depth sensation). This hypothesis could explain the effects on
amplitude, but the spread of phase differences is harder to understand. Here, we demonstrate that changes in both
amplitude and phase can be explained by a straightforward modification of the energy model that involves only
local processing. Input from each eye is passed through a monocular simple cell, incorporating a threshold, before
being combined at a binocular simple cell that feeds into the energy computation. Since this local feedforward
model can explain the responses of complex cells to both correlated and anticorrelated stimuli, there is no need to
invoke any influence of global stereoscopic matching.
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Introduction

Many aspects of the behavior of disparity-tuned neurons in V1
(Barlow et al., 1967; Nikara et al., 1968; Poggio & Fischer, 1977)
are captured by the “energy model” proposed by Adelson and
Bergen (1985) for motion, and adapted for stereopsis by Ohzawa
et al. (1990, 1997). In this model, the responses of complex cells
can be separated into two terms: one that depends only on the
contrast energy presented to each eye and another that depends on
the relationship between images in the two eyes. The latter term
varies with the stimulus disparity. This model describes satisfac-
torily both the binocular response profile obtained with disparate
bar stimuli and the disparity tuning curve obtained by averaging
the response to many different random-dot stimuli with a given
disparity (reviewed by Cumming & DeAngelis, 2001).

Cumming and Parker (1997) showed that the energy model
fails when V1 neurons are probed with binocularly anticorrelated
stimuli, in which the contrast in one eye is inverted with respect to

the other (black pixels are replaced with white andvice versa, see
Fig. 1). With the energy model, the disparity-modulated term
simply changes sign when the stimuli are binocularly anticorre-
lated. Thus, disparity tuning curves obtained with anticorrelated
random-dot stimuli (RDS) should always have the same amplitude
as those obtained with correlated stimuli, and differ byp in their
phase. This is not observed experimentally. The amplitude of the
modulation is usually smaller for anticorrelated stimuli (in extreme
cases, there is no modulation, e.g. Fig. 5) and there are phase
differences significantly different fromp (Cumming & Parker,
1997). Equivalent phenomena can be identified in earlier studies
with bar stimuli (Ohzawa et al., 1990, 1997). The purpose of this
paper is to examine whether a straightforward modification of the
energy model can be developed to account for these phenomena.

The experimental observations also have implications for the
role of V1 complex cells in stereoscopic depth perception. To
extract stereoscopic depth from retinal disparity, the visual system
must correctly match each point on the left retina with its partner
in the right. Thiscorrespondence problemis especially apparent in
RDS, where there are many false targets to confound a local
matching algorithm. The interesting feature of binocular anticor-
relation is that it completely prevents the achievement of a global
solution with dense random-dot stimuli (Julesz, 1971; Cogan et al.,
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1995; Cumming et al., 1998; Read & Eagle, 2000). Yet V1 neurons
modulate their response as a function of disparity with the same
stimuli that fail to provide a consistent perception of depth (Cum-
ming & Parker, 1997; Cumming et al., 1998). Arguably, then,
disparity-tuned V1 neurons must be a stage some way removed
from the perception of stereoscopic depth.

On the other hand, the weaker amplitude of the response to
anticorrelation might suggest that V1 neurons are sensitive to the
global solution of the correspondence problem (Ohzawa, 1998).
This could be the result of feedback from higher visual areas
encoding the global solution, which suppress responses in V1 to
stimuli for which no solution is found. In this paper, we search for
a satisfactory local model that can account for the observed
behavior of V1 complex cells to bar and random-dot stereograms.
Such a model would repair this deficiency of the energy model,
and obviate the need to invoke higher level feedback to V1 to
explain these phenomena.

Materials and methods

Numerical simulations were written in MATLAB. In each case, the
model retina was 1283 128 pixels. The random-dot patterns (e.g.
Fig. 1) had dot size 5 pixels and dot density 25%, meaning that if
none of the dots overlapped, they would occupy 25% of the image.
In numerical simulations using random-dot patterns (Figs. 2, 4, 8,
10, & 13), the results shown are the mean response to 5000 stimuli
at each disparity (500,000 for Fig. 12). The curves joining the dots
are obtained by spline interpolation. For comparison, the mean
response to uncorrelated images is indicated with horizontal lines
(marked “U”).

When the model was used with Gabor receptive fields (Figs. 2,
4, 8, & 12), the spatial period of the Gabor was 64 pixels, the
spatial-frequency bandwidth 2.5 octaves, and the orientation band-
width 30 deg (both defined as the full width at half-maximum of
the tuning curve obtained with monocular sine-grating stimuli).
This implies a Gaussian envelope with standard deviations of 12
and 32 pixels, respectively, orthogonal and parallel to the carrier
sinusoid. The same size of envelope was used when the model was
tested with Gaussian receptive fields (Fig. 10).

Results

Overview

1. We first describe the energy model of Ohzawa et al. (1990),
and show why it predicts response modulations of equal
amplitude for correlated and anti-correlated stereograms.

2. An output nonlinearity can produce amplitude ratios less
than one for cells with even-symmetric disparity tuning
curves, but this requires different nonlinearities for tuned
excitatory (TE) cells and tuned inhibitory (TI) cells.

3. Half-wave rectification of the monocular inputs, prior to
binocular combination, produces amplitude ratios less than
one for TE-type even-symmetric tuning curves. This could
be implemented by binocular simple (BS) cells receiving
excitatory input from monocular simple cells.

4. Neither of these methods can produce odd-symmetric re-
sponses with amplitude ratios less than one.

5. We show two sources of odd-symmetry in the energy model.
First, when an even-symmetric receptive field (RF) in one
eye is paired with an odd-symmetric RF in the other, the
disparity tuning curve will be odd symmetric. Second, if the
response is inverted by exchanging the left and right images
~LR interchange antisymmetry), the disparity tuning curve
must be odd symmetric. Both of these factors independently
guarantee odd symmetry in the implementation of Ohzawa
et al. (1990).

6. Our modified BS cells can be used to implementLR inter-
change antisymmetry by combining excitatory inputs from
one eye (after rectification) with suppressive input from the
other (passed through an inhibitory synapse after rectifica-
tion). This produces TI and odd-symmetric disparity tuning
curves with amplitude ratios less than one.

7. When tested with drifting gratings of different disparities,
the temporal modulation in the response of modified BS cells
receiving purely excitatory input from each eye shows a

Fig. 1.Anticorrelated random-dot pattern. The figure shows a pair of disparate images. The contrast in the right eye’s image is inverted
relative to the left eye, so that white dots in the left eye are black in the right eye, andvice versa. The disparity between this pair of
images is 6 pixels; the dot-size is 5 pixels.
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distinctive pattern. At some disparities, they show strong
modulation at the second harmonic of the stimulus fre-
quency. This feature could be eliminated by an output thresh-
old at the final stage. Nonetheless, we report several examples
of simple cells from primate V1 that show exactly this
pattern of modulation.

Properties of binocular complex cells

Many disparity tuning curves of V1 neurons are well fitted by
Gabor functions of the general form (Ohzawa et al., 1997; Anzai
et al., 1999a,b; Prince et al., 2002a)

f ~d! 5 A exp@2~d 2 d0!20~2s2!# cos[2pv~d 2 d0! 1 f# 1 U.

(1)

A, v, andf are, respectively, the amplitude, spatial frequency, and
phase of the carrier sinusoid,s is the standard deviation of the
Gaussian envelope,U is the firing rate to binocularly uncorrelated
stimuli, andd0 is a disparity offset (the disparityd at which the
Gaussian envelope is largest).

Cumming and Parker (1997) quantified the effect of binocular
anticorrelation by using nonlinear regression to fit a linked pair
of Gabor functions to both the correlated and the anticorrelated
data [eqn. (1)]. The disparity offset, baseline firing rate, spatial
frequency, and bandwidth of the two Gabor functions were con-
strained to be the same for both sets of data, but different values
of the amplitudeA and phasef were permitted. They then calcu-
lated the ratio of the amplitudes fitted to the correlated and
anticorrelated data:Aa0Ac. According to the energy model, this
amplitude ratio should be unity (Fig. 2). Cumming and Parker
found that, in the majority of cases, it was less than 1 and
sometimes as small as 0.01.

We therefore begin by looking again at the energy model,
which we develop in more general terms than usual, in order to
bring out those features of the model that cause it to show an
amplitude ratio of 1 and to see how these features might be
modified.

Model simple cells

The energy model is based on simple cells that exhibit linear
spatial summation followed by an output nonlinearity (Hubel &
Wiesel, 1962; Movshon et al., 1978; Anzai et al., 1999b). The
response of simple cells can be characterized with a RF function
r~x, y!, which represents the level of excitation caused by a spot
of light at position~x, y! in the retina. Positive values ofr~x, y!
correspond to an ON region of the RF, in which bright stimuli
cause the cell to increase its firing, and negative values to an OFF
region, in which bright stimuli suppress firing and dark stimuli
increase it. We represent the retinal image by the functionI ~x, y!,
which is the contrast between the luminance at retinal position
~x, y! and the mean luminance averaged across the whole image.
Thus positive values ofI ~x, y! represent bright features, while
negative values represent dark features. The response of a purely
linear simple cell would be simply the inner product of the image
with the RF function:

v 5EEdx dy I ~x, y!r~x, y!. (2)

An array of such simple cells, with identical RFs situated at
different positions across the retina, would encode the convolution
of the image with the RF function. An individual simple cell
signals the value of the convolutionv at a single point.

Fig. 2. Disparity tuning curves obtained with ODF model complex cells. The left-hand plot is for a “tuned excitatory”-type cell; the
right-hand for a “near” cell. The filled dots and solid lines represent the response to correlated stereograms, while the empty dots and
dotted lines that to anticorrelated stimuli; the horizontal line U shows the response to binocularly uncorrelated stimuli (these
conventions are used in subsequent figures). Other details are as described in the Methods.
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Notation

Many simple cells are binocular, with RFs in both eyes. In general,
the images incident upon the two retinas are different. We distin-
guish left and right images with the labelsL andR. Similarly, a BS
cell has, in general, different RFs in each retina. Later notation will
be streamlined if we use different labels to distinguish left and
right RFs from those~L0R! used for images. We therefore use the
labelss0d (sinister0dexter) to label the RFs in left and right retinas.
Thus, the monocular convolutions are

vL
~s! 5EEdx dy IL~x, y!r~s! ~x, y!,

vR
~d ! 5EEdx dy IR~x, y!r~d ! ~x, y!. (3)

Linear binocular combination

The energy model assumes that contributions from the left and
right retinas, as well as contributions from different regions of the
same retina, are summed linearly. Thus, the firing rate of the
energy-model BS cell is not a general function of the convolutions
in left and right eyes,f ~vLs,vRd!, but actually a function only of their
sum:f ~vLs 1 vRd!. We refer to models with this property as showing
linear binocular combination. Simple cells usually have low spon-
taneous firing rate so they cannot signal negative values. Their
output is therefore the half-wave rectified sum of their inputs.
Ohzawa et al. (1990, 1997) proposed that a BS cell incorporates an
additional squaring nonlinearity, so that its output is thesquareof
the half-wave rectified sum of left-eye and right-eye convolutions
vL andvR:

S5 @Pos~vL 1 vR!# 2. (4)

The energy model postulates that BS cells are combined in pairs,
which we refer to as an ON cell and an OFF cell. Within each pair,
the RFs in one simple cell are the inverses of those in the other
simple cell, that is, an ON region of one cell corresponds to an
OFF region in the other (Fig. 3), so that the convolutions have the

opposite sign. Since [Pos~x!# 2 1 [Pos(2x!# 2 [ x2, the effect of
combining pairs of ON0OFF cells in this way is to remove the
half-wave rectification but leave the squaring nonlinearity:

SON 1 SOFF 5 @vL
~s! 1 vR

~d ! # 2 5 @vL
~s! # 2 1 @vR

~d ! # 2 1 2vL
~s! vR

~d ! .

(5)

Thus the total output of the pair of BS cells consists of left and
right monocular terms, each depending only on one eye’s image,
and a cross-term, in which the left- and right-eye convolutions are
multiplied together.

Responses to dynamic RDS and flashed bars

In this paper, we are mainly concerned with the results of exper-
iments using dynamic RDS, such as those of Cumming and Parker
(1997) or Poggio et al. (1985), in which the cell’s response is
averaged over many different image pairs that have the same
disparity and degree of correlation. For images such as dynamic
RDS, in which on average over time every point in the RF is
exposed to the same luminance distribution, the average value of
the monocular terms does not depend either on the disparity of the
images or on their degree of correlation or anticorrelation. They
form the constant component of the disparity tuning curve, repre-
senting the cell’s response to binocularly uncorrelated images,U.
The disparity-modulated component is given by the cross-term in
eqn. (5). This cross-term makes no contribution to the average
response to uncorrelated images, since it averages to zero over
many uncorrelated image presentations. The squaring nonlinearity
has effectively multiplied the left eye’s input with the right eye’s
input, endowing the BS cell with its disparity tuning, which is then
exploited by the complex neurons.

The Ohzawa-DeAngelis-Freeman (ODF) energy model (Ohzawa
et al., 1990, 1997) combines input from two pairs of BS cells, with
different RFs (Fig. 3):

C 5 SON
~1! 1 SOFF

~1! 1 SON
~2! 1 SOFF

~2! 5 @vL
~1s! # 2 1 @vR

~1d ! # 2 1 @vL
~2s! # 2

1 @vR
~2d ! # 2 1 2@vL

~1s! vR
~1d ! 1 vL

~2s! vR2d ! # , (6)

where, as before, the subscripts indicate whether the left~L! or
right ~R! image was used in the convolution, and the superscripts
indicate which of four potentially different receptive fieldsr~1s!,
r~1d!, r~2s!, r~2d!. The disparity-modulated component is given by
the cross-terms:

D~d! 5 2@vL
~1s! vR

~1d ! 1 vL
~2s! vR

~2d ! # . (7)

The detailed behavior of this component depends on the choice
of the four RF functions. In the original papers, Ohzawa et al.
(1990, 1997) make various restrictions. They consider only RFs
which are Gabor functions. They require the center, orientation,
spatial period, and spatial extent of the Gabor to be the same in all
four RFs, “to produce a sufficiently smooth binocular profile”
(Ohzawa et al., 1997), and for each eye, they require a quadrature
relationship between the RFs of the subunits (that is,r~1s! and
r~2s! differ by p02 in phase, as dor~1d! andr~2d! !.

Fig. 3. Schematic diagram of the binocular energy model, based on the
diagram in Fig. 3 of Ohzawa et al. (1990). The graphs show a cross section
through the monocular RFs in left and right eyes. These feed into binocular
simple cells (‘BS’), which in turn feed into a complex cell (‘Cx’).
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The energy model fails because it is too linear

Regardless of these details, we can note certain properties any
model of this form must possess. First, inverting the contrast of
both eyes’ images does not affect the cell’s response, consistent
with the experimentally measured behavior of examples of com-
plex cells (Ohzawa et al., 1990, 1997). Second, eqn. (7) indicates
that the disparity-modulated componentD is inverted by anticor-
relation. Each convolution is a linear function of the image, so the
product of left and right convolutions changes sign without change
of amplitude when the images become anticorrelated (Fig. 2).
Thus, no model of this form can account for the attenuated
response to anticorrelated stimuli. To achieve this, we need to
introduce some sort of nonlinearity into the disparity-modulated
term D~d!.

To understand what sort of nonlinearity might be necessary, we
need to consider the range of disparity tuning curves displayed by
real complex cells. As already discussed, these are generally well
described by Gabor functions [eqn. (1)]. In our modeling work, it
is convenient to begin by considering only tuning curves with zero
disparity offset (i.e.d0 5 0). This involves no loss of generality—it
is trivial to obtain any desiredd0 by shifting the monocular RFs.
Similarly, we shall not be concerned with matching the baseline
firing rate U to experimental data. In the results we present, the
baseline firing rate may be larger, relative to the amplitude of the
modulation, than typically observed. This could easily be adjusted
by adding a final-stage output nonlinearity to the model complex
cell, as in Fig. 4.

Experimentally, many different values of the tuning-curve
phasef are observed (Ohzawa et al., 1997; Anzai et al., 1999c;
Prince et al., 2002a). Here, we concentrate on cells withf 5 0
or p and f 5 6p02. In the terminology of Poggio and Fischer
(1977), cells withf 5 0 would be classified as tuned excitatory
(TE), cells withf 5 p would be tuned inhibitory (TI), whereas
those withf 5 6p02 would be near or far cells (cf. Figs. 8 &

10). Cells with f 5 0 or p have even symmetry about the
central disparityd0, whereas cells withf 5 6p02 have odd
symmetry (cf. Fig. 2). That is (withd0 5 0), even tuning curves
have the symmetryD~d! 5 D~2d! while odd curves have
D~d! 5 2D~2d!. Restricting our attention to tuning curves that
are purely odd or purely even does not involve a loss of
generality, since any function can be expressed as a sum of an
odd and an even component. Thus, if we can construct model
complex cells which yield disparity tuning curves withf 5 0
and f 5 p02, then by suitably combining the inputs to these
cells, we can obtain disparity tuning curves with any value off.
It is helpful to make this restriction, because odd and even
tuning curves present different problems. In particular, as we
now demonstrate, modifications to the energy model that pro-
duce even disparity tuning curves with amplitude ratios of less
than 1 do not necessarily have the same effect for odd tuning
curves.

A single output nonlinearity can explain even- but not
odd-symmetric tuning curves

An unsophisticated way of creating an even-symmetric disparity
tuning curve (TE neuron) that shows an amplitude ratio less than
1 under anticorrelation is to superimpose an output nonlinearity on
the standard ODF complex cell. Fig. 4 shows two examples. In the
left-hand plot, the output nonlinearity is a threshold (Lippert &
Wagner, 2001); in the right-hand plot, the response of the ODF cell
has been squared. The effect of the nonlinearity in both cases is to
enhance the response at high levels of excitation, relative to that at
low excitation. This emphasizes the peak of the curve and weakens
the side-flanks and troughs. Note that a different nonlinearity
would be required to explain the reduced modulation in TI-type
cells. Instead of a threshold, as for TE cells, we would have to
postulate a saturation; instead of an expansive nonlinearity such as

Fig. 4. The ODF model with an output nonlinearity. In the left-hand plot, the complex cell is given a thresholdu. If the outputC of
the ODF model exceedsu, the cell fires at a rate~C 2 u!; if C , u, it is silent. In the right-hand plot, the cell fires at a rateC2. The
underlying simple cell RFs are Gabor functions in quadrature, shown in Fig. 9.

Response of VI neurons to anticorrelated images 739



squaring, we would have to postulate a compressive nonlinearity
such as square rooting. Such a model would therefore predict a
systematic relationship between the shape of the disparity tuning
curve and the nature of the nonlinearity. This prediction has not
been tested experimentally but seems implausible. More signifi-
cantly, a single output nonlinearity is incapable of constructing
cells with odd-symmetric (near0far) disparity tuning curves which
also show reduced amplitude under anticorrelation. The output
nonlinearity necessarily has equal and opposite effects for crossed
and uncrossed disparities, so that if it suppresses the modulation
for anticorrelated stimuli at crossed disparities, it correspondingly
boosts it at uncrossed disparities. Yet experimentally, there are
clear examples of such cells (cf. the extreme example in Fig. 5).
We asked what kind of model could, in principle, account for the
response of these reduced-amplitude odd-symmetric cells.

General mechanisms for obtaining even
and odd tuning curves

To understand the possible effects of anticorrelation in odd-
symmetric cells, it is first vital to understand the properties of the
model that give rise to the odd symmetry. In this section, therefore,
we consider how to obtain complex cells with even and odd
disparity tuning curves.

The ODF complex cell is built from pairs of ON0OFF BS cells.
The disparity-modulated component of such a pair is simply the
product of left- and right-eye convolutions,~vL

~1s! vR
~1d ! !. It can be

shown (see Appendix A) that if the left- and right-eye RFs are both
even, or both odd, about a particular point in the retina, then the
product of left- and right-eye convolutions is, on average, un-
affected by changing the sign of the disparityd:

^vL
~s! vR

~d ! &~d! 5 ^vL
~s! vR

~d !&~2d!. (8)

That is, the sum of such an ON0OFF pair of BS cells yields an
even tuning curve. (To be precise, the tuning curve is even about
zero only if the left0right RFs are symmetric about binocularly
corresponding points in the left and right retinas; otherwise, the
tuning curve is symmetric about a disparityd0 corresponding to the
position disparity between the centers of symmetry in each retina).
Conversely, if the RF in one eye is odd and the other even, a pair
of ON0OFF BS cells yields an odd tuning curve (Appendix A;
Ohzawa et al., 1990). This result does not depend on the precise

form of the RFs, merely on their symmetry about an arbitrary point
in the retina. The most general monocular RF can always be
expressed as the sum of an even and an odd component. The
resulting disparity tuning curve has a phase that depends on the
relative weighting of odd and even components in each eye.

The problem is that the initial linear stage of the ODF model
guarantees that responses of odd-symmetric tuning curves will
show the same degree of modulation for both correlated and
anticorrelated stimuli, in conflict with the experimental data. We
therefore consider alternative, more general ways of obtaining
even-symmetric and odd-symmetric tuning curves. The response
of any model complex cell~C '! must be a function of the left and
right images:C ' 5 C '~IL, IR!. The actual form of this function
depends on the RFs in each eye. A sufficient—though not
necessary—condition for a complex cell to yield an even disparity
tuning curve is that its response to any stereogram remain the same
when the disparity is inverted by exchanging the left and right
images. Formally, to achieve even symmetry in this way, we
require that the functionC '~IL, IR! must be symmetric underLR
interchange—that is, unchanged when the labelsL and R are
swapped:C '~IL, IR! 5 C '~IR, IL!. Swapping the labelsL and R
corresponds to exchanging the left and right images, not the left
and right RFs (which are indicated with the subscriptss0d!.

One particular case of anLR-symmetric complex cell occurs
when the left and right RF profiles are identical within all subunits
~ r~1s! 5 r~1d!, r~2s! 5 r~2d! !. The even-symmetric complex cell of
Ohzawa et al. (1990) (Fig. 2, left panel) has this property, meaning
that it is actually even-symmetric twice over: it is symmetric under
LR interchangeand it is made from combining subunits with the
same symmetry in both eyes. If there is more than one subunit, a
model with LR interchange symmetry is capable of delivering
even-symmetric disparity tuning curves from complex cells even if
the left and right RF profiles within each subunit differ in their
symmetry properties. Referring back to eqn. (6), we see that if the
left RF of the first subunit has the same profile as the right RF in
the second subunit andvice versa(that is,r~1s! 5 r~2d!, r~2s! 5
r~1d! !, then the response of the complex cell [eqn. (6)] can be
written as

C 5 @vL
~1s! # 2 1 @vR

~1s! # 2 1 @vL
~2s! # 2 1 @vR

~2s! # 2

1 2@vL
~1s! vR

~1s! 1 vL
~2s! vR

~1s! # , (9)

which is clearly unchanged when the labelsL andR are swapped.
Although models of this form produce even tuning curves, the
curves can have a rather curious-looking shape that is not well
described by a Gabor function (examples are shown in Figs. 8 and
10). Clearly, with more subunits still more possibilities would
arise.

More pertinently, the same general approach can be followed to
obtain odd disparity tuning curves. In order for the concept of odd
tuning curve to make sense, we need to make one additional
assumption about our general complex cell: that its response
C '~IL, IR! can be divided into a disparity-sensitive termD '~IL, IR!
and a disparity-independent termU representing the cell’s re-
sponse to binocularly uncorrelated images. Then, a sufficient (not
necessary) condition for an odd tuning curve is that swapping the
left and right images of an arbitrary stereogram changes the sign
but not the amplitude of the disparity-modulated term. Formally,
we requireD '~IL, IR! 5 2D '~IR, IL!. We refer to a function with
this property as being antisymmetric underLR interchange. An
example of such a function is the model of Ohzawa et al. (1990)

Fig. 5. Experimental data from a complex cell with an odd-symmetric
disparity tuning curve. Experimental details as in Cumming and Parker
(1997). The curves show the Gabor fit. This cell shows strong disparity
tuning for correlated stimuli, and none at all for anticorrelated.
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with the RFs of the subunits related byr~1s! 5 r~2d!, r~2s! 5
2r~1d!. Then, eqn. (6) becomes

C 5 @vL
~1s! # 2 1 @vR

~2s! # 2 1 @vL
~2s! # 2 1 vR

~1s! # 2

1 2@2vL
~1s! vR

~2s! 1 vL
~2s! vR

~1s! # . (10)

The monocular, disparity-insensitive terms are clearly un-
affected by swapping the labelsL and R, while the disparity-
sensitive cross-terms change sign. Thus the disparity tuning
curve of this cell is odd. In the ODF model, eqn. (10) is used
with r~1s! an even, andr~2s! an odd, Gabor function. Such
a model is, again, odd symmetric twice over: it is antisymmet-
ric under LR interchange, and also the individual disparity-
modulated terms~vL

~1s! vR
~2s! ,vL

~2s! vR
~1s! ! are themselves odd.

However, theLR interchange antisymmetry is, on its own, suf-
ficient to yield an odd disparity tuning curve, whatever the RF
profiles r~1s! and r~2s!. The only requirement is that the sub-
units do not have identical RFs in the two eyes [in which case
the disparity-selective terms in eqn. (10) cancel].

We note as an aside that the generation of odd-symmetric
tuning curves does not require a Gabor-like RF structure incorpo-
rating ON and OFF regions. The fact that phase-disparity has often
been employed within the original ODF model to yield odd-
symmetric tuning curves risks giving the impression that phase-
disparity is necessary for odd tuning curves, and thus that odd
tuning curves provide evidence for phase-disparity. However, a
counterexample is easy to construct. Imagine two tuned-excitatory
complex cells like those in Ohzawa et al. (1990), with different
position disparities ensuring that they are tuned to different dis-
parities. Now consider a cell which receives excitatory input from
one and inhibitory input from the other. Clearly this will have an
odd-symmetric tuning curve, although for each binocular subunit,
the phase-disparity is zero.

A new model: Monocular simple cells prior to binocular
combination

We have seen that in order to obtain an attenuated response to
anticorrelated stimuli within the basic framework of the original
ODF model, we must add a nonlinearity to the binocular simple
cell. Out of many potential choices for such a nonlinearity, one
which seems particularly straightforward and biologically plausi-
ble is the case where input from the retinal RFs passes first to a
monocular simple cell rather than feeding directly onto a BS cell.
BS cells would then receive input from two monocular simple
cells, as sketched in Fig. 6. The effect of this is that the monocular
convolutions [eqn. (3)] from the two eyes are half-wave rectified
beforebeing combined. That is, the firing rate of each BS cell is
now given by

S' 5 @Pos~vL ! 1 Pos~vR!# 2. (11)

[cf. eqn. (4)].
For simplicity, we have assumed that the monocular simple

cells implement only half-wave rectification. In fact, we have
found that qualitatively similar results are obtained if, like the
model BS cells, they also include a squaring nonlinearity. The key
features of our model do not depend on the precise form of the
point nonlinearity prior to binocular combination. Similarly, al-
though it seems natural to interpret our model in terms of a

hierarchy, in which monocular simple cells feed into BS cells, this
is not formally required. We could equally envisage the BS cell
[eqn. (11)] as receiving input directly from the lateral geniculate
nucleus (LGN), with the half-wave rectification implemented at
the synaptic or dendritic level.

As in the ODF model, we construct a complex cell which
receives input from four such simple cells, two pairs of matching
ON0OFF cells:

SON
'~1! 5 @Pos~vL

~1s! ! 1 Pos~vR
~1d ! !# 2

SOFF
'~1! 5 @Pos~2vL

~1s! ! 1 Pos~2vR
~1d ! !# 2, (12)

SON
'~2! 5 @Pos~vL

~2s! ! 1 Pos~vR
~2d ! !# 2,

SOFF
'~2! 5 @Pos~2vL

~2s! ! 1 Pos~2vR
~2d ! !# 2. (13)

The response of the complex cell is, again, given by the sum of the
firing rates of the simple cells [eqn. (6)].

This is now equal to

C ' 5 @vL1s# 2 1 @vR
~1d ! # 2 1 @vL

~2s! # 2 1 @vR
~2d ! # 2

1 2@Pos~vL
~1s! !Pos~vR

~1d ! ! 1 Pos~2vL
~1s! !Pos~2vR

~1d ! !

1 Pos~vL
~2s!Pos~vR

~2d ! ! 1 Pos~2vL
~2s! !Pos~2vR

~2d ! !# . (14)

The monocular terms are the same as in the ODF energy model,
but the cross-terms are half-wave rectified. As in the ODF model,
the combination of ON and OFF simple cells ensures that the

Fig. 6. Schematic diagram of our new model. Input from the retinal RFs is
not fed directly to BS cells, but is passedvia monocular simple cells
(‘MS’). This introduces a rectifying nonlinearity prior to binocular com-
bination. In this paper, the computational results are from a model in which
monocular simple cells signal the sum of their inputs provided this exceeds
a threshold. Initially we set this threshold at zero, that is, half-wave
rectification; in later results we raise the threshold above zero. Qualita-
tively similar results are obtained if the output of the monocular simple
cells is a threshold followed by a squaring nonlinearity, as for the binocular
simple cells (‘BS’). The circuitry shown in this figure produces TE-type
disparity tuning curves; analogous circuitry which produces near0far tun-
ing curves is shown in Fig. 7.
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response of our complex cell is unchanged by inverting the con-
trast in both eyes. Thus, the model responds equally well to
binocularly presented bars regardless of whether they are both
bright or both dark. Once again, we can divide the response of the
complex cell into a component that arises from the four monocular
terms and does not depend on disparity, and a component that is
disparity modulated:

D ' ~d! 5 2@Pos~vL
~1s! !Pos~vR

~1d ! ! 1 Pos~2vL
~1s! !Pos~2vR

~1d ! !

1 Pos~vL
~2s! !Pos~vR

~2d ! ! 1 Pos~2vL
~2s! !Pos~2vR

~2d ! !#

(15)

[which may be compared with eqn. (7) for the ODF model].
The monocular half-wave rectification causes important differ-

ences in the behavior of the disparity-modulated term. For binoc-
ularly uncorrelated images, these cross-terms donot now average
to zero. Thus, the response to uncorrelated images consists of a
contribution from the four monocular terms in eqn. (14), as in the
ODF model, plus a contribution from the disparity-modulated
term. With correlated images, the contribution from the disparity-
modulated term is suppressed at some disparities and enhanced at
others. This is why a model of this form can produce disparity
tuning curves which go below the uncorrelated level, even though
the disparity-sensitive component in eqn. (15) is clearly never
negative.

With this model, anticorrelation no longer simply inverts the
tuning curve. Changing the sign of all thevR in eqn. (15) does not
simply change the sign ofD '~d! as it did in eqn. (7). Furthermore,
we can see how this model might be capable of giving an atten-
uated response to anticorrelated stimuli. For instance, consider the
situation where, for a particular correlated image pair, the convo-
lutionsvL

~1s! andvR
~1d ! are both negative, whilevL

~2s! andvR
~2d ! are

both positive. Then the disparity-modulated component isDcorr
' 5

2@vL
~1s! vR

~1d ! 1 vL
~2s! vR

~2d ! # . If we now invert the contrast of the
right image, the response vanishes altogether:Danti

' 5 0.
This observation merely illustrates that it is possible for this

model to generate weakened responses to anticorrelated stimuli.
By itself, this observation does not guarantee that the amplitude of
the tuning curve will actually be zero for anticorrelated stimuli, or
even that it will be less than the amplitude for correlated stimuli.
For instance, if the convolutionsvL

~1s! and vR
~1d ! , and vL

~2s! and
vR

~2d ! , haveoppositesign, then the situation is reversed and this
time Dcorr

' 5 0. The degree of attenuation for anticorrelated stimuli
thus depends on how likely it is that the convolutions in the two
eyes have the same sign when the stimuli are correlated. This in
turn depends on the particular form of the RFs. As we shall
demonstrate (Figs. 8, 10, & 12), plausible RFs can be chosen for
which there is significant amplitude attenuation.

Generalizing to arbitrary tuning curves

It is easy to obtain a TE-type disparity tuning curve from the cell
just developed. With the relationsr~1s! 5 r~1d!, r~2s! 5 r~2d!

between the RF profiles in the different eyes, the disparity-
modulated term in [eqn. (15)] becomes symmetric underLR
interchange, and is thus even. Furthermore, for correlated stimuli
its tuning curve peaks at zero disparity, since then the left and right
images are identical and sovL

~1s! 5 vR
~1d ! ~5 v ~1!, say). This means

that the disparity-modulated term [eqn. (15)] becomes 2[~v ~1! !2 1
~v ~2! !2# : that is, it is positive (not zero) for any image which drives

the monocular simple cells at all, and so the complex cell’s firing
rate peaks. In contrast, for anticorrelated stimuli at zero disparity,
the disparity-modulated term is always zero, meaning that the
firing rate is minimum. Thus, this disparity tuning curve is of the
TE type. It could be converted into a TI type merely by inverting
the RF profiles in one eye, since the response previously obtained
with anticorrelated stimuli would now be obtained with correlated
stimuli. However, since the original cell is empirically found to
have an amplitude ratio less than 1 (cf. Figs 8, 10, & 12), the
TI-type tuning curve thus obtained would have an amplitude ratio
of greater than 1.

To obtain TI-type and odd-symmetric tuning curves which
show reduced amplitude to anticorrelated stimuli, we need to
modify eqn. (15) by introducing minus signs. Although the math-
ematics is straightforward, the circuitry is slightly more complicated.

To implement a minus sign in eqn. (18), we must include
simple cells that receive an excitatory input from one of the
half-wave rectified monocular RFs but a subtractive inhibitory
input from the other eye:

S' 5 Pos[Pos~vL ! 2 Pos~vR!# . (16)

This possibility is automatically built into the ODF model, because
their BS cells receive both excitatory and inhibitory influences
from each retina. Thus if the convolution of the image with the RF
is negative in one eye, it has a subtractive effect on the simple
cell’s firing rate. In our model, since we are half-wave rectifying
the convolutions from each eye before they are combined, sub-
traction must be built in explicitly by using inhibitory intercon-
nections. An additional overall half-wave rectification is included
to prevent the model simple cell from having a negative firing rate.
Once again we can effectively remove the half-wave rectification
by combining BS cells in pairs: [Pos~x!# 2 1 [Pos(2x!# 2 [ x2. For
instance, we can combine six BS cells to obtain a complex cell
whose response is

C ' 5 @Pos~vL
~1s! ! 1 Pos~vR

~1d ! !# 2 1 @Pos~2vL
~1s! ! 1 Pos~2vR

~1d ! !# 2

1 $Pos[Pos~vL
~2s! ! 2 Pos~vR

~2d ! !# %2

1 $Pos[Pos~2vL
~2s! ! 2 Pos~2vR

~2d ! !# %2

1 $Pos[2Pos~vL
~2s! ! 1 Pos~vR

~2d ! !# %2

1 $Pos[2Pos~2vL
~2s! ! 1 Pos~2vR

~2d ! !# %2. (17)

If we setr~1s! 5 r~2d!, andr~2s! 5 r~1d!, the disparity-modulated
term is antisymmetric underLR interchange, and so the complex
cell yields an odd disparity tuning curve. The circuitry is sketched
in Fig. 7.

Thus, we have a family of models which is capable of giving
disparity tuning curves of all four general types: TE0TI (even
symmetry) and near0far (odd symmetry). We use complex cells
whose output can be written as

C ' 5 @Pos~vL
~1s! ! 6 Pos~vR

~1d ! !# 2 1 @Pos~2vL
~1s! ! 6 Pos~2vR

~1d ! !# 2

1 @Pos~vL
~2s! ! 6 Pos~vR

~2d ! !# 2

1 @Pos~2vL
~2s! ! 6 Pos~2vR

~2d ! !# 2. (18)

The pattern of the four plus and minus signs in this equation,
together with the relationship between the RFs, determines the
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type of tuning curve. If left and right RFs are identical~ r~1s! 5
r~1d!, r~2s! 5 r~2d! !, and all the signs are positive (1 1 1 1),
eqn. (18) becomes the same as eqn. (14), representing a TE-type
cell. With the same RF relations but all signs negative (2 2 2 2),
the disparity-modulated term is inverted, so we obtain a TI-type
cell. With patterns1122 or 2211, together with the relation-
shipsr~1s! 5 r~2d! andr~2s! 5 r~1d!, the complex cell response is
antisymmetric underLR interchange, and therefore yields an odd
(near0far) disparity tuning curve.

However, if we combine the pattern1111 or 2222
with the RF relationshipr~1s! 5 r~2d! and r~2s! 5 r~1d!, we
obtain a different type of even tuning curve, which is not well
described by a Gabor function; it usually has a notch at the
central disparity, flanked by side peaks. A few disparity tuning
curves similar to this have been observed in the barn owl
(Nieder & Wagner, 2000). Although they appear to be rare in
the monkey (Prince et al., 2002a), it is possible that some
examples have gone unrecognized because of limited sampling
of the tuning curve in the experiments.

To generalize to disparity tuning curves incorporating a non-
zero disparity offsetd0, we simply have to shift the RFs in one eye
by d0. To obtain tuning curves with intermediate phasef, we can
postulate a complex cell receiving input from multiple simple
cells, some subgroups of which have the even-type connectivity
(Fig. 6) and others the odd (Fig. 7).

To summarize, all our model complex cells include a dis-
parity-independent component@@vL

~1s! # 2 1 @vR
~1d ! # 2 1 @vL

~2s! # 2 1
@vR

~2d ! # 2# . The disparity-modulated component depends on the
choice of pluses and minuses in eqn. (18), and on the relation-

ships between the RF profiles. We highlight the following spe-
cial cases:

• For TE0TI-type tuning curves which have even symmetry about
the disparityd0:

Deven
' ~d! 5 62@Pos~vL

~1s! !Pos~vR
~1d ! ! 1 Pos~2vL

~1s! !Pos~2vR
~1d ! !

1 Pos~vL
~2s! !Pos~vR

~2d ! !

1 Pos~2vL
~2s! !Pos~2vR

~2d ! !# , (19)

with r~1s!~x, y! 5 r~1d!~x 1 d0, y!, r~2s!~x, y! 5 r~2d!~x 1
d0, y!; the6 controls whether the tuning is TE (1) or TI (2).

• For near0far-type tuning curves which have odd symmetry about
the disparityd0:

Dodd
' ~d! 5 62@Pos~vL

~1s! !Pos~vR
~1d ! ! 1 Pos~2vL

~1s! !Pos~2vR
~1d ! !

2 Pos~vL
~2s! !Pos~vR

~2d ! !

2 Pos~2vL
~2s! !Pos~2vR

~2d ! !# , (20)

with r~1s!~x, y! 5 r~2d!~x 1 d0, y!, r~2s!~x, y! 5 r~1d!~x 1
d0, y!; the6 controls whether the tuning is near (1) or far (2).

• For tuning curves with a central notch which have even sym-
metry about the disparityd0:

Deven
' ~d! 5 62@Pos~vL

~1s! !Pos~vR
~1d ! ! 1 Pos~2vL

~1s! !Pos~2vR
~1d ! !

1 Pos~vL
~2s! !Pos~vR

~2d ! !

1 Pos~2vL
~2s! !Pos~2vR

~2d ! !# , (21)

with r~1s!~x, y! 5 r~2d!~x 1 d0, y!, r~2s!~x, y! 5 r~1d!~x 1
d0, y!; the 6 controls whether the side-flanks are positive or
negative.

Simulation results

Having constructed our model complex cells, we performed nu-
merical simulations to determine their responses to correlated and
anticorrelated random-dot stereograms. Figs. 8 and 10 show the
numerical simulations of all six types of tuning curve specified in
eqns. (19)–(21) (withd0 5 0) to illustrate the point that the new
model shows an attenuated response to binocularly anticorrelated
random-dot patterns. In Fig. 8, the underlying RFs (shown in
Fig. 9) are Gabor functions like those employed by Ohzawa et al.
(1990, 1997), differing in phase byp02. In Fig. 10, the underlying
RFs (Fig. 11) consist simply of a single Gaussian.

It is apparent in Figs. 8 and 10 that greater amplitude attenu-
ation is obtained with the Gaussian RFs than with the Gabor. This
reflects a general tendency, within our model, for amplitude ratios
to be smaller when the RFs have large spatial-frequency band-
width. In the limiting case where the RFs have infinitely narrow
bandwidth, that is, are sinusoidal gratings of infinite extent, it
can be shown that the amplitude of the disparity tuning curves is
the same for correlated as for anticorrelated patterns (amplitude
ratio 1), even for our modified version of the energy model. This
means that Gabor RFs with obvious side-lobes rather than low-
pass RFs tend to give amplitude ratios closer to 1, as exemplified
in Figs. 8 and 10.

Note that, when Gabor RFs are used with the “notch” form of
the model [eqn. (21)], the anticorrelated tuning curve is not

Fig. 7. Schematic diagram of our new model that produces odd disparity
tuning curves in which the response to anticorrelated stimuli may be
reduced. Although the example RFs in this figure have phase-disparity, this
is not a prerequisite for odd disparity tuning curves. The solid dots
represent inhibitory connections. The circuitry is slightly more complicated
than the equivalent for TE-type tuning curves (Fig. 6), even though
mathematically the difference between them is trivial. Briefly, the odd
model involves thedifferencebetween positive quantities, whereas the
even model involves the sum. Owing to the rectification at the simple cells,
computing differences [using~A 2 B! [ Pos~A 2 B! 1 Pos~B 2 A!#
requires twice as many cells as computing sums. To adapt this model for
TI-type tuning curves, eight BS cells would be required, each receiving
excitatory input from one eye and inhibitory input from the other.
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inverted. With the 1.5 octave bandwidth used here, it is virtually
identical to the correlated tuning curves; with a broader bandwidth
it would have smaller amplitude. The explanation for this, which
depends on a detailed consideration of how the Gabor RF structure

interacts with the anatomy of the notch model, requires more space
than is warranted here, given that double-peaked cells are uncom-
mon and their responses to binocular anticorrelation are unknown.

A higher threshold yields smaller amplitude ratios

With the model in the form developed so far [eqns. (19)–(21)],
we have not been able to find RFs that yield amplitude ratios
much smaller those shown in Figs. 8 and 10: around 0.5 or
greater. Thus our model is not yet capable of matching the full
range observed experimentally. Cumming and Parker (1997, Fig. 4)
found a wide range of amplitude ratios, including a few greater
than 1 (the cell responded better to anticorrelated than to corre-
lated stimuli), and a few as low as 0.01 (there was hardly any
response to anticorrelated stimuli). Our model is, of course,
capable of producing amplitude ratios greater than 1, simply by
changing the sign of all the right-eye convolutions in eqns. (19)–
(21). To produce amplitude ratios below 0.5 and approaching
zero, we must strengthen the half-wave rectification by raising
the threshold: that is, we now assume that the monocular simple
cells fire only if the net retinal input exceeds a thresholdu . 0.
Thus the response of the BS cell is

Su 5 @Pos~vL 2 u! 1 Pos~vR 2 u!# 2. (22)

We note that a similar threshold is also required in the ODF model
[eqn. (4)] in order to produce the correct response to binocular
drifting sinusoidal gratings. If the fundamental~F1! harmonic
component of the cell’s response at the temporal frequency of the
drifting grating is measured as a function of interocular phase, then
the ODF model simple cell predicts that the magnitude ofF1

should be a constant fraction of the neuron’s mean firing rate~F0!,
regardless of the interocular phase. Experimentally, for many cells
this ratio shows clear variation as a function of interocular phase.
A threshold higher than zero is required to reproduce this variation

Fig. 8. Our new model with Gabor RFs (shown in Fig. 9). The six types of disparity tuning curves were obtained as explained in
eqns. (19)–(21). For near0far-type tuning curves, only very slight attenuation is obtained with these RFs.

Fig. 9.Receptive fields used in obtaining the disparity tuning curves shown
in Fig. 8. The left-hand images show the full RFs as a function of position
in the retina. The plots on the right show a horizontal cross section through
the RF profiles. In obtaining the TE0TI even tuning curves (left-most plots
of Fig. 8), the upper RF profile was assigned tor~1s! and r~1d!, and the
lower to r~2s! and r~2d!. In obtaining the odd and “notch” even tuning
curves (middle- and right-most plots of Fig. 8), the upper RF profile was
assigned tor~1s! andr~2d!, and the lower tor~2s! andr~1d!.
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with an ODF-like model in which binocular combination is linear
(see Appendix C).

The disparity-modulated component of the tuning curve still
follows eqns. (19)–(21), but now every Pos~x! is replaced by

Pos~x 2 u!. Once again, the tuning curve has a constant compo-
nent that represents the response to uncorrelated stimuli, although
the magnitude of this constant is affected by the threshold. By
choosing a high enough value for the threshold, we can obtain
almost arbitrarily small amplitude ratios. An example is shown in
Fig. 12. With the Gabor RFs shown here, the near0far cells retain
some anticorrelated response even with the present high threshold.
With Gaussian RFs and a similarly high threshold (not shown),
none of the cell types show any modulation for anticorrelated
stimuli.

We take this opportunity to explain the unorthodox choice of
phases for the Gabor RFs (Fig. 9). The ODF model has the special
property that its response depends only on the phase-disparity
between left and right RFs, not on the phases themselves. Thus,
previous workers have restricted themselves to RFs which are
purely odd or purely even, with no loss of generality, even though
many physiological cells have RFs with intermediate phases. This
property is not true of general models. The response of our
modified model depends, in general, on the phase of the RFs in
each retina, even for a given phase-disparity. The results shown
here were obtained using RFs with a phase of6p04 (Fig. 9).
These produce an amplitude ratio of around 0.9 with a threshold of
zero (Fig. 8), and 0.2 with the higher threshold used in Fig. 12. If
we used RFs with a phase of 0 in one eye andp02 in the other, we
would obtain an amplitude ratio of exactly 1, no matter how high
we raised the threshold. This property is extremely general: it can
be shown (Appendix B) that, forany model built from convolu-
tions of the images with RFs, even incorporating monocular
nonlinearities which are different in the two eyes, the combination
of a purely odd RF in one eye with a purely even RF in the other
eye must produce an amplitude ratio of 1.

Complex cells summing many simple cells

The ODF model predicts that the disparity tuning curve should
undergo a phase shift ofp when the stimulus is anticorrelated.
Experimentally, although many complex cells do indeed show

Fig. 10. Our new model with Gaussian RFs (shown in Fig. 11). The six types of disparity tuning curves were obtained as explained
in eqns. (19)–(21).

Fig. 11. Receptive fields used in obtaining the disparity tuning curves
shown in Fig. 10. The left-hand images show the full RFs as a function of
position in the retina. The plots on the right show a horizontal cross section
through the RF profiles. The position disparity is 16 pixels. In obtaining the
TE0TI even tuning curves (left-most plots of Fig. 10), the upper RF profile
was assigned tor~1s! and r~1d!, and the lower tor~2s! and r~2d!. In
obtaining the odd and “notch” tuning curves (middle- and right-most plots
of Fig. 10), the upper RF profile was assigned tor~1s! andr~2d!, and the
lower to r~2s! andr~1d!.
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phase differences close top, others clearly do not (Cumming &
Parker, 1997). We can combine model tuning curves with signif-
icant amplitude attenuation to obtain new complex cells that will
exhibit intermediate phase differences. One example is shown in
Fig. 13. Even and odd versions of our model, incorporating a high
threshold, were used to obtain the first two plots. The third plot
shows the sum of the even and odd curves. The result is an even
tuning curve for correlated stimuli, and a odd-symmetric curve for
anticorrelated stimuli. The circuitry is plausible: it assumes only
that several subunits feed onto the same complex cell, an extension
of the energy model already proposed by several workers (Zhu &
Qian, 1996; Fleet et al., 1996; Qian & Zhu, 1997).

Our model also retains an important property of the original
energy model. With a combination of many subunits, whose RFs
have the same phase-disparity but random overall phases, the
response to drifting gratings is not modulated, as observed exper-
imentally for complex cells.

Behavior of BS cells constructed from monocular simple
cells

We have envisaged our model complex cell as receiving input
from BS cells in which the combination of inputs from the two
eyes is nonlinear [eqn. (22)], owing to a half-wave rectification
before summation. Although there are some clear examples in
the literature of simple cells whose properties are hard to rec-
oncile with anything other than a linear binocular combination
(Ohzawa & Freeman, 1986), other simple cells may show non-
linearities of the form we propose. In fact, it is not critical to
our model of complex cells that the postulated BS cells should
actually exist as individual neurons in the brain—a complex cell
with the properties described by our model could conceivably
be built with input directly from monocular simple cells or from
the LGN, with the necessary nonlinear combination being achieved
at the dendritic level. If they do exist, however, the proposed BS

Fig. 12. Our modified model with threshold. The monocular simple cell RFs employed are Gabors, shown in Fig. 9. The monocular
simple cells had a high threshold, such that they fired in response to only around 1% of images. The tuning curves shown here represent
the mean response to 500,000 stereograms.

Fig. 13. The left plot shows results from the TE-type model shown in Fig. 12. The middle plot shows results from a far-type model
similar to that shown in Fig. 12, except that the model has been adapted to fire more to anticorrelated than to correlated stimuli, by
changing the sign of the right-eye convolution wherever it occurred in eqn. (20). The right-most plot shows the sum of the previous
two plots, representing a complex cell receiving input from ten BS cells. Other details are as in Fig. 12.
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cells would have a number of interesting properties, which we
consider here.

Fig. 14 shows the responses of various model simple cells to
disparate drifting sinusoidal gratings. The phase difference be-
tween the left- and right-eye gratings varies from 0 deg to 330 deg
in 30-deg steps, as indicated to the left of each row. The different
columns show results for different model simple cells: the ODF
binocularly linear simple cell on the left, and then two of our
modified simple cells, in which the nonlinearity occurs before
binocular combination:

S5 @Pos~vL
~s! 1 vR

~d ! !# 2,

S' 5 @Pos{Pos~vL
~s! ! 2 Pos~vR

~d ! !%# 2,

S' 5 @Pos~vL
~s! 1 Pos~vR

~d ! !# 2. (23)

Column 2 in Fig. 14 shows model simple cells which receive
excitatory input from one eye and inhibitory from the other. These
were postulated in order to explain the existence of complex cells
with odd disparity tuning curves and attenuated response to anti-
correlated stimuli. Such a model can explain the existence of cells
that show no response to monocular stimulation in one of the two
eyes, but are nevertheless sensitive to the interocular phase differ-
ence. The model simple cell shown in column 2, for example,
clearly responds to stimulation in the right eye only if the stimu-
lation in the left eye exceeds some threshold. If the left eye is
shown a gray screen and the right eye a drifting grating, the neuron
does not fire at all, whereas with binocular gratings it is sensitive
to interocular phase (Fig. 14). It is common to find disparity-
selective neurons that appear to have only monocular responses
when each eye is tested separately (Ohzawa & Freeman, 1986). By
itself, this observation might be explained by a high threshold
applied after binocular combination. However, in some examples

Fig. 14. Responses of model simple cells to drifting sinusoidal gratings. The different columns are for different models, as specified
in eqn. (23), with Gabor RFs. The phase of the right eye’s grating at timet 5 0 was the same in every row; the initial phase of the
left eye’s grating (the interocular phase difference) is indicated to the left of each row. The response is shown over two temporal periods
of the stimulus.
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(see Prince et al., 2002b, Fig. 4c and Discussion) comparison of
binocular and monocular responses indicates that the result of
stimulation in one eye is always suppressive. This indicates that
the output of the monocular RF is passed through an inhibitory
synapseafter half-wave rectification, exactly as occurs in the new
model.

Column 3 in Fig. 14 shows the behavior of model simple cells
receiving excitatory, half-wave rectified input from both eyes.
Such cells are used in our models of both even- and odd-symmetric
complex cells. They show characteristic changes in the pattern of
response modulation when presented with drifting sinusoidal grat-
ings of different disparities. Although theF1 response of such a cell
is generally similar to that of the ODF linear-combination model,
its F2 response (at twice the grating frequency) is clearly very
different. For a particular interocular phase difference, its response
is a full-wave rectified sinusoid, rather than the half-wave rectified
sinusoid predicted by the linear-combination model. This occurs
when the phase difference between the gratings is such that the
convolutions with the RFs in each eye are equal and opposite. In
the linear-combination model, left- and right-eye contributions
cancel out to give a null response. In our model, one eye at a time
contributes, giving the frequency-doubling to a drifting grating.
This very striking disparity-dependent frequency-doubling has not,
to our knowledge, been previously reported.

Detecting a nonlinearity prior to binocular combination

We reexamined data from 117 disparity tuned neurons from V1 of
awake monkeys, tested with drifting gratings at multiple disparities
(Cumming & Parker, 2000). Of these, 38 neurons were classified
as simple on the basis that theF1: F0 ratio exceeded 1 for at least
one disparity tested.

Fig. 15 shows sample data from one example. At IOP5 0
(upper plot), the cell displays typical simple cell behavior, respond-
ing with one burst of spikes in every period of the stimulus. But
when the IOP is half a cycle (lower plot), the cell responds with
two bursts of spikes for each stimulus period. Fig. 16 shows data
from three of our 38 simple cells which showed clear evidence of
modulation at the second harmonic of the temporal frequency.
Furthermore, a clear progression is observed between modulation
at the fundamental frequency and modulation at the second har-
monic, as interocular phase alters. These neurons behave more like
our model frequency-doubling cells (Fig. 14, column 2) than
the ODF simple cell (column 1). For 13 of these 38 cells (34%),
the ratio of the response at the second harmonic to the response
at the fundamental frequency,F2: F1, was greater than 1 at the
disparity where theF1 response was minimal. This is exactly what
is predicted by our model, whereas for the ODF model, and a set
of generalizations of it which retain the property of linear binoc-

Fig. 15.Cell hg136.0. The monkey was viewing sinusoidal gratings with a spatial frequency of 1 cycle0deg at an orientation of 60 deg
to the horizontal, drifting at a rate of 4 cycles0sec. This figure shows results from two stimulus presentations, at IOP of zero (top plots)
and half a cycle (a disparity of20.58, deg lower plots). The long plots on the left show all the spikes recorded during a 2-s window
beginning 50 ms after the presentation of the stimulus. The superimposed sine wave (thin line) shows the temporal frequency of the
stimulus. The heavier line below shows the estimated firing rate reconstructed from the spike density function obtained after folding
all spikes back into one stimulus temporal period (right-hand plots).
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ular combination,F2: F1 can never exceed 1 (Appendix C). A
detailed statistical evaluation of the significance of this finding is
made difficult by several factors. First, the data were not collected
with this question in mind. Larger numbers of repetitions would be
desirable for estimating the temporal modulation in the response.
The need for extensive data is exacerbated by the fact that the
model predicts the greatestF2 modulation for the disparity that
produces the weakest response. Second, quantitative estimation is
complicated by fixational eye movements which occur in the
awake monkey. Finally, the predictions of the ODF model depend
on the size of the threshold that is applied after binocular combi-
nation (Appendix C), so it is not easy to formulate an appropriate

null hypothesis. Applying a threshold after binocular summation
will also reduce the observedF2: F1 ratio for our model neuron, so
that there are circumstances in whichF2: F1 never exceeds 1, even
for simple cells constructed in accordance with our model. None-
theless, at least some BS cells behave as if they receive input from
monocular simple cells which themselves have output nonlinearities.

Discussion

The otherwise successful energy model of complex cells fails to
explain the response of all V1 neurons to anticorrelated random-
dot stimuli (AC-RDS). Most of these cells show amplitude ratios

Fig. 16.The columns show the response of three different simple cells to drifting gratings. The first column is for the same cell as in
Fig. 15. Each row shows the spike density function for a different interocular phase (indicated to the left of each row), as a function
of time (in units of the stimulus temporal period). The drifting gratings are described, at the top of each column, by their spatial
frequency, in cycles per degree, temporal frequency, in cycles per second, and orientation, in degrees to the horizontal. The axes are
scaled differently in each panel, since the frequency-doubling generally occurs for the lowest firing rates, and so otherwise would be
obscured.
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less than 1, whereas the energy model predicts an amplitude ratio
of exactly 1. We show that a simple modification of the model—
which may be interpreted as constructing BS cells from the outputs
of monocular simple cells—reproduces the behavior of those
cortical neurons which are incompatible with the energy model. Of
course, the energy model may still be valid for those cells which
show amplitude ratios of 1. V1 may contain a mixture of energy-
model units and units of the form proposed here. According to this
hypothesis, neurons showing strong evidence of linear binocular
combination should always have amplitude ratios close to 1. This
has yet to be examined experimentally.

Anti-correlated stimuli, which do not support depth perception,
are of special interest because of the insight they provide into the
solution of the correspondence problem (Cumming & Parker,
1997; Read & Eagle, 2000). They contain many false, local
matches, but the visual systems of humans and monkeys are unable
to discover any global solution. For human observers, anticorre-
lated stereograms do not result in a segregated depth percept in
which “cyclopean form” (Julesz, 1971) can be perceived. By
comparison, any of the machine-vision systems that are capable of
solving the correspondence problem in normal correlated stereo-
grams (Dev, 1975; Marr & Poggio, 1979; Pollard et al., 1985)
could be trivially modified so that they would then be successful
with anticorrelated stereograms.

If V1 complex cells respond only to a global solution, as
proposed by Poggio and Poggio (1984), these neurons should not
respond at all to AC-RDS. Conversely, the disparity energy model
(Ohzawa et al., 1990) predicts that local matches in AC-RDS will
evoke disparity tuning of the same amplitude but inverted phase
compared with correlated stimuli. Neither of these predictions is
borne out. Complex cells do show disparity tuning for AC-RDS,
but with reduced amplitude (Cumming & Parker, 1997; Ohzawa
et al., 1997). With a completely separate experimental approach,
Neri et al. (1999) found that disparity-specific psychophysical
“filters” derived from human observers also show an attenuated
response for anticorrelated stimuli.

Although Cumming and Parker (1997) argued that the disparity
tuning observed with AC-RDS indicates that the complex cells are
driven primarily by local features, the reduced amplitude could be
taken as evidence that these V1 neurons are somehow sensitive to
the presence of a global solution (Ohzawa, 1998), and are hence
affected by depth perception. The fact that attenuated anticorre-
lated response is also observed in anesthetized animals (Ohzawa
et al., 1990, 1997) does not in itself argue against top–down
feedback (as suggested by Ohzawa, 1998), because if we do not
know where or how global stereo matching occurs, we cannot be
sure that it would be abolished by anesthesia.

A more serious objection to a top–down mechanism arises from
the response to binocularly anticorrelated single bar stimuli. At the
neuronal level, these stimuli give a reduced response, which is
often phase-inverted (Ohzawa et al., 1990, 1997). Psychophysi-
cally, anticorrelated bars produce veridical depth perception in
humans (Helmholtz, 1909; Cogan et al., 1995; Cumming et al.,
1998); in other words, a disparity that is geometrically signaling
depths nearer than the fixation point continues to do so when the
bar stimulus is anticorrelated. For these bar stimuli, the implication
is that there is a satisfactory global solution of the correspondence
problem. It is hard to see how a properly conceived, top–down
mechanism can be invoked to explain the attenuated response of
V1 neurons to both anticorrelated bars and RDS, when the per-
ceptual experience is so different in the two cases.

Quite separately, Cumming and Parker (2000) have provided
further evidence that the activity of V1 complex cells is not

affected by global matching. They used sine-wave grating stimuli
presented within circular apertures, chosen to be larger than the
RF. If the stimuli are displaced by one spatial period of the grating,
the portion of the image within the RF is unchanged, but the
disparity of the aperture means that the depth of the stimulus is
unambiguous. Cells’ responses depended essentially only on the
stimulus within their RF, arguing against feedback from higher
areas. Thus, there are now several converging lines of evidence to
suggest that binocular responses of V1 neurons are primarily
accounted for by the local anatomical connections within V1.

The present work strengthens this conclusion. We demonstrate
that a straightforward modification of the energy model can ac-
count for the response of V1 complex cells to both correlated or
anticorrelated stimuli. This physiologically plausible, purely local
model can produce disparity tuning curves of every observed
phase, including those in which anticorrelation introduces a phase
change other thanp, which exhibit reduced amplitude for anticor-
related stimuli.
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Appendices

A: Symmetry of convolution products with
even-/odd-symmetric RFs

In the basic Ohzawa-DeAngelis-Freeman (ODF) energy model, convolu-
tions from the left and right eyes are added, then squared. The squaring
results in two terms involving one eye only, plus one cross-term in which
contributions from the left and right eyes are multiplied together. On
average, the sum of the monocular convolutions cannot depend either on
the disparity between the two retinal images, or on their correlation. It is
the cross-term that contains any dependence on binocular disparity.

In this appendix, we consider the situation where the receptive-field
(RF) functions possess pure even or odd symmetry about a point in the
retina. We prove that if one is even and the other is odd, the disparity tuning
curve is odd (see Results, p. 736). It is also easy to show that if both RFs
are even, or both odd, then the product of their convolutions yields an even
disparity tuning curve. For convenience, we assume that all RFs are
symmetric about the retinal position zero. Relaxing this assumption simply
shifts the central disparityd0 of the tuning curve.

The convolution of a retinal image with an RF was defined in eqn. (3).
We now average the product of left and right convolutions over many

randomly generated binocularly correlated image pairs, all with disparityd.
We use angle brackets to represent this ensemble averaging. The mean
value obtained depends on the disparity. For example, where the left RF
has even symmetry and the right odd, the mean convolution product is

^vLevenvRodd&~d! 5 KEEdx dy IL~x, y!reven~x, y!

3 EEdx 'dy'IR~x ', y' !rodd~x ', y' !L . (A1)

Now, since the right-eye image is a shifted version of the left, we can write
IR~x, y! 5 IL~x 1 d, y!. Substituting this into the expression for the
convolutions, eqn. (A1) and taking the ensemble averaging within the
integration over position, we obtain

^vLevenvRodd&~d! 5EEdx dyEEdx 'dy' ^IL~x, y! IL~x ' 1 d, y' !&

3 reven~x, y!rodd~x ', y' !. (A2)

^IL~x, y! IL~x ' 1 d, y'!& is the average value of the product of the contrasts
at positions~x, y! and ~x ' 1 d, y'! in the retina. Forspatially invariant
image ensembles, as generally used in experiments (Cumming & Parker,
1997; Poggio et al., 1985), this does not depend on the actual positions in
the retinas, only on the distance between them. It is therefore a function—
say,L—of two variables:L~x 2 x ' 2 d, y 2 y'!. Furthermore, since the
order cannot matter, it must be even in both variables. For example,L~x 2
x ' 2 d, y 2 y'! 5 L~2x 1 x ' 1 d, y 2 y'!. So, we now have

^vLevenvRodd&~d! 5EEdx dyEEdx 'dy'L~x 2 x ' 2 d, y 2 y' !

3 reven~x, y!rodd~x ', y' !. (A3)

Now consider the case where we present image pairs with the opposite
disparity,2d. The expected value of the convolution product is now

^vLevenvRodd&~2d! 5EEdx dyEEdx 'dy'L~x 2 x ' 1 d, y 2 y' !

3 reven~x, y!rodd~x ', y' !. (A4)

Transforming the dummy integration variablesx r 2x, x ' r x ' makes no
difference, so we can write

^vLevenvRodd&~2d! 5EEdx dyEEdx 'dy'L~2x 1 x ' 1 d, y 2 y' !

3 reven~2x, y!rodd~2x ', y' !. (A5)

Now using the stated symmetry of the RFs and of the functionL, we find
that

^vLevenvRodd&~2d! 5EEdx dyEEdx 'dy'L~x 1 x ' 2 d, y 2 y' !

3 reven~x, y!rodd~x ', y' ! 5 2^vLevenvRodd&~d!. (A6)

Thus, the product̂vLevenvRodd& is an odd function of disparity.
Precisely analogous manipulations show that, if left and right RFs are

both even, or both odd, then the convolution product is an even function of
disparity. Note that, in contrast to theLR symmetry discussed in the
Results, none of these results require the RFs in different eyes to be related
in any way. They must simply be individually either even or odd, as
indicated. General RFs may be handled by expressing them as a sum of an
even and an odd component. (Note that the results may not always be
interesting. For instance, if the left and right RFs have spatial periods
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separated by many times their bandwidth, they will effectively see uncor-
related images. In this case, the convolution product will, on average, be
zero. A function which is everywhere zero is both even and odd. Thus the
results still hold formally, even though there is no disparity tuning.)

B: Even-/odd-symmetric RFs always yield amplitude
ratios of 1

We consider a very general model, built from a combination of binocular
subunits whose output depends only on the convolution of the image with
the RF in each eye:

C 5 (
j

fj ~vL
~sj! ,vR

~dj ! ! , (B1)

where thefj are arbitrary functions of two variables. The ODF model is a
special case of this class, but so is our modified model which includes
nonlinearities prior to binocular combination.

In this appendix, we shall show that if within each subunitj, one eye’s
RF has pure even symmetry and the other has pure odd symmetry about
some point on the retina, then the effect of anticorrelation is simply to
reflect the disparity tuning curve about some disparity. It follows that the
amplitude ratio is necessarily 1.

To prove this claim, we write the convolutions for one subunit in terms
of the Fourier transforms of the images and RFs:

vL
~s! 5E

2`

`

dyE
2`

`

dk Re$ Ir~s! ~k, y! DI * ~k, y!%,

vR
~d ! 5E

2`

`

dyE
2`

`

dk Re$ Ir~d ! ~k, y! DI * ~k, y!eikd %, (B2)

where the tilde represents a one-dimensional Fourier transform along the
same axisx along which disparity is applied:

Df ~k, y! 5E
2`

`

dx f ~x, y!eikx, (B3)

and we have used the fact that, since the right image is simply the left
image displaced throughd along thex axis, IR~x, y! 5 IL~x 2 d, y!, then
DIR
* ~k, y! 5 DIL

* ~k, y!eikd .
We shall consider the situation where the left RF is purely even about

the origin, and the right RF purely odd about the same point. Then,Irs~k, y!
is purely real, and Ird~k, y! is purely imaginary. Thus,

vL
~s! 5E

2`

`

dyE
2`

`

dk Ir~s! ~k, y!Re$ DI * ~k, y!%,

vR
~d ! 5 2E

2`

`

dyE
2`

`

dk Ir~d ! ~k, y!Im$ DI * ~k, y!eikd %. (B4)

Now, consider making three simultaneous manipulations: (1) replace
the original stimulusI ~x, y! with its mirror image,I ~2x, y!; (2) present the
stimulus at the opposite disparity,2d; and (3) make the stimulus anticor-
related by contrast inverting the image presented to the right eye. That is,
whereas in obtaining eqn. (B4) the left image wasIL~x! and the right image
wasIL~x2 d!, we now consider the case where the left image isIL~2x! and
the right image is2IL~2x 2 d!. It turns out that thesamevalues are
obtained for the convolutions. To see this, note that the Fourier transform
of the mirror image is the complex conjugate of that of the original image.
But Re~z! [ Re~z*), so the left convolutionvL

~s! in eqn. (B4) is clearly
unchanged. For the right convolution, the term inside curly braces is
complex-conjugated with a sign change. But since Im~z! [ Im(2z*), once
again there is no change to the convolution.

Now, for the random-dot patterns generally used in physiological
experiments, any given stimulusI ~x, y! is as likely to be presented as its

mirror-imageI ~2x, y!. This means that the mean response obtained with
anticorrelated patterns at disparity2d must be the same as the mean
response obtained with correlated patterns at disparity1d. The effect of
anticorrelation is simply to reflect the disparity tuning curve about zero
disparity. If we generalize to allow the RFs to be odd- and even-symmetric
about arbitrary points in the retina, anticorrelation reflects the disparity
tuning curve about a nonzero disparity equal to the position disparity of the
RFs. Thus, in order to obtain amplitude ratios less than 1 from any model
of this very general type (30), we must avoid pairing pure-even with
pure-odd RFs. Phase-disparities ofp02 are capable of giving amplitude
ratios,1, provided that the phase-disparity is not achieved with a phase of
p02 in one eye and a phase of 0 in the other. This is why, in Fig. 9, the RFs
are chosen to have phases of6p04.

C: Fourier analysis of the response of model simple cells
to drifting gratings

We derive the Fourier coefficients characterizing the response, to drifting
sinusoidal gratings, of model simple cells in which binocular combination
is linear. We consider a binocular simple (BS) cell whose response is given
by

S5 @Pos~vL 1 vR 2 u!# P. (C1)

This is a generalization of eqn. (4) to include a thresholdu which may be
greater than zero, and an arbitrary powerP. Note that the nonlinearity is
introduced after binocular combination.

The cell is stimulated with drifting sinusoidal gratings:

I ~x, y, t ! 5 sin~kx x 1 ky y 2 f 1 vt !. (C2)

In general, the phasef is different in the two eyes.Df 5 fL 2 fR is the
interocular phase difference. The convolution in eqn. (2) of the grating with
the RF is given by

v~t ! 5 Im[exp~ivt 2 if! Ir# , (C3)

where Ir is the Fourier coefficient of the RF at the grating frequency:

Ir 5EEdx dy r~x, y!exp~ikx x 1 iky y! (C4)

From eqn. C3, the sum of the left- and right-eye convolutions is

vL~t ! 1 vR~t ! 5 6R6sin~vt 2 argR!, (C5)

where

R 5 exp~ifL ! Ir~s! 1 exp~ifR! Ir~d !,

6R6 5 6 Ir~s! 62 1 6 Ir~d ! 62 1 26 Ir~s! 66 Ir~d ! 6cos~Df 1 Dj!, (C6)

whereDj is the phase disparity between the left and right RFs, that is, the
difference in the arguments of the complex quantitiesIr~s! and Ir~d!. The
absolute value of thenth Fourier coefficient of the response to the drifting
grating is

F0 5 *E
0

2p0v

dtS~t !*, Fn.0 5 2*E
0

2p0v

dt exp~invt !S~t !*. (C7)

It can be shown that this is given by

6Fn.06 5 26R6P*E
T

p0v2T

dt exp~invt !@sin~vt ! 2 u06R6# P* , (C8)
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whereT is defined to be the smallest value satisfying sin~vT ! 5 u06R6.
Notice that6R6, and henceT, depend on the interocular phase. Eqn. (C8)
is valid for interocular phases such that6R6 . u. If u $ 6R6, the cell does
not respond at any stage of the cycle, so all Fourier coefficients are zero.
Notice that if the threshold is zero [i.e. half-wave rectification, as originally
envisaged by Ohzawa et al. (1990)], so thatT 5 0, then the Fourier
coefficients depend on interocular phase only through the overall factor
6R6P, and so theratio of any two Fourier coefficients is independent of
interocular phase. For the caseu 5 0 andP51, F1: F0 5 p02, andF2: F1 5
4030p; for u 5 0 andP 5 2, F1: F0 5 1603p, and F2: F1 5 3p016. In

general, the ratio of any two Fourier coefficients will depend on the
interocular phasevia the ratio u06R6. However, when these ratios are
calculated numerically, it turns out thatF1: F0 is always greater than 1,
meaning that these cells would be classified as simple according to the
classification criterion of Movshon et al. (1978). The ratioF2: F1 never
exceeds 1. It approaches 1 asu06R6r 1; this is the limiting case where the
threshold suppresses any response in the cell. Thus, frequency-doubling
cannot be obtained by any member of this rather wide class of model cells
in which binocular combination is linear. This conclusion is independent of
the form of the RFs.
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