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The literature on vertical disparity is complicated by the fact that several different definitions of the term “vertical disparity”
are in common use, often without a clear statement about which is intended or a widespread appreciation of the properties
of the different definitions. Here, we examine two definitions of retinal vertical disparity: elevation-latitude and elevation-
longitude disparities. Near the fixation point, these definitions become equivalent, but in general, they have quite different
dependences on object distance and binocular eye posture, which have not previously been spelt out. We present
analytical approximations for each type of vertical disparity, valid for more general conditions than previous derivations in
the literature: we do not restrict ourselves to objects near the fixation point or near the plane of regard, and we allow for
non-zero torsion, cyclovergence, and vertical misalignments of the eyes. We use these expressions to derive estimates of
the latitude and longitude vertical disparities expected at each point in the visual field, averaged over all natural viewing.
Finally, we present analytical expressions showing how binocular eye positionVgaze direction, convergence, torsion,
cyclovergence, and vertical misalignmentVcan be derived from the vertical disparity field and its derivatives at the fovea.
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Introduction

Because the two eyes are set apart in the head, the
images of an object fall at different positions in the two
eyes. The resulting binocular disparity is, in general, a
two-dimensional vector quantity. Since Helmholtz (1925),
psychophysicists have divided this vector into two
components: horizontal and vertical disparities. There is
now an extensive literature discussing how vertical
disparities influence perception and how this may be
achieved within the brain, for example Backus, Banks,
van Ee, and Crowell (1999), Banks, Backus, and Banks
(2002), Berends, van Ee, and Erkelens (2002), Brenner,
Smeets, and Landy (2001), Cumming (2002), Duke and
Howard (2005), Durand, Zhu, Celebrini, and Trotter
(2002), Friedman, Kaye, and Richards (1978), Frisby
et al. (1999), Garding, Porrill, Mayhew, and Frisby
(1995), Gillam and Lawergren (1983), Kaneko and
Howard (1997b), Longuet-Higgins (1982), Matthews,
Meng, Xu, and Qian (2003), Ogle (1952), Porrill,
Mayhew, and Frisby (1990), Read and Cumming
(2006), Rogers and Bradshaw (1993, 1995), Westheimer
(1978), and Williams (1970). Yet the literature is compli-
cated by the fact that the term “vertical disparity” is used
in several different ways by different authors. The first and

most fundamental distinction is whether disparity is
defined in a head-centric or retino-centric coordinate
system. The second issue concerns how disparity, as a two-
dimensional vector quantity, is divided up into “vertical”
and “horizontal” components.
In a head-centric system, vertical and horizontal

disparities are defined in the optic array, that is the set
of light rays passing through the nodal points of each eye.
One chooses an angular coordinate system to describe the
line of sight from each eye to a point in space; vertical
disparity is then defined as the difference in the elevation
coordinates. If Helmholtz coordinates are used (Figure 1A,
Howard & Rogers, 2002), then for any point in space, the
elevation is the same from both eyes. Thus, head-centric
Helmholtz elevation disparity is always zero for real
objects (Erkelens & van Ee, 1998). This definition is
common in the physiology literature, where “vertical
disparity” refers to a vertical off-set between left and
right images on a frontoparallel screen (Cumming, 2002;
Durand, Celebrini, & Trotter, 2007; Durand et al., 2002;
Gonzalez, Justo, Bermudez, & Perez, 2003; Stevenson &
Schor, 1997). In this usage, a “vertical” disparity is always
a “non-epipolar” disparity: that is, a two-dimensional
disparity that cannot be produced by any real object, given
the current eye position. A different definition uses Fick
coordinates to describe the angle of the line of sight
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(Figure 1B). With this definition, vertical disparities occur
in natural viewing (e.g., Backus & Banks, 1999; Backus
et al., 1999; Bishop, 1989; Hibbard, 2007; Rogers &
Bradshaw, 1993), and so non-zero vertical disparities are
not necessarily non-epipolar.
Head-centric disparity is independent of eye position,

and thus mathematically tractable. However, all visual
information arrives on the retinas, and it seems clear that
the brain’s initial encoding of disparity is retinotopic (Gur
& Snodderly, 1997; Read & Cumming, 2003). Accord-
ingly, the appropriate language for describing the neuronal
encoding of disparity must be retinotopic (Garding et al.,
1995). The retinal disparity of an object is the two-
dimensional vector linking its two images in the two
retinas. This depends both on the scene viewed and also
on the binocular posture of the eyes viewing it. Thus, two-
dimensional retinal disparity can be used to extract eye
posture as well as scene structure (Garding et al., 1995;
Longuet-Higgins, 1981). It is more complicated to handle
than head-centric disparity, but it contains more information.
For retinal disparity, as well, two definitions of vertical

disparity are in common use within the literature,
stemming from the difficulty of defining a “vertical”
direction on a spherical eyeball. One possibility is to
define “vertical” as the projection of vertical lines in space
onto the retina, so that a line of constant “vertical”
position on the retina is the projection of a horizontal line
in space. This produces lines of elevation longitude on the

spherical eyeball (Figures 2BD and 3AC). We shall refer
to the corresponding vertical coordinate as elevation
longitude, ); it is called inclination by Bishop, Kozak,
and Vakkur (1962) and is analogous to the Helmholtz
coordinates of Figure 1A. Equivalently, one can project
the hemispherical retina onto a plane and take the vertical
Cartesian coordinate on the plane, y (Figure 2A). This is
usual in the computer vision literature. Since there is a
simple one-to-one mapping between these two coordi-
nates, y = tan), we shall not need to distinguish between
them in this paper. The natural definition of vertical
disparity within this coordinate system is then the differ-
ence between the elevation longitude of the images in the
two eyes. Papers that have defined vertical disparity to be
differences in either ) or y include Garding et al. (1995),
Hartley and Zisserman (2000), Longuet-Higgins (1982),
Mayhew (1982), Mayhew and Longuet-Higgins (1982), and
Read and Cumming (2006).
An alternative approach is to define the vertical

coordinate as being lines of latitude on the sphere
(Figures 2CE and 3BD). This is analogous to the Fick
coordinates of Figure 1B. We shall refer to the corre-
sponding vertical coordinate as elevation latitude, . (see
Table A2 in Appendix A for a complete list of symbols
used in this paper). Studies defining vertical disparity as
the difference in elevation latitude . include Barlow,
Blakemore, and Pettigrew (1967), Bishop et al. (1962), and
Howard and Rogers (2002).

Figure 1. Two coordinate systems for describing head-centric or optic-array disparity. Red lines are drawn from the two nodal points L, R
to an object P. (A) Helmholtz coordinates. Here, we first rotate up through the elevation angle 1 to get us into the plane LRP, and the
azimuthal coordinate K rotates the lines within this plane until they point to P. The elevation is thus the same for both eyes; no physical
object can have a vertical disparity in optic-array Helmholtz coordinates. (B) Fick coordinates. Here, the azimuthal rotation K is applied
within the horizontal plane, and the elevation 1 then lifts each red line up to point at P. Thus, elevation is in general different for the two
lines, meaning that object P has a vertical disparity in optic-array Fick coordinates.
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Figure 3. Two definitions of vertical retinal disparity. (AB) A point in space, P, projects to different positions IL and IR on the two retinas.
(CD) The two retinas are shown superimposed, with the two half-images of P shown in red and blue for the left and right retinas,
respectively. In (AC), the retinal coordinate system is azimuth longitude/elevation longitude. In (BD), it is azimuth longitude/elevation
latitude. Point P and its images IL and IR are identical between (AC) and (BD); the only difference between left and right halves of the
figure is the coordinate system drawn on the retinas. The eyes are converged 30- fixating a point on the midline: X = 0, Y = 0, Z = 11. The
plane of gaze, the XZ plane, is shown in gray. Lines of latitude and longitude are drawn at 15- intervals. Point P is at X = j6, Y = 7, Z = 10.
In elevation-longitude coordinates, the images of P fall at)L =j30-, )R =j38-, so the vertical disparity )$ isj8-. In elevation latitude, .L =j27-,
.R = j34-, and the vertical disparity .$ = j6-. This figure was generated by Fig_VDispDefinition.m in the Supplementary material.

Figure 2. Different retinal coordinate systems. (A) Cartesian planar. Here, x and y refer to position on the virtual plane behind the retina;
the “shadow” shows where points on the virtual plane correspond to on the retina, i.e., where a line drawn from the virtual plane to the
center of the eyeball intersects the eyeball. (B) Azimuth longitude/elevation longitude. (C) Azimuth longitude/elevation latitude. (D) Azimuth
latitude/elevation longitude. (E) Azimuth latitude/elevation latitude. For the (B–E) angular coordinate systems, lines of latitude/longitude are
drawn at 15- intervals between T90-. For the (A) Cartesian system, the lines of constant x and y are at intervals of 0.27 = tan15-. Lines of
constant x are also lines of constant !, but lines that are equally spaced in x are not equally spaced in !. In this paper, we use the sign
convention that positive x, !, " represent the left half of the retina, and positive y, ), . represent the top. This figure was generated in
Matlab by the program Fig_DiffRetCoords.m in the Supplementary material.
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Both definitions of vertical disparity are perfectly valid
and in common use. The trouble is that statements that are
true of one are not true of the other. For example,
elevation-longitude vertical disparity is always zero when
the eyes are in primary position, but elevation-latitude
vertical disparity is not. Horizontal rotations of the eyes
away from primary position change the elevation longi-
tude to which an object projects, but leave its elevation
latitude unaltered. As a consequence, elevation-latitude
vertical disparity is independent of convergence, whereas
elevation-longitude vertical disparity increases as the eyes
converge. Elevation-latitude vertical disparity is always
zero for objects on the mid-sagittal plane, but elevation-
longitude vertical disparity is not. Yet despite these
crucial differences, papers on vertical disparity often do
not spell out which definition they are employing. From
personal experience, we believe that the differences
between the definitions are not widely appreciated,
perhaps because the two definitions become equivalent
at the fovea. A key aim of this paper is to lay out the
similarities and differences between both definitions in a
single convenient reference.
A second aim is to obtain analytical expressions for

both types of disparity that are as general as possible.
Most mathematical treatments in the psychology literature
make simplifying assumptions, e.g., that the eyes have no
torsion, that the object is in the plane of gaze, and that the
eyes are correctly fixating on a single point in space.
Conversely the computer vision literature allows for
completely general camera positions but does not provide
explicit expressions for vertical disparity. Here, we derive
unusually general explicit expressions for both types of
vertical disparity. We still use the small baseline approx-
imation required by previous treatments and also small
vergence angles. However, we are able to produce
approximate expressions that allow for small amounts of
cycloversion, cyclovergence, and vertical misalignments
between the eyes.
These general expressions allow us to derive simple

expressions for the expected pattern of vertical disparity
across the visual field, averaged across all scenes and eye
positions. A few previous studies have attempted to
estimate the two-dimensional distribution of disparities
encountered in normal viewing (Hibbard, 2007; Liu,
Bovik, & Cormack, 2008; Read & Cumming, 2004), but
these have all averaged results across the entire visual
field. This study is the first to examine the expected
vertical disparity as a function of position in the visual
field, and we hope it will be useful to physiologists
studying the neuronal encoding of vertical disparity.
In the vicinity of the fovea, the distinction between

latitude and longitude becomes immaterial. The two
definitions of vertical disparity are therefore equivalent.
We show how eye position can be read off very
straightforwardly from this unified vertical disparity. We
derive simple analytic expressions giving estimates of
each eye position parameter in terms of the vertical

disparity at the fovea and its rate of change there. These
are almost all implicit in the existing literature (Backus &
Banks, 1999; Backus et al., 1999; Banks et al., 2002;
Banks, Hooge, & Backus, 2001; Kaneko & Howard, 1996,
1997b; Koenderink & van Doorn, 1976; Rogers &
Bradshaw, 1993, 1995; Rogers & Cagenello, 1989) but
are brought together here within a single clear set of
naming conventions and definitions so that the similar-
ities and differences between definitions can be readily
appreciated.

Methods

All simulations were carried out in Matlab 7.8.0 R2009a
(www.mathworks.com), using the code made available in
the Supplementary material. Most of the figures in this
paper can be generated by this code. To produce a figure,
first download all the Matlab (.m) files in the Supple-
mentary material to a single directory. In Matlab, move to
this directory and type the name of the file specified in the
figure legend.

Results

General expressions for elevation-longitude
and elevation-latitude vertical disparities

Figure 3 shows the two definitions of retinal vertical
disparity that we consider in this paper. A point P in space
is imaged to the points IL and IR in the left and right
retinas, respectively (Figure 3AB). Figures 3C and 3D
show the left and right retinas aligned and superimposed,
so that the positions of the images IL and IR can be more
easily compared. The left (AC) and right-hand panels
(BD) of Figure 3 are identical apart from the vertical
coordinate system drawn on the retina: Figure 3AC shows
elevation longitude ), and Figure 3BD shows elevation
latitude .. The vertical disparity of point P is the
difference between the vertical coordinates of its two
half-images. For this example, the elevation-longitude
vertical disparity of P is )$ = j8-, while the elevation-
latitude disparity is .$ = j6-.
In the Appendices, we derive approximate expressions

for both types of retinal vertical disparity. These are given
in Table C2. In general, vertical disparity depends on the
position of object P (both its visual direction and its
distance from the observer) and on the binocular posture
of the eyes. Each eye has three degrees of freedom, which
we express in Helmholtz coordinates as the gaze azimuth
H, elevation V, and torsion T (Figure 4; Appendix A).
Thus, in total the two eyes have potentially 6 degrees of
freedom. It is convenient to represent these by the mean
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Figure 4. Helmholtz coordinates for eye position (A) shown as a gimbal, after Howard (2002, Figure 9.10) and (B) shown for the cyclopean
eye. The sagittal YZ plane is shown in blue, the horizontal XZ plane in pink, and the gaze plane in yellow. There are two ways of
interpreting Helmholtz coordinates: (1) Starting from primary position, the eye first rotates through an angle T about an axis through the
nodal point parallel to Z, then through H about an axis parallel to Y, and finally through V about an axis parallel to X. Equivalently,
(2) starting from primary position, the eye first rotates downward through V, bringing the optic axis into the desired gaze plane (shown in
yellow) then rotates through H about an axis orthogonal to the gaze plane, and finally through T about the optic axis. Panel B was
generated by the program Fig_HelmholtzEyeCoords.m in the Supplementary material.
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and the difference between the left and right eyes. Thus,
we shall parametrize eye position by the three coordinates
of an imaginary cyclopean eye (Figure 5), Hc, Vc, and Tc,
and the three vergence angles, H$, V$, and T$, where Hc =
(HR + HL)/2, and H$ = HR j HL, and so on (Tables A1
and A2). When we refer below to convergence, we mean
the horizontal vergence angle H$. We shall refer to V$ as
vertical vergence error or vertical vergence misalignment.
We call V$ a misalignment because, in order for the two
eyes’ optic axes to intersect at a single fixation point, V$

must be zero, and this is empirically observed to be
usually the case.
We shall call T$ the cyclovergence. Non-zero values of

T$ mean that the eyes have rotated in opposite directions
about their optic axes. This occurs when the eyes look up
or down: if we specify the eyes’ position in Helmholtz
coordinates, moving each eye to its final position by
rotating through its azimuth H about a vertical axis and
then through the elevation V about the interocular axis, we
find that in order to match the observed physical position
of each eye, we first have to apply a rotation T about the
line of sight. If V 9 0, so the eyes are looking down, this
initial torsional rotation will be such as to move the top of
each eyeball nearer the nose, i.e., incyclovergence. Note
that the sign of the cyclovergence depends on the coordinate
system employed; if eye position is expressed using rotation

vectors or quaternions, converged eyes excycloverge when
looking downward (Schreiber, Crawford, Fetter, & Tweed,
2001).
We shall refer to Tc as cycloversion. Non-zero values of

Tc mean that the two eyes are both rotated in the same
direction. This happens, for example, when the head tilts
to the left; both eyes counter-rotate slightly in their
sockets so as to reduce their movement in space, i.e.,
anti-clockwise as viewed by someone facing the observer
(Carpenter, 1988).
As noted, V$ is usually zero. It is also observed that for

a given elevation, gaze azimuth, and convergence, the
torsion of each eye takes on a unique value, which is small
and proportional to elevation (Tweed, 1997c). Thus, out of
the 6 degrees of freedom, it is a reasonable approximation
to consider that the visual system uses only 3: Hc, Vc, and
H$, with V$ = 0, and cycloversion Tc and cyclovergence
T$ given by functions of Hc, Vc, and H$. Most treatments
of physiological vertical disparity have assumed that there
is no vertical vergence misalignment or torsion: V$ = T$ =
Tc = 0. We too shall use this assumption in subsequent
sections, but we start by deriving the most general
expressions that we can. The expressions given in
Table C2 assume that all three vergence angles are small
but not necessarily zero. This enables the reader to
substitute in realistic values for the cyclovergence T$ at

Figure 5. Different ways of measuring the distance to the object P. The two physical eyes are shown in gold; the cyclopean eye is in
between them, in blue. F is the fixation point; the brown lines mark the optic axes, and the blue line marks the direction of the cyclopean
gaze. Point P is marked with a red dot. It is at a distance R from the origin. Its perpendicular projection on the cyclopean gaze axis is also
drawn in red (with a corner indicating the right angle); the distance of this projection from the origin is S, marked with a thick red line. This
figure was generated by the program Fig_DistancesRS.m in the Supplementary material.
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different elevations (Minken & Van Gisbergen, 1994;
Somani, DeSouza, Tweed, & Vilis, 1998; Van Rijn & Van
den Berg, 1993). The expressions in Table C2 also assume
that the interocular distance is small compared to the
distance to the viewed object. If the eyes are fixating near
object P, then the small vergence approximation already
implies this small baseline approximation, since if P is far
compared to the interocular separation, then both eyes
need to take up nearly the same posture in order to view it.
While Porrill et al. (1990) extended the results of Mayhew
and Longuet-Higgins (1982) to include cyclovergence, we
believe that this paper is the first to present explicit
expressions for two-dimensional retinal disparity that are
valid all over the visual field and which allow for non-zero
vertical vergence misalignment and cycloversion as well
as cyclovergence.
Under these assumptions, the vertical disparity expressed

as the difference in elevation-longitude coordinates is

)$ , cos2)c sinTccosHc j sinHctan)cð Þ I
S

þ tan!csin)ccos)ccosTc j sinTcð ÞH$

j ðcosHccosTc þ tan!csin)ccos)ccosHcsinTc

þ tan!ccos
2)csinHcÞV$ j tan!ccos

2)c

� �
T$; ð1Þ

assuming that I/S, H$, T$, and V$ are all small, while the
vertical disparity expressed as the difference in elevation-
latitude coordinates is

.$ , ðcosTccosHcsin!csin.c j sinHccos!csin.c

þ sinTccosHccos.cÞ I
R

j sinTccos!cH$

j cosHccosTccos!c þ sin!csinHcð ÞV$ j sin!cT$; ð2Þ

assuming that I/R, H$, T$, and V$ are all small.
The coordinates (!c, )c) represent the visual direction of

the viewed object P in the azimuth-longitude/elevation-
longitude coordinate system shown in Figure 3AC, while
(!c, .c) represent visual direction in the azimuth-longitude/
elevation-latitude system of Figure 3BD. (!c, )c) or
(!c, .c) specify the position of P’s image on an imaginary
cyclopean retina midway between the two real eyes, with
gaze azimuth Hc, elevation Vc, and torsion Tc.
S and R both represent the distance to the viewed object

P. R is the distance of P from the cyclopean point midway
between the eyes. S is the length of the component along
the direction of cyclopean gaze (Figure 5). These are
simply related by the following equation:

S ¼ Rcos!ccos.c ¼ Rcos"ccos)c: ð3Þ

As noted, Equations 1 and 2 assume that I/S, I/R, H$,
V$, and T$ are all small, and they are correct to first order
in these terms. However, they make no assumptions about
!c, )c, .c, Hc, Vc, and Tc. They are thus valid over the
entire retina, not just near the fovea, and for all cyclopean
eye positions. Under this small-vergence approximation,
the total vertical disparity is the sum of four terms,
respectively proportional to one of four possible sources
of disparity: (i) the interocular separation as a fraction of
object distance, I/R or I/S, (ii) the horizontal vergence H$,
(iii) vertical vergence error V$, and (iv) cyclovergence T$.
Each source of disparity is multiplied by a term that
depends on one or both of the components of visual
direction (!c and )c or .c), the gaze azimuth Hc and the
overall torsion Tc. For example, cyclovergence T$ is
multiplied by !c, and so makes no contribution to vertical
disparity on the vertical retinal meridian. None of the four
disparity terms explicitly depends on elevation Vc,
although elevation would affect the disparity indirectly,
because it determines the torsion according to Donders’
law (Somani et al., 1998; Tweed, 1997a).
The contribution of the three vergence sources of

disparity is independent of object distance; object distance
only enters through the interocular separation term (i).
This may surprise some readers used to treatments that are
only valid near fixation. In such treatments, it is usual to
assume that the eyes are fixating the object P, so the
vergence H$ is itself a function of object distance R. We
shall make this assumption ourselves in the next section.
However, this section does not assume that the eyes are
fixating the object P, so the three vergence angles H$,
V$, and T$ are completely independent of the object’s
distance R. Thus, object distance affects disparity only
through the explicit dependence on R (or S) in the first
term (i). The contribution of the three vergence terms
(ii–iv) is independent of object distance, provided that
the visual direction and eye posture is held constant.
That is, if we move the object away but also increase its
distance from the gaze axis such that the object
continues to fall at the same point on the cyclopean
retina, then the contribution of the three vergence terms
to the disparity at that point are unchanged. (If the
vergence changed to follow the object as it moved away,
then of course this contribution would change.)
Of course, expressing disparity as a sum of independent

contributions from four sources is valid only to first order.
A higher order analysis would include interactions
between the different types of vergence, between vergence
and interocular separation, and so on. Nevertheless, we
and others (e.g., Garding et al., 1995) have found that
first-order terms are surprisingly accurate, partly because
several second-order terms vanish. We believe that the
present analysis of disparity as arising from 4 independent
sources (interocular separation plus 3 vergence angles) is
both new and, we hope, helpful. In the next section, we
show how we can use this new analysis to derive
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expressions for the average vertical disparity experienced
in different parts of the visual field.

Average vertical disparity expected
at different positions on the retina

There have been a few previous attempts to derive the
distribution of vertical disparity encountered during
normal viewing (Hibbard, 2007; Liu et al., 2008; Read
& Cumming, 2004). However, these studies averaged
results across all visual directions. For example, Read and
Cumming calculated the distribution of physically possi-
ble disparities for all objects whose images fall within 15-
of the fovea in both retinas. Critically, they averaged this
distribution not only over all possible objects but over the
whole 15- parafoveal area. The spread of their distribution
thus reflects both variation in the vertical disparities that
are possible at different positions on the retina, and
variation that is possible at a single retinal location. To
make the distinction clear with a toy example, suppose
that all eye position parameters are frozen (Hc = Tc = T$ =
V$ = 0), except for vergence, H$, which varies between 0
and 40-, so that elevation-longitude disparity is )$ ,
0.5H$tan(!c)sin(2)c). Under these circumstances, 10- to
the left and 10- up from the fovea, vertical disparity
would always be positive, running from 0- to +0.9-. On
the opposite side of the retina, 10- right and 10- up,
vertical disparity would always be negative, running from
0- to j0.9-. Along the retinal meridians, the vertical
disparity would always be zero. Read and Cumming’s
analysis would lump all these together to report that the
range of possible vertical disparity is from j0.9- to +0.9-.
In other words, the results of Read and Cumming (2004),
like those of Hibbard (2007) and Liu et al. (2008),
confound variation in the vertical disparity that is possible
at a given retinal location with variation across different
locations. Similarly, physiological studies that have
investigated tuning to vertical disparity have not reported
where in the visual field individual neurons were, making
it impossible to relate the tuning of these neurons to
ecological statistics. For example, one would expect the
range of vertical disparity tuning to be narrower for
neurons located directly above or below the fovea than for
neurons to the “northwest.” The published physiological
literature does not make it possible to examine this
prediction.
Deriving a full probability density function for ecolo-

gical disparity requires making assumptions about the eye
postures adopted during natural viewing, the scenes
viewed, and the fixations chosen within each scene.
Although there have been major steps toward realistic
estimates of these quantities (Hibbard, 2007; Liu et al.,
2008), there is as yet no definitive study, and the issue is
beyond the scope of the present paper. However, the

expressions derived in the previous section do enable us to
estimate the mean vertical disparity as a function of
position in the visual field. The previous studies (Hibbard,
2007; Liu et al., 2008; Read & Cumming, 2004) say only
that the mean vertical disparity, averaged across the visual
field, is zero; they do not discuss how the mean varies as a
function of position. In this section, making only some
fairly limited and plausible assumptions about eye
position, we shall obtain expressions showing how mean
vertical disparity varies as a function of position in the
visual field.
The last term in both Equations 1 and 2 depends on eye

position only through T$, the cyclovergence. According to
the extended binocular versions of Listing’s law (Minken
& Van Gisbergen, 1994; Mok, Ro, Cadera, Crawford, &
Vilis, 1992; Somani et al., 1998; Tweed, 1997c), this term
depends on elevation and more weakly on convergence.
Relative to zero Helmholtz torsion, the eyes twist inward
(i.e., top of each eye moves toward the nose) on looking
down from primary position and outward on looking up,
and this tendency is stronger when the eyes are converged:
T$ = Vc(0 + MH$), where 0 and M are constants G 1
(Somani et al., 1998). Humans tend to avoid large
elevations: if we need to look at something high in our
visual field, we tilt our head upward, thus enabling us to
view it in something close to primary position. Thus,
cyclovergence remains small in natural viewing, and since
both positive and negative values occur, the average is
likely to be smaller still. Thus, we can reasonably
approximate the mean cyclovergence as zero: bT$À = 0.
This means that the last term in the expressions for both
kinds of vertical disparity vanishes.
The next-to-last term is proportional to vertical ver-

gence error, V$. We assume that this is on average zero
and independent of gaze azimuth or torsion, so that terms
like V$cosHccosTc all average to zero. This assumption
may not be precisely correct, but vertical vergence errors
are likely to be so small in any case that neglecting this
term is not likely to produce significant errors in our
estimate of mean vertical disparity.
The next term is proportional to convergence angle H$.

This is certainly not zero on average. However, part of its
contribution depends on sin(Tc), the sine of the cyclo-
version. Empirically, this is approximately Tc È jVcHc/2
(Somani et al., 1998; Tweed, 1997b). So, although
cycloversion can be large at eccentric gaze angles,
provided we assume that gaze is symmetrically distributed
about primary position, then bVcHcÀ = 0 and so the mean
torsion is zero. Again, in the absence of a particular
asymmetry, e.g., that people are more likely to look up
and left while converging and more likely to look up and
right while fixating infinity, we can reasonably assume
that bH$sinTcÀ = 0. Equation 1 also contains a term in
H$cosTc. This does not average to zero, but under the
assumption that convergence and cycloversion are inde-
pendent, and that cycloversion is always small, the mean

Journal of Vision (2009) 9(13):11, 1–37 Read, Phillipson, & Glennerster 8



value of this term will be approximately bH$À. Thus, under
the above assumptions, Equations 1 and 2 become

b)$À , cos2)c sinTccosHc j sinHctan)cð Þ I
S

� �

þ tan!csin)ccos)cð ÞbH$À; ð4Þ

b.$À ,

*
ðcosTccosHcsin!csin.c j sinHccos!csin.c

þsinTccosHccos.cÞ I
R

+
: ð5Þ

Looking at Equation 4, we see that the average elevation-
longitude disparity encountered in natural viewing contains
terms in the reciprocal of S, the distance to the surface:
bsin(Tc)cos(Hc)/SÀ and bsin(Hc)/SÀ. We now make the
reasonable assumption that, averaged across all visual
experience, gaze azimuth is independent of distance to the
surface. This assumes that there are no azimuthal asymme-
tries such that nearer surfaces are systematically more
likely to be encountered when one looks left, for example.
Under this assumption, the term bsin(Hc)/SÀ averages to
zero. Similarly we assume that bsin(Tc)cos(Hc)/SÀ = 0.
Thus, the entire term in I/S averages to zero. The vast array
of different object distances encountered in normal viewing
makes no contribution to the mean elevation-longitude
disparity at a particular place on the retina. The mean
elevation-longitude disparity encountered at position (!c, )c)
is simply

b)$À , bH$À tan!csin)ccos)c: ð6Þ

We have made no assumptions about the mean
convergence, bH$À, but simply left it as an unknown. It
does not affect the pattern of expected vertical disparity
across the retina but merely scales the size of vertical
disparities. Convergence is the only eye-position param-
eter that we cannot reasonably assume is zero on average,
and thus it is the only one contributing to mean vertical
disparity measured in elevation longitude.
For elevation-latitude disparity, the dependence on

object distance S does not immediately average out.
Again, we assume that the terms bsin(Hc)/RÀ and bsin(Tc)
cos(Hc)/RÀ are zero, but this still leaves us with

b.$À ,
I

R
cosHccosTc

� �
sin!csin.c: ð7Þ

To progress, we need to make some additional assump-
tions about scene structure. We do this by introducing the
fractional distance from fixation, %:

R ¼ R0ð1þ %Þ; ð8Þ

where R0 is the radial distance from the origin to the
fixation point (or to the point where the optic axes most
nearly intersect, if there is a small vertical vergence error),
i.e., the distance OF in Figure 5. This is

R0 ,
IcosHc

H$
: ð9Þ

Thus, assuming % is small,

I

R
cosHc , H$ 1 j %ð Þ: ð10Þ

Substituting Equation 10 into Equation 7, we obtain

b.$À , H$ 1j %ð ÞcosTch isin!csin.c: ð11Þ

We can very plausibly assume that torsion is independ-
ent of convergence and scene structure and on average
zero, so that bH$(1 j %)cosTcÀ averages to bH$(1 j %)À. In
natural viewing, the distributions of H$ and % will not be
independent (cf. Figure 6 of Liu et al., 2008). For
example, when H$ is zero, its smallest value, the fixation
distance is infinity, and so % must be negative or zero.
Conversely when the eyes are converged on a nearby
object (large H$), perhaps most objects in the scene are
usually further away than the fixated object, making %
predominantly positive. In the absence of accurate data,
we assume that the average bH$%À is close to zero. We
then obtain

b.$À , bH$Àsin!csin.c: ð12Þ

Equation 12 gives the expected elevation-latitude dis-
parity b.$À as a function of cyclopean elevation latitude,
.c, whereas Equation 6 gave the expected elevation-
longitude disparity b)$À as a function of cyclopean
elevation longitude, )c. To make it easier to compare the
two, we now rewrite Equation 6 to give the expected
elevation-longitude disparity b)$À as a function of cyclo-
pean elevation latitude, .c. The expected vertical disparity
at (!c, .c) is thus, in the two definitions,

)$ !c;.cð Þh i , H$h isin!ctan.c= cos2!c þ tan2.cð Þ
.$ !c; .cð Þh i , H$h isin!csin.c:

ð13Þ

These expressions will strike many readers as familiar.
They are the longitude and latitude vertical disparity fields
that would be obtained when the eyes adopt their average
position, i.e., fixating on the mid-sagittal plane with no
cyclovergence, cycloversion, or vertical vergence and with
the average convergence bH$À, and viewing a spherical
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surface centered on the cyclopean point and passing
through fixation. The much more general expressions we
have considered reduce to this, because vertical-disparity
contributions from eccentric gaze, from the fact that
objects may be nearer or further than fixation, from
cyclovergence and from vertical vergence all cancel out

on average. Thus, they do not affect the average vertical
disparity encountered at different points in the visual field
(although of course they will affect the range of vertical
disparities encountered at each position).
It is often stated that vertical disparity increases as a

function of retinal eccentricity. Thus, it may be helpful to
give here expressions for retinal eccentricity J:

cosJ ¼ cos!ccos.c

tan2J ¼ tan2!c þ tan2)c:
ð14Þ

Here, eccentricity J is defined as the angle EĈV, where
E is the point on the retina whose retinal eccentricity is
being calculated, C is the center of the eyeball, and V is
the center of the fovea (Figure 6).
The mean convergence, bH$À, is not known but must be

positive. It does not affect the pattern of vertical disparity
expected at different points in the visual field but simply
scales it. Figure 7 shows the pattern expected for both
types of vertical disparity. In our definition, !c and .c
represent position on the cyclopean retina, and their signs
are thus inverted with respect to the visual field (bottom of
the retina represents upper visual field). However, con-
veniently Equation 13 is unchanged by inverting the sign
of both !c and .c, meaning that Figure 7 can be equally
well interpreted as the pattern across either the cyclopean
retina or the visual field.
Conveniently, within the central 45- or so, the expected

vertical disparity is almost identical for the two definitions
of retinal vertical disparity we are considering. Near the

Figure 6. Definition of retinal eccentricity J: the eccentricity of
Point E is the angle EĈV, where C is the center of the eyeball and
V is the center of the fovea.

Figure 7. Expected vertical disparity in natural viewing, as a function of position in the cyclopean retina, for (a) elevation-longitude and
(b) elevation-latitude definitions of vertical disparity. Vertical disparity is measured in units of bH$À, the mean convergence angle. Because
the vertical disparity is small over much of the retina, we have scaled the pseudocolor as indicated in the color bar, so as to concentrate
most of its dynamic range on small values. White contour lines show values in 0.1 steps from j1 to 1. This figure was generated by
Fig_ExpectedVDisp.m in the Supplementary material.
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fovea, the value expected for both types of vertical
disparity is roughly bH$À!c.c. Throughout the visual field,
the sign of vertical disparity depends on the quadrant.
Points in the top-right or bottom-left quadrants of the
visual field experience predominantly negative vertical
disparity in normal viewing, while points in the top-left or
bottom-right quadrants experience predominantly positive
vertical disparities. Points on the vertical or horizontal
meridian experience zero vertical disparity on average,
although the range would clearly increase with vertical
distance from the fovea. To our knowledge, no physio-
logical studies have yet probed whether the tuning of
disparity-sensitive neurons in early visual areas reflects
this retinotopic bias.

Properties of elevation-longitude
and elevation-latitude definitions
of vertical disparity, in the absence
of torsion or vertical vergence

So far, we have provided general expressions for
vertical disparity but, in order to make comparisons with
previous literature more straightforward, in this and
subsequent sections we make the simplifying assumption
that cycloversion, cyclovergence, and vertical vergence
are all zero (Tc = T$ = V$ = 0) and demonstrate the
consequences of this assumption on the properties of the
two types of vertical disparity. In this case, the only
degrees of freedom that affect disparity are the horizontal
rotation of each eye, expressed as the convergence H$ and
the gaze angle Hc. From Equation 1, elevation-longitude
vertical disparity in the absence of torsion and vertical
vergence is

)$ ,
1

2
sin2)c j

I

S
sinHc þ H$tan!c

� �
; ð15Þ

while from Equation 2, elevation-latitude vertical dispar-
ity is

.$ ,
I

R
sin.csin !c j Hcð Þ: ð16Þ

In general, these two types of vertical disparity have
completely different properties. We see that elevation-
longitude vertical disparity is zero for all objects,
irrespective of their position in space, if the eyes are in
primary position, i.e., Hc = H$ = 0. Elevation-latitude
vertical disparity is not in general zero when the eyes are
in primary position, except for objects on the midline or at
infinite distance. Rotating the eyes into primary position
does not affect elevation-latitude disparity because, as
noted in the Introduction, horizontal rotations of the
eyes cannot alter which line of elevation latitude each
point in space projects to; they can only alter the
azimuthal position to which it projects. Thus, .$ is
independent of convergence, while gaze azimuth simply
sweeps the vertical disparity pattern across the retina,
keeping it constant in space. .$ depends on gaze azimuth
Hc only through the difference (!c j Hc), representing
azimuthal position in head-centric space. As a conse-
quence, elevation-latitude vertical disparity is zero for all
objects on the midline (X = 0, meaning that !c = Hc). The
elevation-latitude disparity .$ at each point in the cyclo-
pean retina is scaled by the reciprocal of the distance to
the viewed object at that point. In contrast, elevation-
longitude disparity, )$, is independent of object distance
when fixation is on the mid-sagittal plane; it is then
proportional to convergence. In Table 1, we summarize
the different properties of elevation-longitude and eleva-
tion-latitude vertical disparities, under the conditions Tc =
T$ = V$ = 0 to which we are restricting ourselves in this
section.

Vertical disparity defined as: Properties in the absence of vertical vergence error and torsion (Tc = T$ = V$ = 0)

Difference in retinal elevation
longitude, )$

Is zero for objects in plane of gaze.
Is zero when the eyes are in primary position, for objects at any distance anywhere on the retina.
Increases as eyes converge.
May be non-zero even for objects at infinity, if the eyes are converged.
Is proportional to sine of twice the elevation longitude.
Is not necessarily zero for objects on the midsagittal plane.
For fixation on midline, is independent of object distance for a given convergence angle.

Difference in retinal elevation
latitude, .$

Is zero for objects in plane of gaze.
Is zero for objects at infinity.
Is inversely proportional to object’s distance.
Is independent of convergence for objects at a given distance.
May be non-zero even when eyes are in primary position.
Is proportional to sine of elevation latitude.
Is zero for objects on the mid-sagittal plane.

Table 1. Summary of the different properties of the two definitions of retinal vertical disparity in the absence of vertical vergence error and
torsion.
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We have seen that )$ and .$ depend very differently on
convergence and object distance. For midline fixation,
)$ is proportional to convergence and is independent of
object distance, whereas .$ is independent of convergence
and is inversely proportional to object distance. However,
if we consider only objects close to fixation, then object
distance and convergence convey the same information.
Under these circumstances the two definitions of vertical
disparity become similar. This is shown in Figure 8, which
plots the vertical disparity field for a frontoparallel plane.
The two left panels show elevation-longitude vertical
disparity; the two right panels show elevation-latitude
vertical disparity. In the top row, the eyes are viewing a
frontoparallel plane at a distance of 60 cm, and in the
bottom row, a plane at 10 m. In each case, the eye position
is the same: looking 15- to the left, and converged so as to
fixate the plane at 60 cm.
In Figure 8AB, where the eyes are fixating the viewed

surface, both definitions of vertical disparity give similar
results, especially near the fovea. For both definitions,
vertical disparity is zero for objects in the plane of gaze
(Y = 0, i.e., )c = .c = 0) and also along a vertical line
whose position depends on the gaze angle. For elevation-

latitude disparity .$, this line is simply the line of azimuth
longitude !c = Hc, here 15-. This is the retinal projection
of the mid-sagittal plane, X = 0. That is, in the absence of
torsion or vertical vergence error, elevation-latitude
vertical disparity is zero for objects on the midline,
independent of their distance or of the convergence angle.
For elevation-longitude vertical disparity )$, no such
simple result holds. The locus of zero vertical disparity
(vertical white line in Figure 8AC) depends on object
distance and the eyes’ convergence, as well as gaze angle.
However, for objects relatively near fixation, these differ-
ences are minor, so the locus of zero )$ is also close
to 15-.
It is not always the case, however, that the differences

between elevation-longitude and elevation-latitude verti-
cal disparities are minor. Figure 8CD shows the two
vertical disparity fields for a surface at a much greater
distance from the observer than the fixation point. The
position of the eyes is the same as in AB, but now the
viewed surface is a plane at 10 m from the observer. Now,
the pattern of vertical disparities is very different. As we
saw from Equation 16, elevation-latitude vertical disparity
is zero for all objects at infinity, no matter what the

Figure 8. Vertical disparity field all over the retina, where the visual scene is a frontoparallel plane, i.e., constant head-centered coordinate Z.
AB: Z = 60 cm; CD: Z = 10 m. The interocular distance was 6.4 cm, gaze angle Hc = 15-, and convergence angle H$ = 5.7-, i.e., such as
to fixate the plane at Z = 60 cm. Vertical disparity is defined as difference in (AC) elevation longitude and (BD) elevation latitude. Lines of
azimuth longitude and (AC) elevation longitude, (BD) elevation latitude are marked in black in 15- intervals. The white line shows where
the vertical disparity is zero. The fovea is marked with a black dot. The same pseudocolor scale is used for all four panels. Note that the
elevation-longitude disparity, )$, goes beyond the color scale at the edges of the retina, since it tends to infinity as |!c| tends to 90-. This
figure was generated by DiagramOfVerticalDisparity_planes.m in the Supplementary material.
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vergence angle H$. Thus, for Z = 10 m, it is already close
to zero across the whole retina (Figure 8D). Elevation-
longitude vertical disparity does not have this property. It
is zero for objects at infinity only if the eyes are also
fixating at infinity, i.e., H$ = 0. Figure 8C shows results
for H$ = 5.7-, and here the second term in Equation 15
gives non-zero vertical disparity everywhere except along
the two retinal meridians.
In summary, the message of this section is that elevation-

longitude and elevation-latitude definitions of vertical
disparity give very similar results for objects near the fovea
and close to the fixation distance. However, when these
conditions are not satisfied, the two definitions of vertical
disparity can produce completely different results.

Epipolar lines: Relationship between vertical
and horizontal disparities

Disparity is a two-dimensional quantity, but for a given
eye position, not all two-dimensional disparities are
physically possible. Figure 9A shows how the physically
possible matches for the red dot on the left retina fall
along a line in the right retina. The object projecting to the
red dot could lie anywhere along the red line shown
extending to infinity, and each possible position implies a
different projection onto the right retina. The set of all
possible projections is known in the literature as an
epipolar line (Hartley & Zisserman, 2000).
This definition of epipolar line treats the eyes asym-

metrically: one considers a point in one eye, and the
corresponding line in the other eye. Everywhere else in
this paper, we have treated the eyes symmetrically,
rewriting left and right eye coordinates in terms of their
sum and difference: position on the cyclopean retina and
disparity. So in this section, we shall consider something
slightly different from the usual epipolar lines: we shall
consider the line of possible disparities at a given point in
the cyclopean visual field. Figures 9B–9D show how this
differs from an epipolar line. As one moves along an
epipolar line (Figure 9B), not only the two-dimensional
disparity, but also the cyclopean position, varies. We shall
consider how disparity varies while keeping cyclopean
position constant (Figure 9D).
To achieve this, we need to express vertical disparity as

a function of horizontal disparity. So far in this paper, we
have expressed vertical disparity as a function of object
distance and eye position. Of course, horizontal disparity
is also a function of object distance and eye position. So if
we substitute in for object distance using horizontal
disparity, we obtain the function relating horizontal and
vertical disparities, for a given eye position and location in
the visual field. Using the expressions given in the
Appendix, it is simple to obtain the line of possible
disparities for arbitrary cyclovergence, cycloversion, and
vertical vergence error. In this section, for simplicity,
we continue to restrict ourselves to Tc = T$ = V$ = 0.

Under these circumstances, azimuth-longitude horizontal
disparity is (Appendix B; Table C5)

!$ , j
I

S
cos!ccos !cjHcð Þ þ H$: ð17Þ

If we use horizontal disparity to substitute for object
distance in Equation 15, we obtain the following relation-
ship between horizontal (azimuth-longitude) and vertical
(elevation-longitude) disparities:

) $ ,
1

2
sin2)csec!c H$sin!c j !$ j H$ð Þsec !c j Hcð ÞsinHcð Þ:

ð18Þ

For elevation-latitude vertical disparity, again substitut-
ing for object distance in Equation 16, we obtain

.$ ,
1

2
sin2.cð Þ !$ jH$ð Þtan Hc j !cð Þ: ð19Þ

Thus, the vertical disparities that are geometrically
possible at a given position in the visual field are a linear
function of the horizontal disparity. This is shown for
elevation-latitude disparity by the green line in Figure 10.
Where we are on this line depends on object distance.
Note that this expression is not valid if either !c or

(!c j Hc) is 90-, since then horizontal disparity is
independent of object distance (Equation 17). So for
example if we are considering an azimuthal direction of
45- (!c = 45-) and the eyes are looking off 45- to the right
(Hc = j45-), this expression fails. Apart from this
relatively extreme situation, it is generally valid.
Note also that the line of possible disparities does not

extend across the whole plane of disparities. We have
adopted a sign convention in which “far” disparities are
positive. The largest possible horizontal disparity occurs
for objects at infinity. Then, we see from Equation 17 that
the horizontal disparity is equal to the convergence angle,
H$. For objects closer than infinity, the horizontal
disparity is smaller, becoming negative for objects nearer
than the fixation point. Thus, the green line in Figure 10
terminates at !$ = H$. The elevation-latitude vertical
disparity at this point in the visual field thus has only one
possible sign, either negative or positive depending on the
sign of .c(Hc j !c) (since (!$ j H$) is always negative).
For elevation-latitude vertical disparity, the eye-position
parameters have a particularly simple effect on the line of
possible disparities. The convergence angle H$ controls
the intercept on the abscissa, i.e., the horizontal disparity
for which the vertical disparity is zero. The gradient of the
line is independent of convergence, depending only on the
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gaze angle. To avoid any confusion, we emphasize that
this “disparity gradient” is the rate at which vertical
disparity would change if an object slid nearer or further
along a particular visual direction, so that its horizontal
disparity varied while its position in the cyclopean visual
field remained constant. Thus, we are considering the set
of two-dimensional disparities that can be produced by a
real object for a given binocular eye position. This might
theoretically be used by the visual system in solving the

stereo correspondence problem if eye position were
known. This “disparity gradient” is not the same as the
disparity derivatives discussed below (see Discussion
section) in the context of deriving eye position given the
solution of the correspondence problem, which concern
the rate at which vertical disparity changes as a function
of visual direction in a given scene.
In Figure 10, the gradient of the green line is

exaggerated for clarity. In fact, when .c and (Hc j !c)

Figure 9. Epipolar line and how it differs from the “line of possible disparities” shown below in (D). (A) How an epipolar line is calculated:
it is the set of all possible points on the right retina (heavy blue curve), which could correspond to the same point in space as a given point
on the left retina (red dot). (B) Epipolar line plotted on the planar retina. Blue dots show 3 possible matches in the right eye for a fixed point
in the left retina (red dot). The cyclopean location or visual direction (mean of left and right retinal positions, black dots) changes as one
moves along the epipolar line. (C) Possible matches for a given cyclopean position (black dot). Here, we keep the mean location constant
and consider pairs of left/right retinal locations with the same mean. (D) Line of possible disparities implied by the matches in (B). These
are simply the vectors linking left to right retinal positions for each match (pink lines). Together, these build up a line of possible disparities
(green line). Panel A was generated by Fig_EpipolarLine.m in the Supplementary material.
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are both small (i.e., for objects near the midline and near
the plane of regard), the gradient is close to zero. Even
quite large changes in horizontal disparity produce very
little effect on vertical disparity. In these circumstances, it
is reasonable to approximate vertical disparity by its value
at the chosen distance, ignoring the gradient entirely. We
go through this in the next section.

For objects near fixation, vertical disparity
is independent of object distance

It is often stated that, to first order, vertical disparity is
independent of object distance, depending only on eye
position (e.g., Garding et al., 1995; Read & Cumming,
2006). Horizontal disparity, in contrast, depends both on
eye position and object distance. Thus, vertical disparity
can be used to extract an estimate of eye position, which
can then be used to interpret horizontal disparity.
At first sight, these statements appear to conflict with

much of this paper. Consider the first-order expressions
for vertical disparity given in Equations 15 and 16. Both
depend explicitly on the object distance (measured
radially from the origin, R, or along the gaze direction,
S, Figure 5). Figure 8AB versus Figure 8CD, which differ
only in the object distance, show how both types of
vertical disparity depend on this value. Elevation-latitude
disparity does not even depend on the convergence
angle H$, making it appear impossible to reconstruct
vergence from measurements of elevation-latitude dispar-
ity alone.

This apparent contradiction arises because the authors
quoted were considering the disparity of objects near to
fixation. Equations 15 and 16, in contrast, are valid for all
object locations, provided only the object distance is large
compared to the interocular distance (small baseline
approximation). We now restrict ourselves to the vicinity
of fixation. That is, we assume that the object is at roughly
the same distance as the fixation point. We express the
radial distance to the object, R, as a fraction of the
distance to fixation, R0:

R ¼ R0ð1þ %Þ: ð20Þ

Under our small vergence angle approximation, the
radial distance to the fixation point is

R0 ,
IcosHc

H$
: ð21Þ

For small values of %, then, using the approximation
(1 + %)j1 , (1 j %), we have

I

R
,

H$ 1 j %ð Þ
cosHc

I

S
,

H$ 1 j %ð Þ
cos!ccos.ccosHc

:

ð22Þ

Note that this breaks down at Hc = 90-. This is the case
where the eyes are both directed along the interocular

Figure 10. The thick green line shows the line of two-dimensional disparities that are physically possible for real objects, for the given eye
posture (specified by convergence H$ and gaze azimuth Hc) and the given visual direction (specified by retinal azimuth !c and elevation .c).
The green dot shows where the line terminates on the abscissa. For any given object, where its disparity falls on the green line depends
on the distance to the object at this visual direction. The white circle shows one possible distance. Although, for clarity, the green line is
shown as having quite a steep gradient, in reality it is very shallow close to the fovea. Thus, it is often a reasonable approximation to
assume that the line is flat in the vicinity of the distance one is considering (usually the fixation distance), as indicated by the horizontal
green dashed line. This is considered in more detail in the next section.
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axis. Then, the distance to the fixation point is undefined,
and we cannot express R as a fraction of it. The case Hc =
90- is relevant to optic flow, but not to stereo vision. Our
analysis holds for all gaze angles that are relevant to
stereopsis.
From Equations 15 and 16, using the fact that R =

Ssec!csec.c, the two definitions of vertical disparity then
become

)$ , sin)ccos)c j
H$ 1j%ð Þ
cosHc

sec!csec.csinHc þ H$tan!c

� �

.$ ,
H$ 1 j %ð Þ
cosHc

sin.csin !c j Hcð Þ: ð23Þ

The dependence on object distance is contained in the
term %, the fractional distance from fixation. However, by
assumption, this is much smaller than 1. The vertical
disparities are dominated by terms independent of dis-
tance; to an excellent approximation, we have

)$ , H$sin)ccos)c tan!c j tanHcsec!c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2)ccos

2!c
p� 	

.$ ,
H$

cosHc
sin.csin !c j Hcð Þ; ð24Þ

where we have used tan. = tan)cos! to substitute for
elevation latitude . in the expression for elevation-
longitude vertical disparity, )$.
Thus, for objects at the same distance as fixation, the

dependence on object distance can be expressed as the
convergence angle. Changes in scene depth produce
negligible changes in vertical disparity: to a good
approximation, vertical disparity is independent of scene
structure, changing only with slow gradients, which reflect
the current binocular eye position. This statement is true
all across the retina (i.e., for all !c and .c).
For horizontal disparity, the situation is more subtle. It

can be shown that, under the same approximations used in
Equation 23, azimuth-longitude horizontal disparity is
given by

!$ , j
H$ 1j%ð Þ
cosHc

sec.ccos !c j Hcð Þ þ H$: ð25Þ

This equation resembles Equation 23, so at first sight it
seems that we can drop % as being small in comparison
with 1, meaning that horizontal disparity is also inde-
pendent of object distance. If Hc, !c, and .c are large, this
is correct. Under these “extreme” conditions (far from the
fovea, large gaze angles), horizontal disparity behaves just
like vertical disparity. It is dominated by eye position and
location in the visual field, with object distance making

only a small contribution. However, the conditions of
most relevance to stereo vision are those within È10- of
the fovea, where spatial resolution and stereoacuity is
high. In this region, a key difference now emerges
between horizontal and vertical disparities: Vertical
disparity becomes independent of scene structure, whereas
horizontal disparity does not. The terms in Equation 25
that are independent of object distance % cancel out nearly
exactly, meaning that the term of order % is the only one
left. Thus, horizontal disparity becomes

!$ , H$ % j !ctanHcð Þ ðparafoveal approximationÞ:
ð26Þ

This expression is valid near the fixation point (%, !c, .c
all small) and for gaze angles that do not approach 90-
(where Equation 25 diverges). Near the fovea, elevation
latitude and elevation longitude become indistinguishable
(see lines of latitude and longitude in Figure 8). For the
near-fixation objects we are considering, therefore, ele-
vation-latitude and elevation-longitude definitions of
vertical disparity we derived previously (Equation 24)
become identical and both equal to

)$ , .$ ,H$.c !cj tanHcð Þ ðparafoveal approximationÞ:
ð27Þ

Critically, this means that for the near-fixation case
most relevant to stereo vision, horizontal disparity reflects
scene structure as well as eye position, whereas vertical
disparity depends only on eye position. This means that
estimates of eye position, up to elevation, can be obtained
from vertical disparity and used to interpret horizontal
disparity. In this section, we have set 3 of the 6 eye
position parametersVcyclovergence, cycloversion, and
vertical vergence errorVto zero, meaning that we only
have 2 eye position parameters left to extract. Thus before
proceeding, we shall generalize, in the next section, to
allow non-zero values for all 6 eye position parameters.
We shall then show how 5 of these parameters can be
simply derived from the vertical disparity in the vicinity
of the fovea.

Obtaining eye position from vertical disparity
and its derivatives at the fovea

In this section, we derive approximate expressions for
5 binocular eye position parameters in terms of the vertical
disparity and its derivatives near the fovea. As throughout
this paper, we work in terms of retinal disparity, since this is
all that is available to the visual system before eye position
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has been computed. We do not require any special proper-
ties of the viewed surface other than that it is near fixation
and smooth, so that all derivatives exist. We allow small
amounts of cycloversion, cyclovergence, and vertical
vergence error but restrict ourselves to small gaze angles.
Mathematically, this means we approximate cosHc È 1 and
sinHc È Hc. In Figure 12, we show that our results hold up
well at least out to Hc = 15-. This is likely to cover most
gaze angles adopted during natural viewing. We work in
the vicinity of the fovea, so retinal azimuth !c and
elevation .c are also both small. In this case, the
distinction between latitude and longitude becomes imma-
terial. We shall write our expressions in terms of elevation
latitude ., but in this foveal approximation, the same
expressions would also hold for elevation longitude ). We
shall show how our equations for the vertical disparity
field, .$, can be used to read off gaze angle, convergence,
cyclovergence, cycloversion, and vertical vergence.
We begin with Equation 10, which expressed I/R in

terms of horizontal vergence H$ and the fractional
distance of an object relative to fixation, %. If there is a
vertical vergence error V$, then there will not be a fixation
point, because gaze rays will not intersect. However,
Equation 10 is still valid, with % interpreted as a fraction
of the distance to the point where the gaze rays most
closely approach each other. We substitute Equation 10
into our most general expression for vertical disparity,
Equation 2, and make the additional approximation that
the gaze azimuth Hc and overall torsion Tc are both
small:

.$ , sin!csin.c j Hccos!csin.c þ Tccos.cð ÞH$ 1 j %ð Þ
j Tccos!cð ÞH$ j cos!c þ Hcsin!cð ÞV$ j sin!cð ÞT$:

ð28Þ

When we finally make the approximation that we are
near the fovea, i.e., that !c and .c are also small, we find
that the lowest order terms are

.$ ¼ jV$ j !cT$ þ H$.c !c j Hcð Þ j %H$Tc

j !cHcV$: ð29Þ

Because we are allowing non-zero torsion Tc, vertical
disparity now also depends on object distance, through %.
However, this is a third-order term. To first order, the
vertical disparity at the fovea measures any vertical
vergence error. Thus, we can read off vertical vergence
V$ simply from the vertical disparity measured at the
fovea (Figure 11):

V$ È j .$: ð30Þ

To derive expressions for the remaining eye position
parameters, we will need to differentiate Equation 28 with
respect to direction in the visual field. We will use
subscripts as a concise notation for differentiation: for
example, .$! indicates the first derivative of the vertical
disparity .$ with respect to azimuthal position in the
visual field, !c, holding the visual field elevation .c
constant. Similarly, .$!. is the rate at which this gradient
itself alters as one moves vertically:

.$! K
¯.$
¯!c

ª
.c

.$!. K
¯
¯.c

ª
!c

¯
¯!c

ª
.c
.$: ð31Þ

Note that these derivatives examine how vertical
disparity changes on the retina as the eyes view a given
static scene. This is not to be confused with the gradient
discussed in Figure 10, which considered how vertical
disparity varies as an object moves in depth along a
particular visual direction. We assume that the visual scene
at the fovea consists of a smooth surface that remains
close to fixation in the vicinity of the fovea. The surface’s
shape is specified by %, the fractional difference between
the distance to the surface and the distance to fixation. In
the Average vertical disparity expected at different
positions on the retina section, we were considering a

Figure 11. Partial differentiation on the retina. The cyclopean
retina is shown colored to indicate the value of the vertical
disparity field at each point. Differentiating with respect to
elevation . while holding azimuth constant means finding the rate
at which vertical disparity changes as one moves up along a line
of azimuth longitude, as shown by the arrow labeled ¯/¯..
Differentiating with respect to azimuth !, while holding elevation
constant, means finding the rate of change as one moves around
a line of elevation latitude. This figure was generated by
Fig_DifferentiatingAtFovea.m in the Supplementary material.
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single point in the cyclopean retina, and so % was just a
number: the fractional distance at that point. Since we are
now considering changes across the retina, % is now a
function of retinal location, %(!c, .c). The first derivatives of
% specify the surface’s slant, its second derivatives specify
surface curvature, and so on. % and its derivatives %!, and
so on, are assumed to remain small in the vicinity of the
fovea.
After performing each differentiation of Equation 28,

we then apply the parafoveal approximation and retain
only the lowest order terms. In this way, we obtain the
following set of relationships between derivatives of the
vertical disparity field and the binocular eye position
parameters:

.$ , jV$; ð32Þ

.$! , jT$; ð33Þ

.$. , jHcH$; ð34Þ

.$!. , H$; ð35Þ

.$.. , jTcH$; ð36Þ

assuming that !c, .c, %, %!, %., %!!, %!., %.., Hc, Tc, H$, T$,
and V$ are all small.
To lowest order, there is no dependence on scene

structure: under this near-fixation approximation, vertical
disparity and its derivatives depend only on eye position.
Each term enables us to read off a different eye-position
parameter. Any vertical disparity at the fovea reflects a
vertical vergence error (Equation 32; Howard, Allison, &
Zacher, 1997; Read & Cumming, 2006). The rate at which
vertical disparity changes as we move horizontally across
the visual field, sometimes called the vertical shear
disparity (Banks et al., 2001; Kaneko & Howard,
1997b), tells us the cyclovergence (Equation 33). A
“saddle” pattern, i.e., the second derivative with respect
to both horizontal and vertical disparities, tells us the
vergence (Equation 35; Backus et al., 1999). Given this,
the rate at which vertical disparity changes as we move
vertically across the visual field tells us the gaze angle
(Equation 34; Backus & Banks, 1999; Banks & Backus,
1998; Gillam & Lawergren, 1983; Mayhew, 1982;
Mayhew & Longuet-Higgins, 1982). Finally, the second
derivative provides an estimate of cyclopean cyclo-
version (Equation 36). Although many of these relation-
ships with aspects of eye position have been identified in
the past, it is useful to be able to identify the extent to
which the approximations hold under a range of eye
positions.

The relationships given in Equations 32–36 provide an
intuitive insight into how different features of the
parafoveal vertical disparity field inform us about eye
position. The approximations used lead to some small
errors, but they are sufficiently small to ignore under most
circumstances. For example, retaining third-order terms in
the expression for the second derivative .$.. yields

.$.. , jH$Tc j H$%..Tc j 2H$%. !c j Hcð Þ
þ H$ Hc j !cð Þ.c þ %H$Tc: ð37Þ

If torsion Tc is zero, then near the fovea .$.. will in fact
be dominated by a term depending on the rate of change
of % as we move vertically in the visual field, reflecting
surface slant:

.$.. , 2H$Hc%.: ð38Þ

Applying the formula in Equation 36 would lead us to
conclude Tc , j2Hc%., instead of the correct value of
zero. Now Equation 36 was derived assuming small Hc

and %., so the misestimate will be small but nevertheless
present. In Figure 12, we examine how well our
approximations bear up in practice. Each panel shows the
eye position parameters estimated from Equations 32–36
plotted against their actual values, for 1000 different
simulations. On each simulation run, first of all a new
binocular eye posture was generated, by picking values of
Hc, Tc, Vc, H$, T$, and V$ randomly from uniform
distributions. Torsion Tc, cyclovergence T$, and vertical
vergence error Vc are all likely to remain small in normal
viewing and were accordingly picked from uniform
distributions between T2-. Gaze azimuth and elevation
were picked from uniform distributions between T15-.
Convergence was picked uniformly from the range 0 to
15-, representing viewing distances from infinity to 25 cm
or so. Note that it is not important, for purposes of testing
Equations 32–36, to represent the actual distribution of
eye positions during natural viewing but simply to span
the range of those most commonly adopted. A random set
of points in space was then generated in the vicinity of the
chosen fixation point. The X and Y coordinates of these
points were picked from uniform random distributions,
and their Z coordinate was then set according to a function
Z(X, Y), whose exact properties were picked randomly on
each simulation run but which always specified a gently
curving surface near fixation (for details, see legend to
Figure 12). The points were then projected onto the two
eyes, using exact projection geometry with no small
baseline or other approximations, and their cyclopean
locations and disparities were calculated. In order to
estimate derivatives of the local vertical disparity field, the
vertical disparities of points within 0.5- of the fovea, of
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which there were usually 200 or so, were then fitted with a
parabolic function:

.$ ¼ c0 þ c1!c þ c2.c þ c3!
2
c þ c4.

2
c þ c5!c.c: ð39Þ

The fitted coefficients ci were then used to obtain
estimates of vertical disparity and its gradients at the
fovea (.$! = c1, and so on). Finally, these were used in
Equations 32–36 to produce the estimates of eye position
shown in Figure 12.
The results in Figure 12 show that most eye position

parameters can be recovered with remarkable accuracy.
The worst is the cycloversion Tc, which is recovered quite
accurately (say to within 10 arcmin) about half the time,
but the rest of the time is widely scattered, for the reasons
discussed around Equation 38. Nevertheless, overall
performance is good, with a median error of G0.3-. This
shows that our simple intuitive analytical expressions
relating eye position to vertical disparity (Equations 32–36)
are reliable under most circumstances.
This is a theoretical paper, and the expressions above

(Equations 32–36) are simply a mathematical statement,
spelling out the relationships that exist between eye
position and vertical disparity. Does the visual system, in
fact, use retinal eye position estimates extracted from the
disparity field? In the case of vertical vergence, cyclo-
version, and cyclovergence, the answer seems to be yes.
Disparity fields indicating non-zero values of these param-
eters elicit corrective eye movements tending to null the
retinal disparity, suggesting that the retinal disparity field
was taken as evidence of ocular misalignment (Carpenter,
1988; Howard, 2002). In the case of gaze azimuth and
convergence, the use is more subtle. There is little
evidence that the perceived head-centric direction of a
stimulus corresponds to the gaze azimuth indicated by its

vertical disparity field (Banks et al., 2002; Berends et al.,
2002). Rather, retinal estimates of gaze azimuth and
vergence seem to be used to convert horizontal disparity
directly into estimates of surface slant and curvature.
Here, we briefly sketch this process, showing how the

eye position parameters obtained from Equations 32–36 can
be used to interpret horizontal disparity, !$. In the domain
we are considering, horizontal disparity differs from
vertical disparity in that it is affected by the viewed scene
as well as eye position (recall that Equation 29 showed that,
to lowest order, vertical disparity is independent of scene
structure). The horizontal disparity itself depends on the
distance of the viewed surface relative to fixation, %, while
its first derivatives reflect the surface’s slant. Again
retaining terms to lowest order, it can be shown that

!$ , %H$ j TcV$ þ .cT$
!$! , %!H$ j H$ Hc j !cð Þ j .cV$

!$. , %.H$ j H$.c þ Hc j !cð ÞV$ þ T$;
ð40Þ

where %! is the rate of change of % as we move
horizontally in the visual field, %! = ¯%/¯!|.. It is a
measure of surface slant about a vertical axis, and %.,
defined analogously, reflects surface slant about a hori-
zontal axis. % is a dimensionless quantity, the fractional
distance from the fixation point, but the derivative %! is
approximately equal to R!/R, where R is the distance to
the fixated surface and R! is the rate at which this distance
changes as a function of visual field azimuth. Thus, %! is
the tangent of the angle of slant about a vertical axis,
while %. represents the tangent of the angle of slant about
a horizontal axis. We can invert Equation 40 to obtain
estimates of surface distance and slant in terms of
horizontal disparity and eye position, and then substitute
in the eye position parameters estimated from vertical

Figure 12. Scatterplots of estimated eye position parameters against actual values, both in degrees, for 1000 different simulated eye
positions. Black lines show the identity line. Some points with large errors fall outside the range of the plots, but the quoted median
absolute errors are for all 1000 simulations. On each simulation run, eye position was estimated as follows. First, the viewed surface
was randomly generated. Head-centered X and Y coordinates were generated randomly near the fixation point (XF, YF, ZF). Surface
Z-coordinates were generated from Zd = @ij aijXd

iYd
j, where Xd is the X-position relative to fixation, Xd = X j XF (Yd, Zd similarly, all in

centimeters), i and j both run from 0 to 3, and the coefficients aij are picked from a uniform random distribution between T0.02 on each
simulation run. This yielded a set of points on a randomly chosen smooth 3D surface near fixation. These points were then projected to
the retinas, and the vertical disparity within 0.5- of the fovea was fitted with a parabolic surface. This simulation is Matlab program
ExtractEyePosition.m in the Supplementary material.
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disparity. Note that the estimates of surface slant are
unaffected by small amounts of cycloversion, Tc. This is
convenient for us, since cycloversion was the aspect of
eye position captured least successfully by our appro-
ximate expressions (Figure 12).
From Equations 32–36 and Equation 40, we can solve

for % and its derivatives in terms of horizontal and vertical
disparities and their derivatives:

% ,
!$ þ .c.$!

.$!.
þ .$...$

.2$!.

%! ,
!$! j .$. j .c.$

.$!.
;

ð41Þ

%. ,
!$. þ .$!ð Þ.$!. j .$.$.

.2$!.
þ .c: ð42Þ

These expressions relate horizontal and vertical retinal
disparities directly to surface properties, without any
explicit dependence on eye position. It seems that the
visual system does something similar. As many previous
workers have noted, the visual system appears to use
purely local estimates, with no attempt to enforce global
consistency in the underlying eye postures implicit in
these relationships. Thus, values of surface slant consis-
tent with opposite directions of gaze (left versus right) can
simultaneously be perceived at different locations in the
visual field (Allison, Rogers, & Bradshaw, 2003; Kaneko
& Howard, 1997a; Pierce & Howard, 1997; Rogers &
Koenderink, 1986; Serrano-Pedraza, Phillipson, & Read,
in press). Enforcing consistency across different points of
the visual field would require lateral connections that
might be quite costly in cortical wiring and would be
completely pointless, since in the real world eye position
must always be constant across the visual field (Adams
et al., 1996; Garding et al., 1995).

Relationship to previous literature

There is a substantial literature on obtaining metric
information about scene structure from two-dimensional
disparity. It can be divided into two fairly distinct
categories: “photogrammetric” and “psychological.” The
first comes mainly from the computer vision community
(Hartley & Zisserman, 2000; Longuet-Higgins, 1981).
Here, one uses the two-dimensional disparities of a
limited number of point correspondences to solve for
binocular eye position, and then back-projects to calculate
each object’s 3D location in space. The second approach
is more common in the psychological literature (Backus &
Banks, 1999; Backus et al., 1999; Banks et al., 2001;
Banks et al., 2002; Kaneko & Howard, 1996, 1997b;
Koenderink & van Doorn, 1976; Rogers & Bradshaw,
1993, 1995; Rogers & Cagenello, 1989). Here, one
calculates quantities such as horizontal and vertical size

ratios, which are effectively local derivatives of disparity,
and uses these either to extract estimates of eye position
parameters (Banks et al., 2001; Kaneko & Howard,
1997b) or to move directly to scene properties such as
surface slant, without computing an explicit estimate of
eye position. These two approaches are closely related
(Adams et al., 1996; Garding et al., 1995). In the
photogrammetric approach, the point correspondences
can be anywhere in the visual field (subject to certain
restrictions, e.g., not all collinear; Longuet-Higgins,
1981). If the points all happen to be closely spaced
together, then they contain the same information as the
derivatives of disparity at that location. Thus, in this
regard the psychological literature represents a special
case of the photogrammetric approach: extracting eye
position from a particular set of correspondences.
However, the photogrammetric literature does not

provide explicit expressions for eye position in terms of
disparity; rather, eye position is given implicitly, in large
matrices that must be inverted numerically. Because the
treatment is fully general, the distinction between hori-
zontal and vertical disparities is not useful (e.g., because a
torsion of 90- transforms one into the other, or because
some epipolar lines become vertical as gaze azimuth
approaches 90-). Thus, in the machine vision literature,
disparity is considered as a vector quantity, rather than
analyzed as two separate components. The psychological
literature is less general but offers a more intuitive
understanding of how eye position affects disparity in
the domain most relevant to natural stereo viewing
(objects close to the fovea, eyes close to primary
position). As we saw in the previous section, in this
domain, disparity decomposes naturally into horizontal
and vertical components, which have different properties.
Critically, in this domain, vertical disparity is essentially
independent of scene structure, and eye position can be
estimated from this component alone.
However, as far as we are aware, no paper gives explicit

expressions for all eye position parameters in terms of
retinal vertical disparity. Much of the psychological
literature jumps straight from disparity derivatives to
properties such as surface slant, without making explicit
the eye position estimates on which these implicitly
depend. In addition, the psychological literature can be
hard to follow, because it does not always make it clear
exactly what definition of disparity is being used. Some-
times, the derivation appears to use optic array disparity,
so it is not clear how the brain could proceed given only
retinal disparity; or the derivation appears to rely on
special properties of the scene (e.g., it considers a
vertically oriented patch), and it is not clear how the
derivation would proceed if this property did not hold.
Our derivation makes no assumptions about surface
orientation and is couched explicitly in retinal disparity.
Our expression for %!, Equation 41, is a version of the

well-known expressions deriving surface slant from
horizontal and vertical size ratios (Backus & Banks,
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1999; Backus et al., 1999; Banks et al., 2002; Banks et al.,
2001; Kaneko & Howard, 1996, 1997b; Koenderink &
van Doorn, 1976; Rogers & Bradshaw, 1993, 1995;
Rogers & Cagenello, 1989). “Horizontal size ratio” or
HSR is closely related to the rate of change of horizontal
disparity as a function of horizontal position in the visual
field, whereas “vertical size ratio” reflects the gradient of
vertical disparity as a function of vertical position. In the
notation of Backus and Banks (1999), for example, which
defines HSR and VSR around the fixation point,

lnðHSRÞ , !$!; lnðVSRÞ , .$.: ð43Þ

In their notation, S = surface slant, so our %! = tan(S), and
convergence, our H$ , .$!., is 2. Thus if there is no
vertical disparity at the fovea, Equation 41 becomes

%! , tanS ,
!$! j .$.

.$!.
,

1

2
ln

HSR

VSR

� �
; ð44Þ

which is Equation 1 of Backus et al. (1999) and Backus
and Banks (1999).
This relationship has been proposed as an explanation

of the induced effect. In the induced effect, one eye’s
image is stretched vertically by a factor m about the
fixation point, thus adding a term m.c to the vertical
disparity field. The vertical disparity at the fovea is still
zero, and the only vertical disparity derivative to be
affected is .$., which gains a term m. This causes a
misestimate of surface slant about a vertical axis:

%!;est , %!;true j
m

H$
: ð45Þ

Size-ratio-based theories of the induced effect are often
contrasted with the photogrammetric approach based on
misestimates of gaze angle (Clement, 1992; Garding et al.,
1995; Longuet-Higgins, 1982; Mayhew & Longuet-
Higgins, 1982; Ogle, 1952). Size-ratio theories use local
disparity derivatives to produce a direct estimate of slant.
Photogrammetric theories use a set of point correspond-
ences distributed across the whole retina. These are used
to obtain an estimate of eye position, which is then used to
interpret horizontal disparity. The treatment here makes
clear that the mathematics underlying both theories is
really the same. Suppose that in the photogrammetric
approach, the point correspondences are close together in
the visual field. The points project to slightly different
points on the cyclopean retina and have slightly different
disparities. We can express these differences as disparity
gradients on the cyclopean retina, or equivalently as size
ratios. From these disparity gradients we can derive eye
posture, and hence the surface distance and slant. Thus,
both size ratio and photogrammetric explanations of the
induced effect rely, mathematically, on the fact that
vertical magnification can be interpreted as a misestimate

of gaze angle. This is obscured in Equation 44 because
there is no explicit mention of gaze angle, but in fact, as
we see by comparing Equations 32–36 and Equation 40,
the reason that VSR is useful in interpreting horizontal
disparity is because it acts as a proxy for gaze angle
(Adams et al., 1996).
The real difference between the theories is the scale at

which they operate (Adams et al., 1996; Garding et al.,
1995). Mayhew and Longuet-Higgins originally described
an algorithm for fitting a unique eye posture to the
correspondences across the whole retina (Mayhew, 1982;
Mayhew & Longuet-Higgins, 1982). This would seem to
be the best strategy for obtaining the most reliable
estimate of eye position, and for that reason is the
approach used in computer vision. However, as noted in
the Discussion section, the brain appears to proceed
locally, at least in the case of surface slant. That is, it
directly estimates surface slant from local disparity
derivatives, as in Equation 41, without checking that the
eye postures implied by these local derivatives are
globally consistent. There seems to be considerable
inter-subject variation in what “local” means, ranging
from as large as 30- for some subjects down to 3- for
others (Kaneko & Howard, 1997a; Serrano-Pedraza et al.,
in press).

Discussion

Vertical disparity has been much discussed in recent
years (Adams et al., 1996; Backus & Banks, 1999; Backus
et al., 1999; Banks & Backus, 1998; Banks et al., 2002;
Banks et al., 2001; Berends & Erkelens, 2001; Berends et
al., 2002; Bishop, 1989; Brenner et al., 2001; Clement,
1992; Cumming, Johnston, & Parker, 1991; Garding et al.,
1995; Gillam, Chambers, & Lawergren, 1988; Kaneko &
Howard, 1997a; Longuet-Higgins, 1981, 1982; Mayhew,
1982; Mayhew & Longuet-Higgins, 1982; Read &
Cumming, 2006; Rogers & Bradshaw, 1993; Schreiber et al.,
2001; Serrano-Pedraza et al., in press; Serrano-Pedraza &
Read, 2009; Stenton, Frisby, & Mayhew, 1984; Stevenson
& Schor, 1997). However, progress has been hampered by
the lack of a clear agreed set of definitions. In the
Introduction section, we identified no fewer than 4
definitions of vertical disparity: two types of optic-array
disparity, and two types of retinal disparity. Individual
papers are not always as clear as they could be about
which definition they are using, and the different proper-
ties of the different definitions are not widely appreciated.
This means that different papers may appear at first glance
to contradict one another.
In this paper, we aim to clarify the situation by

identifying two definitions of retinal vertical disparity that
are in common use in the literature. Vertical disparity
is sometimes defined as the difference between the
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elevation-longitude coordinates of the two retinal images
of an object, sometimes as the difference in elevation
latitude. Both definitions are valid and sensible, but they
have rather different properties, as summarized in Table 1.
The differences between the two types of vertical disparity
are most significant for objects not at the fixation distance
(Figure 8CD), and in the visual periphery. The periphery
is where retinal vertical disparities tend to be largest
during natural viewing, which has motivated physiologists
to investigate vertical disparity tuning there (Durand et al.,
2002). Psychophysically, it has been shown that the
perceived depth of centrally viewed disparities (Rogers
& Bradshaw, 1993) can be influenced by manipulations of
“vertical” disparities in the periphery (i.e., when the field
of view is large). Thus, it is particularly important to
clarify the difference between the alternative definitions of
vertical disparity where stimuli fall on peripheral retina.
For objects close to the fixation point, the images fall

close to the fovea in both eyes. Here, latitude and
longitude definitions of vertical disparity reduce to the
same quantity. In this regime, vertical disparity is much
less strongly affected than horizontal disparity by small
variations in depth relative to the fixation point. Where
this variation is small, it can be treated as independent of
surface structure. We have derived expressions giving
estimates of each eye position parameter, except eleva-
tion, in terms of vertical disparity and its derivatives at the
fovea. Although these are only approximations, they
perform fairly well in practice (Figure 12). These
expressions are closely related to the vertical size ratios
discussed in the literature (Backus & Banks, 1999; Backus
et al., 1999; Banks et al., 2002; Gillam & Lawergren,
1983; Kaneko & Howard, 1996, 1997b; Koenderink &
van Doorn, 1976; Liu, Stevenson, & Schor, 1994; Rogers
& Bradshaw, 1993).
Little if anything in this paper will be new to experts in

vertical disparity. However, for non-cognoscenti, we hope
that it may clarify some points that can be confusing.
Even for experts, it may serve as a useful reference. We
identify, in particular, four areas where we hope this paper
makes a useful contribution.

1. Previous derivations have often been couched in
terms of head-centric disparity or have assumed that
the surfaces viewed have special properties such as
being oriented vertically. Our derivations are
couched entirely in terms of retinal images and do
not assume the viewed surface has a particular
orientation. We feel this may provide a more helpful
mathematical language for describing the properties
of disparity encoding in early visual cortex.

2. We present analytical expressions for both elevation-
longitude and elevation-latitude vertical disparities
that are valid across the entire retina, for arbitrary
gaze angles and cycloversion, and for non-zero
vertical vergence and cyclovergence. Much previous
analysis has relied on parafoveal approximations

and has assumed zero vertical vergence, cyclo-
version, and cyclovergence.

3. We present analytical expressions for the average
vertical disparity expected at each position in the
visual field, up to a scale factor representing the
mean convergence.

4. Explanations relating the perceptual effects of
vertical disparity to disparity gradients have some-
times been contrasted with those based on explicit
estimates of eye position (Garding et al., 1995;
Longuet-Higgins, 1982; Mayhew&Longuet-Higgins,
1982). This paper is the first to give explicit (though
approximate) expressions for 5 binocular eye posi-
tion parameters in terms of retinal vertical disparity
at the fovea. The way in which all 5 eye position
parameters can be derived immediately from verti-
cal disparity derivatives has not, as far as we are
aware, been laid out explicitly before. Thus, this
paper clarifies the underlying unity of gaze-angle
and vertical-size-ratio explanations of vertical-dis-
parity illusions such as the induced effect.

Binocular eye position is specified by 6 parameters, 5 of
which we have been able to derive from the vertical
disparity field around the fovea. The exception is
elevation. All the other parameters have a meaning as
soon as the two optic centers are defined (and a zero
torsion line on the retina), whereas elevation needs an
additional external reference frame to say where “zero
elevation” is. Disparity is, to first order, independent of
how this reference is chosen, meaning that elevation
cannot be directly derived from disparity. However, in
practice, the visual system obeys Donder’s law, meaning
that there is a unique relationship between elevation and
torsion. The torsional states of both eyes can be deduced
from the vertical disparity field, as laid out in Equations 33
and 36. Thus, in practice the brain could derive torsion
from the gradient of vertical disparity and use this to
obtain an estimate of elevation independent of oculomotor
information regarding current eye position (although
clearly it would rely on an association between torsion
and elevation that would ultimately stem from the
oculomotor system). It has already been suggested that
the Listing’s law relationship between torsion and ele-
vation helps in solving the stereo correspondence problem
(Schreiber et al., 2001; Tweed, 1997c). The fact that it
enables elevation to be deduced from the two-dimensional
disparity field may be another beneficial side effect.
Another benefit of the framework we have laid out is

that it leads to a set of predictions about the physiological
range of retinal disparities. The existing physiological
literature does not test such predictions. For example,
Durand et al. (2002) explain that “VD is naturally weak in
the central part of the visual field and increases with
retinal eccentricity” but then report their results in terms
of head-centric Helmholtz disparity (Figure 1A), in which
naturally occurring vertical disparities are always zero,
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everywhere in the visual field. This makes it impossible to
assess whether the results of Durand et al. are consistent
with the natural distribution of retinal vertical disparities
to which they drew attention in their introduction. This
paper has emphasized the importance of calculating
neuronal tuning as a function of retinal vertical disparity
(whether elevation longitude or latitude). Our expressions
for average vertical disparity as a function of position in
the visual field predict the expected sign of vertical
disparity preference. It is intuitively clear that in natural
viewing early cortical neurons viewing the top-right visual
field should receive a diet of inputs in which the left half-
image is higher on the retina than the right (Figure 3), and
vice versa for those viewing the top-left visual field. One
would expect the tuning of neurons to reflect this biased
input. This simple qualitative prediction has not yet been
discussed or examined in the physiological literature. Our
analysis also makes quantitative predictions. For example,
consider eccentricities 5- and 15- in the direction “north-
east” from the fovea. Our calculations (Equation 13)
predict that the mean vertical disparity tuning of V1
neurons at 15- eccentricity should be 9 times that at an
eccentricity of 5-. This too could be tested by appropriate
physiological investigations.
There are, of course, limitations to the quantitative

predictions we can make from geometric considerations
alone. To predict the expected range of vertical disparities
at any retinal location requires a knowledge of the
statistics of binocular eye movements (especially version
and vergence) under natural viewing conditions. As recent
studies have pointed out, such statistics are quite difficult
to gather (Hibbard, 2007; Liu et al., 2008), but they are
crucial if the diet of 2D disparities received by binocular
neurons across the retina is to be estimated accurately.

Conclusion

The term “vertical disparity” is common in the stereo
literature, and the impression is often given that it has an
established definition and familiar properties. In fact,
neither of these assumptions hold. If the terms “vertical”
and “horizontal” are to continue to be used in discussions
of binocular disparity, and we argue here that there are
reasons in favor of doing so, it is critical that the
respective definitions and properties should be set out
explicitly, as we have done here.

Appendix A: Definitions

Subscripts

Table A1.

Symbols

Table A2.

Coordinate systems

Head-centered coordinate system (X, Y, Z) for object
position in space

Figure A1 shows the right-handed head-centered
coordinate system used throughout this paper. The
X-axis points left, the Y-axis upward, and the Z-axis
straight ahead of the observer. By definition, the nodal
point of the left eye is at (X, Y, Z) = (i, 0, 0) and the
nodal point of the right eye is at (X, Y, Z) = (ji, 0, 0),
where i represents half the interocular distance I. The
position of a point in space can be described as a vector,
P = (X, Y, Z).

Eye posture

Each eye has potentially three degrees of freedom, two
to specify the gaze direction (azimuth left/right and
elevation up/down) and a third to specify the rotation of
the eyeball around this axis (torsion). We adopt the
Helmholtz coordinate system for describing eye posture
(Figure 4). We start with the eye in primary position,
looking straight forward so that its optic axis is parallel to
the Z-axis (Figure A1). We define the torsion here to be
zero. To move from this reference state in which all three
coordinates are zero to a general posture with torsion,
azimuth H, and elevation V, we start by rotating the
eyeball about the optic axis by the torsion angle T. Next
rotate the eye about a vertical axis, i.e., parallel to the
Y-axis, through the gaze azimuth H. Finally rotate the eye
about a horizontal, i.e., interocular axis, through the gaze
elevation V. We define these rotation angles to be anti-
clockwise around the head-centered coordinate axes. This
means that we define positive torsion to be clockwise
when viewed from behind the head, positive gaze azimuth
to be to the observer’s left, and positive elevation to be
downward.

L left eye
R right eye
$ difference between left and right eye values, e.g.,

convergence angle H$ = HR j HL

% half-difference between left and right eye values, e.g., half-
convergence H% = (HR j HL)/2

c cyclopean eye (mean of left and right eye values), e.g.,
cyclopean gaze angle Hc = (HR + HL)/2

Table A1. Meaning of subscripts.
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We use the subscripts L and R to indicate the left and
right eyes (Table A1). Thus, VL is the Helmholtz elevation
of the left eye and VR that of the right eye.
One advantage of Helmholtz coordinates is that it is

particularly simple to see whether the eyes are correctly

fixating, such that their optic axes intersect at a common
fixation point. This occurs if, and only if, the Helmholtz
elevations of the two eyes are identical and the optic axes
are not diverging. Thus, any difference between VL and VR

means that the eyes are misaligned. We refer to this as the
vergence error, VR j VL. The difference in the Helmholtz
gaze azimuths is the horizontal vergence angle, HR j HL.
Negative values mean that the eyes are diverging.
In the mathematical expressions we shall derive below,

the vergence angles will usually occur divided by two. We
therefore introduce symbols for half the vergence angles.
As shown in Table A1, these are indicated with the
subscript %:

H% K ðHRjHLÞ=2; andsoon: ðA1Þ

We also introduce cyclopean gaze angles, which are the
means of the left and right eyes. As shown in Table A1,
these are indicated with the subscript c:

Hc K ðHR þ HLÞ=2: ðA2Þ

Rotation matrices

Eye posture can be summarized by a rotation matrix M.
So for example if we have a vector that is fixed with respect
to the eye, then if the vector is initially r in head-centered
coordinates when the eye is in its reference position, it
will move to Mr when the eye adopts the posture
specified by rotation matrix M. An eye’s rotation
matrix M depends on the eye’s elevation V, gaze azimuth
and torsion T. As above, we use subscripts L and R to
indicate the left and right eyes. For the left eye, the
rotation matrix is ML = MVLMHLMTL, where

MVL ¼
1 0 0

0 cosVL jsinVL

0 sinVL cosVL

2
4

3
5;

MHL ¼
cosHL 0 sinHL

0 1 0

jsinHL 0 cosHL

2
4

3
5; ðA3Þ

MTL ¼
cosTL jsinTL 0

sinTL cosTL 0

0 0 1

2
4

3
5;

where VL, HL, and TL are the gaze elevation, gaze
azimuth, and torsion of the left eye. The ordering of the
matrix multiplication, ML = MVLMHLMTL, is critical,
reflecting the definition of the Helmholtz eye coordinates.

I interocular distance
i half-interocular distance, i = I/2

k, l integer counters taking on values 1, 2, 3
ML, MR rotation matrix for left and right eyes, respectively
Mc cyclopean rotation matrix, Mc = (MR + ML)/2

M% half-difference rotation matrix, M% = (MR j ML)/2

m vectors mj are the three columns of the corresponding
rotation matrix M, e.g., mc1 = [Mc

11Mc
21Mc

31]; m%2 =

[M%
12M%

22M%
32] (Equation A6)

HL,R,c gaze azimuth in Helmholtz system for left, right, and
cyclopean eyes

VL,R,c gaze elevation in Helmholtz system for left, right, and
cyclopean eyes

TL,R,c gaze torsion in Helmholtz system for left, right, and
cyclopean eyes

H$ horizontal convergence angle
V$ vertical vergence misalignment (non-zero values

indicate a failure of fixation)
T$ cyclovergence
X, Y, Z position in space in Cartesian coordinates fixed with

respect to the head (Figure A1)
X̂ unit vector parallel to the X-axis
P vector representing position in space in head-centered

coordinates: P = (X, Y, Z)

U, W, S position in space in Cartesian coordinates fixed with
respect to the cyclopean gaze. The S-axis is the optic
axis of the cyclopean eye (see Figure 5)

R distance of an object from the origin. R 2 = X 2 + Y 2 + Z2

= U 2 + W 2 + S 2 (see Figure 5)
R0 distance of the fixation point from the origin (or distance

to the point where the gaze rays most nearly
intersect, if the eyes are misaligned so that no
exact intersection occurs)

% fractional difference between the fixation distance, R0,

and the distance to the object under consideration, R.
That is, % = (R j R0)/R0

x horizontal position on the retina in Cartesian coordinate
system (Figure 2A)

y vertical position on the retina in Cartesian coordinate
system (Figure 2A)

! azimuth-longitude coordinate for horizontal position on
the retina (Figures 2B and 2C)

) elevation-longitude coordinate for vertical position on
the retina (Figures 2B and 2D)

" azimuth-latitude or declination coordinate for horizontal
position on the retina (Figures 2D and 2E)

. elevation-latitude or inclination coordinate for vertical
position on the retina (Figures 2C and 2E)

J retinal eccentricity (Equation 14)

Table A2. Definition of symbols.
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Obviously, analogous expressions hold for the right eye.
Once again, it will be convenient to introduce the
cyclopean rotation matrix, which is defined as the mean
of the left- and right-eye rotation matrices:

Mc ¼ ðMR þMLÞ=2; ðA4Þ
and the half-difference rotation matrix:

M% ¼ ðMR j MLÞ=2: ðA5Þ

It will also be convenient to introduce vectors m that
are the columns of these matrices:

mc1 ¼ ½M11
c M21

c M31
c �; mc2 ¼ ½M12

c M22
c M32

c �; mc3 ¼ ½M13
c M23

c M33
c �

m%1 ¼ ½M11
% M21

% M31
% �; m%2 ¼ ½M12

% M22
% M32

% �; m%3 ¼ ½M13
% M23

% M33
% �;

ðA6Þ
where Mkl indicates the entry in the kth row and lth
column of matrix M.

Gaze-centered coordinate system for object position
in space

We use the vectors mck to define a new coordinate
system for describing an object’s position in space. As

well as the head-centered coordinate system (X, Y, Z), we
introduce a coordinate system (U, W, S) centered on the
direction of cyclopean gaze, as specified by the three
Helmholtz angles Hc, Vc, and Tc. Whereas Z is the object’s
distance from the observer measured parallel to the
“straight ahead” direction, S is the object’s distance
parallel to the line of gaze (Figure 5). The coordinates
(U, W, S) are defined by writing the vector P = (X, Y, Z) as
a sum of the three mc vectors:

P ¼ Umc1 þWmc2 þ Smc3: ðA7Þ

Retinal coordinate systems for image position
on retina

The retina is at least roughly hemispherical, and treating
it as perfectly hemispherical involves no loss of general-
ity, since there is a one-to-one map between a hemisphere
and a physiological retina. All the coordinate systems we
shall consider are based on the vertical and horizontal
retinal meridians. These are great circles on a spherical
retina. They are named after their orientations when the
eye is in its reference position, looking straight ahead
parallel to the Z-axis in Figure A1. By definition, our
retinal coordinate systems are fixed with respect to the
retina, not the head, so as the eye rotates in the head, the
“horizontal” and “vertical” meridians will in general no
longer be horizontal or vertical in space. For this reason
we shall call the angle used to specify “horizontal”
location the azimuth !, and the angle used to specify
“vertical” location, the elevation ). Both azimuth and
elevation can be defined as either latitude or longitude.
This gives a total of 4 possible retinal coordinate systems
(Figures 2B–2E). The azimuth-latitude/elevation-longitude
coordinate system is the same Helmholtz system we have
used to describe eye position (cf. Figure 1A). The azimuth-
longitude/elevation-latitude coordinate system is the Fick
system (cf. Figure 1B). One can also choose to use
latitude or longitude for both directions. Such azimuth-
longitude/elevation-longitude or azimuth-latitude/elevation-
latitude systems have the disadvantage that the coordinates
become ill-defined around the great circle at 90- to the
fovea. However, this is irrelevant to stereopsis, since it is
beyond the boundaries of vision. The azimuth-longitude/
elevation-longitude coordinate system is very simply
related to the Cartesian coordinate system, which is
standard in the computer vision literature. We can imagine
this as a virtual plane, perpendicular to the optic axis and at
unit distance behind the nodal point (Figure 2A). To find the
image of a point P, we imagine drawing a ray from point
P through the nodal point N and see where this intersects
the virtual plane (see Figure 3 of Read & Cumming, 2006).
The ray has vector equation p = N + s(P j N), where s
represents position along the ray. Points on the retina are
given by the vector p = N j MẐ + xMX̂ + yMŶ, where x

Figure A1. Head-centered coordinate system used throughout this
paper. The origin is the point midway between the two eyes. The
X-axis is defined by the nodal points of the two eyes and points
leftward. The orientation of the XZ plane is defined by primary
position but is approximately horizontal. The Y-axis points upward
and the Z-axis points in front of the observer.
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and y are the Cartesian coordinates on the planar retina,
and the rotation matrix M describes how this plane is
rotated with respect to the head. Equating these two
expressions for p, we find that

s Pj Nð Þ ¼ jMẐ þ xMX̂ þ yMŶ: ðA8Þ

Multiplying the matrix M by the unit vectors simply
picks off a column of the matrix, e.g., MX̂= m1. Using
this plus the fact that MX̂, MŶ, and MẐ are orthonormal,
we find that the ray intersects the retina at the Cartesian
coordinates

x ¼ j
m1: PjNð Þ
m3: PjNð Þ ; y ¼ j

m2: PjNð Þ
m3: PjNð Þ : ðA9Þ

It is sometimes imagined that the use of planar retinas
involves a loss of generality or is only valid near the
fovea, but in fact, no loss of generality is involved, since
there is a one-to-one map from the virtual planar retina to
the hemispherical retina.
Each coordinate system has a natural definition of

“horizontal” or “vertical” disparity associated with it.
Disparity is defined to be the difference between the
horizontal and vertical coordinates of the two retinal images.
So we immediately have three different definitions of retinal
vertical disparity: (1) Cartesian vertical disparity, y$ = yR j
yL; (2) elevation-longitude disparity, )$ = )R j )L; and (3)
elevation-latitude disparity, .$ = .R j .L. In Appendix B,
we shall derive expressions for all 3 definitions.
It may also be useful to collect together here for

reference the relationships between gaze-centered coor-
dinates and the corresponding retinal coordinates. The
equations in Table A3 show where an object located at
(U, W, S) in gaze-centered coordinates projects to on the
cyclopean retina, in different retinal coordinate systems.
Table A4 gives the relationships between location on the
retina in different coordinate systems.

Appendix B: Derivations

Relationships between the rotation vectors

The fact that rotation matrices are orthogonal means
that certain simple relationships hold between the vectors

mck and m%k defined in Equation A6. First, the inner
product of any difference vector m%k with the correspond-
ing cyclopean vector mck is identically zero:

m%k I mck ¼ 0 for k ¼ 1; 2; 3: ðB1Þ

This is actually a special case of the following more
general statement:

m%k I mcl ¼ jm%l I mck for k; l ¼ 1; 2; 3: ðB2Þ

Equations B1 and B2 are exact and do not depend on
any approximations at all.
To obtain the values of these dot products, we need to

use Equation A3 to derive expressions for Mc and M% in
terms of the 6 Helmholtz gaze parameters for the two
eyes: HL, VL, TL, HR, VR, TR. We can then use
trigonometric identities to re-express these in terms of
the cyclopean (half-sum) and vergence (half-difference)
equivalents: Hc, Vc, Tc, H%, V%, T%. Needless to say, this
yields extremely complicated expressions. However, we
now introduce the first critical approximation of this
paper. We assume that differences in eye posture are
small. We therefore work to first order in the horizontal
vergence H%, the vertical vergence half-error V%, and the
half-cyclovergence T%, i.e., we replace terms like cosH%

with 1, and we neglect terms in sin2H%, sinH%IsinV%, and
so on. Under these approximations, the 3 mc and the 3 m%

are approximately orthonormal, i.e.,

mck:mcl , 1 if k ¼ l and , 0 otherwise;

m%k:m%l , 1 if k ¼ l and , 0 otherwise; ðB3Þ

and we obtain the following simple expressions for inner
products of an mc and an m% vector:

m%1:mc2 ¼ jm%2:mc1 , T% þ V%sinHc

m%2:mc3 ¼ jm%3:mc2 , H%sinTc þ V%cosHccosTc

m%1:mc3 ¼ jm%3:mc1 , jH%cosTc þ V%cosHcsinTc:

ðB4Þ

Notice that if the eyes are correctly fixating (V% = 0) and
there is no torsion (Tc = T% = 0), then the only non-zero
inner product is m%1.mc3 , jH%.

U , jSxc W , jSyc R2 = U2 + W 2 + S2 = X 2 + Y 2 + Z2

U , jS tan!c W , jS tan.csec!c S = Rcos!ccos.c
U , jS tan"csec)c W , jS tan)c S = Rcos"ccos)c

Table A3. The relationship between the quantities (U, W, S), giving an object’s location in gaze-centered coordinates (cf. Figure 5), and
that object’s projection onto the cyclopean retina. The projection is given in planar Cartesian coordinates (xc, yc) and as azimuth longitude
!c, elevation longitude )c, azimuth latitude "c, and elevation latitude .c. The object’s head-centered coordinates (X, Y, Z) will depend on
eye position.
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Below, we shall also encounter the inner products
mc1.X̂, mc2.X̂, and mc3.X̂, where X̂ is a unit vector
along the X-axis. These are the entries in the top row of
the cyclopean rotation matrix, which under the above
approximation are

mc1:X̂¼ M11
c , cosHccosTc;

mc2:X̂¼ M12
c , jsinTccosHc; ðB5Þ

mc3:X̂¼ M13
c , sinHc:

We shall also use the following:

2m%1:P , W T$ þ Hsin
c V$

� �þ S jTcos
c H$ þ Hcos

c Tsin
c V$

� �
2m%2:P , jU T$ þ Hsin

c V$

� �þ S Tsin
c H$ þ Hcos

c Tcos
c V$

� �
2m%3:P , U Tcos

c H$jHcos
c Tsin

c V$

� �
j W Tsin

c H$ þ Hcos
c Tcos

c V$

� �
; ðB6Þ

where to save space we have introduced the notation
Tc
cos = cosTc, and so on.

Deriving expressions for retinal disparity

Disparity in Cartesian coordinates on a planar retina

The utility of the above expressions will now become
clear. Suppose that an object’s position in space is
represented by the vector P = (X, Y, Z) in head-centered
coordinates. Then, the object projects onto the left retina
at a point given by (xL, yL) in Cartesian coordinates,
where (Equation A9)

xL ¼ j
mL1: Pj NLð Þ
mL3: Pj NLð Þ ; yL ¼ j

mL2: Pj NLð Þ
mL3: Pj NLð Þ ;

ðB7Þ
where NL is the vector from the origin to the nodal point
of the left eye, and mLk is the kth column of the left eye’s
rotation matrix ML. For the left eye, we have NL = iX̂,
where X̂is a unit vector along the X-axis and i is half the
interocular distance, while for the right eye, NR = jiX̂.
We shall also rewrite the left and right eyes’ rotation
vectors, mL and mR, in terms of the half-sum and half-
difference between the two eyes:

mL ¼ mc j m%; mR ¼ mc þm%: ðB8Þ
The image in the left eye is then

xL ¼ j
mc1 j m%1ð Þ: Pj iX̂

� �
mc3 j m%3ð Þ: Pj iX̂

� � ; ðB9Þ
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while the expression for the right eye is the same but with
the signs of i and m% reversed:

xR ¼ j
mc1 þm%1ð Þ: Pþ iX̂

� �
mc3 þm%3ð Þ: Pþ iX̂

� � : ðB10Þ

Thus, there are two distinct sources of retinal disparity. One
of them arises from the fact that the eyes are in different
locations in the head and contributes terms in i. The other arises
from the fact that the eyes may point in different directions
and contributes terms in m%. We shall see these two sources
emerging in all our future expressions for binocular disparity.
We now make the approximation that both sources of

disparity, i and m%, are small. We carry out a Taylor
expansion in which we retain only first-order terms of these
quantities. To do this, it is helpful to introduce dummy
quantities s and j, wherem%j = (sj and i = (j, and the variable
( is assumed to be so small that we can ignore terms in (2:

xL ¼ j
mc1 j (s1ð Þ: Pj (jX̂

� �
mc3 j (s3ð Þ: Pj (jX̂

� �
, j

mc1:P

mc3:P

�
1j

(jmc1:X̂

mc1:P
j

(s1:P

mc1:P
þ (

jmc3:X̂

mc3:P

þ (s3:P

mc3:P
þ O (2

� ��
: ðB11Þ

Now removing the dummy variables, we have an expres-
sion for xL under the small-eye-difference approximation:

xL ,j
mc1:P

mc3:P

�
1þ imc3:X̂þm%3:P

� �
mc3:P

j
imc1:X̂ þm%1:P
� �

mc1:P
þ O (2

� ��
: ðB12Þ

Again, the expression for xR is the same but with the
signs of i and m% reversed. The expressions for y are the
same except with subscripts 1 replaced with 2. We can
therefore derive the following expressions for the cyclo-
pean position of the image:

xc ¼ xR þ xL
2

,j
mc1:P

mc3:P
; yc ¼ yR þ yL

2
,j

mc2:P

mc3:P
;

ðB13Þ
while for the Cartesian disparity, we obtain

x$ ¼ xRj xL , 2
mc1:P

mc3:P

�
imc3:X̂þm%3:P
� �

mc3:P

j
imc1:X̂þm%1:P
� �

mc1:P

�
ðB14Þ

y$ ¼ yR j yL , 2
mc2:P

mc3:P

�
imc3:X̂þm%3:P
� �

mc3:P

j
imc2:X̂þm%2:P
� �

mc2:P

�
:

Expressions formcj.X̂ were given in Equation B5. Now,
instead of specifying P = (X, Y, Z) in head-centered
coordinates, we move to the gaze-centered coordinate
system (U, W, S) in which an object’s position is specified
relative to the cyclopean gaze direction (Equation A7):

P ¼ Umc1 þWmc2 þ Smc3: ðB15Þ

Now recall that the inner product of any difference
vector m%j with the corresponding cyclopean vector mcj is
identically zero (Equation B1). Thus, the term m%3.P is
independent of the object’s distance measured along the
cyclopean gaze direction, S:

m%3:P ¼ Um%3:mc1 þWm%3:mc2: ðB16Þ
Using the relationships between the various m vectors

(Equations B1–B3), we obtain

xc ,j
U

S
; yc ,j

W

S
; ðB17Þ

which is in fact obvious given the definition of the
cyclopean retina and the cyclopean gaze-centered coor-
dinate system. For the disparity, we obtain

x$ ,
I

S2
UM13

c j SM11
c

� �
j

2

S2

�
U2 þ S2
� �

m
%1
:m

c3

þUWm%2:mc3 þ SWm%1:mc2

	
y$ ,

I

S2
WM13

c j SM12
c

� �
j

2

S2

�
W2 þ S2
� �

m
%2
:m

c3

þUWm%1:mc3 j SUm%1:mc2

	
: ðB18Þ

Expressions for the vector inner products, valid under
the approximation we are considering, were given in
Equations B4 and B5. Substituting these, using the small
angle approximation for the % quantities, we obtain the
following expressions for an object’s horizontal and
vertical disparities in Cartesian planar coordinates,
expressed as a function of its spatial location in gaze-
centered coordinates:

x$ ,
I

S

U

S
Hsin

c jHcos
c Tcos

c

� �
þ U2

S2
þ1

� �
Tcos
c j

UW

S2
Tsin
c


 �
H$

j
U2

S2
þ 1

� �
Hcos

c Tsin
c þ UW

S2
Hcos

c Tcos
c þ W

S
Hsin

c


 �
V$j

W

S
T$

y$ ,
I

S

W

S
Hsin

c þ Tsin
c Hcos

c

� �
þ UW

S2
Tcos
c j

W2

S2
þ 1

� �
Tsin
c


 �
H$

þ U

S
Hsin

c j
W2

S2
þ 1

� �
Hcos

c Tcos
c j

UW

S2
Hcos

c Tsin
c


 �
V$ þ U

S
T$;

ðB19Þ
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where to save space we have again defined Tc
cos = cosTc,

and so on.
Here, the disparity is expressed as a function of the

object’s position in space, (U, W, S). However, this is not
very useful, since the brain has no direct access to this. It
is more useful to express disparities in terms of (xc, yc),
the position on the cyclopean retina or equivalently the
visual direction currently under consideration, together
with the distance to the object along the cyclopean gaze, S.
The brain has direct access to the retinal position (xc, yc),
leaving distance S as the sole unknown, to be deduced
from the disparity. Then we obtain the following
expressions for an object’s horizontal and vertical dispar-
ities in Cartesian planar coordinates, expressed as a
function of its retinal location in Cartesian planar
coordinates:

x$ ,j xcH
sin
c þ Hcos

c Tcos
c

� � I
S
þ x2c þ 1
� �

Tcos
c j xcycT

sin
c

� 
H$

þ ycH
sin
c j x2c þ 1

� �
Hcos

c Tsin
c j xcycH

cos
c Tcos

c

� 
V$ þ ycT$

y$ ,j ycH
sin
c j Tsin

c Hcos
c

� � I
S
þ xcycT

cos
c j y2c þ 1

� �
Tsin
c

� 
H$

j xcH
sin
c þ y2c þ 1

� �
Hcos

c Tcos
c þ xcycH

cos
c Tsin

c

� 
V$ j xcT$:

ðB20Þ

Disparity in retinal longitude

Azimuth longitude and elevation longitude on the retina,
! and ), are simply related to the planar coordinates x
and y:

! ¼ arctanðxÞ; ) ¼ arctanðyÞ: ðB21Þ

From the approximation to xL given in Equation B12,
we have

!L ,jarctan

"
mc1:P

mc3:P

 
1þ imc3:X̂þm%3:P

� �
mc3:P

j
imc1:X̂þm%1:P
� �

mc1:P

!#
: ðB22Þ

With the Taylor expansion for arctan, this becomes

!L ,jarctan
mc1:P

mc3:P


 �
j

"
imc3:X̂þm%3:P
� �

mc3:P

j
ðimc1:X̂þm%1:PÞ

mc1:P

#
mc1:Pð Þ mc3:Pð Þ

mc3:Pð Þ2 þ mc1:Pð Þ2 : ðB23Þ

As before, the analogous expression for !R is the same
but with the signs of i and m% swapped. Thus, we obtain

!c ,jarctan
mc1:P

mc3:P


 �
,jarctan

U

S
; ðB24Þ

and

!% ,
imc3:X̂þm%3:P
� �

mc3:P
j

imc1:X̂þm%1:P
� �

mc1:P

" #

� mc1:Pð Þ mc3:Pð Þ
mc3:Pð Þ2 þ mc1:Pð Þ2 : ðB25Þ

We similarly obtain the following equation for the
elevation-longitude cyclopean position and disparity:

)c ,jarctan mc2:P
mc3:P


 �
,jarctan

W

S

)% ,
imc3:X̂þm%3:P
� �

mc3:P
j

imc2:X̂þm%2:P
� �

mc2:P

" #

� mc2:Pð Þ mc3:Pð Þ
mc3:Pð Þ2 þ mc2:Pð Þ2 : ðB26Þ

Again substituting for m, we obtain, in terms of an
object’s spatial location in gaze-centered coordinates:

!$ ,
1

S2 þ U2

UHsin
c j SHcos

c Tcos
c

� 
I þ S2 þ U2ð ÞTcos

c jUWTsin
c

� 
H$

j S2 þ U2ð ÞHcos
c Tsin

c þ UWHcos
c Tcos

c þWSHsin
c

� 
V$ jWST$

( )

)$ ,
1

W2 þ S2

WHsin
c þ STsin

c Hcos
c

� 
I þ j W2 þ S2ð ÞTsin

c þ UWTcos
c

� 
H$

j W2 þ S2ð ÞHcos
c Tcos

c þ UWHcos
c Tsin

c j USHsin
c

h i
V$ þ UST$

8<
:

9=
;:

ðB27Þ
We now re-express these disparities in terms of the

object’s retinal location in azimuth-longitude/elevation-
longitude coordinates. From U , jStan!c, we have

S2

S2 þ U2
,

S2

S2 þ S2tan2!c
¼ cos2!c: ðB28Þ

Similarly,
S2

S2 þW2
, cos2)c.

We therefore arrive at the following expressions for longitude
disparity expressed as a function of position on the cyclopean
retina in azimuth-longitude/elevation-longitude coordinates:

!$ , j
I

S
cos!c Hcos

c Tcos
c cos!c þ Hsin

c sin!c
� �

þ Tcos
c j sin!ccos!ctan)cT

sin
c

� 
H$

j Hcos
c Tsin

c þ sin!ccos!ctan)cH
cos
c Tcos

c j cos2!ctan)cH
sin
c

� 
� V$ þ cos2!ctan)c½ �T$

)$ , cos2)c Tsin
c Hcos

c jHsin
c tan)c

�  I
S

þ tan!csin)ccos)cT
cos
c j Tsin

c

� 
H$

j Hcos
c Tcos

c þ tan!csin)ccos)cH
cos
c Tsin

c þ tan!ccos
2)cH

sin
c

� 
� V$j tan!ccos

2)c½ �T$: ðB29Þ
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Alternatively, we may wish to express azimuth-longitude
disparity as a function of retinal location in an azimuth-
longitude/elevation-latitude coordinate system. Elevation
latitude . is related to azimuth longitude ! and elevation
longitude ) as

tan. ¼ tan):cos!: ðB30Þ

Thus, it is easy to replace )c in Equation B29 with .c:

!$ ,j
I

S
cos!c Hcos

c Tcos
c cos!c þ Hsin

c sin!c
� �

þ Tcos
c j sin!ctan.cT

sin
c

� 
H$

j Hcos
c Tsin

c þ sin!ctan.cH
cos
c Tcos

c jcos!ctan.cH
sin
c

� 
V$

þ cos!ctan.c½ �T$: ðB31Þ

Similarly, we can express elevation-longitude disparity
)$ as a function of retinal location in an azimuth-latitude/
elevation-longitude coordinate system (", )). Using tan" =
tan!cos), Equation B29 becomes

)$ , cos2)c Tsin
c Hcos

c j Hsin
c tan)c

�  I
S

þ tan"csin)cT
cos
c j Tsin

c

� 
H$

j Hcos
c Tcos

c þ tan"csin)cH
cos
c Tsin

c þ tan"ccos)cH
sin
c

� 
V$

j tan"ccos)c½ �T$: ðB32Þ

Disparity in retinal latitude

Azimuth latitude and elevation latitude on the retina,
" and ., are related to the planar coordinates x and y as

" ¼ arctanðx=¾ðy2 þ 1ÞÞ; . ¼ arctanðy=¾ðx2 þ 1ÞÞ:
ðB33Þ

From the approximation to xL and yL given in
Equation B12, we have

"L , jarctan
mL1: PjNLð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mL2: PjNLð Þ½ �2 þ mL3: PjNLð Þ½ �2
q
2
64

3
75:

ðB34Þ

Again doing the Taylor expansion, we obtain the
following expressions for horizontal and vertical retinal

latitude disparities in terms of an object’s spatial location
in gaze-centered coordinates:

"$ ¼ 2
Sm%3:mc1 þWm%2:mc1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ S2
p

þ I
M12

c UW þM13
c USjM11

c W2 þ S2ð Þ� �
U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ S2
p

.$ ¼ 2
Sm%3:mc2 þ Um%1:mc2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ S2
p

þ I
M11

c UW þM13
c WS j M12

c U2 þ S2ð Þ� �
U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ S2
p :

ðB35Þ

Substituting for the various entries in the rotation
matrix, Mc, m%, and mc, we obtain

2m%1:mc2 , T$ þ Hsin
c V$

2m%2:mc3 , Tsin
c H$ þ Hcos

c Tcos
c V$

2m%1:mc3 ,jTcos
c H$ þ Hcos

c Tsin
c V$

"$ ¼ jI
Tsin
c Hcos

c UWjHsin
c USþ Tcos

c Hcos
c W2 þ S2ð Þ� �

U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ S2

p

j
jSTcos

c H$ þ SHcos
c Tsin

c V$ þWHsin
c V$ þWT$

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ S2

p

.$ ¼ I
Hcos

c Tcos
c UW þ Hsin

c WSþ Tsin
c Hcos

c U2 þ S2ð Þ� �
U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ S2
p

j
STsin

c H$ þ SHcos
c Tcos

c V$ j UHsin
c V$ j UT$

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ S2

p :

ðB36Þ
To express azimuth-latitude disparity as a function of

position on the cyclopean retina in azimuth-latitude/
elevation-longitude coordinates ("c, )c), we use the
following relationships:

W ¼ jStan)c; U ¼ jStan"csec)c: ðB37Þ

This yields

"$ ¼ j
I

S
cos"ccos)cðTsin

c Hcos
c sin"csin)c þ Hsin

c sin"ccos)c

þ Tcos
c Hcos

c cos"cÞ þ ðTcos
c cos)cÞH$

þ cos)cðtan)cH
sin
c jHcos

c Tsin
c ÞV$ þ ðsin)cÞT$: ðB38Þ

Similarly, if we express elevation-latitude disparity as
a function of position on the cyclopean retina in
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Horizontal disparity Most general expressions

In planar Cartesian retinal coordinates
as a function of spatial position
in gaze-centered coordinates

x$,
I

S

U

S
Hsin

c jHcos
c Tcos

c

� �
þ U2

S2
þ 1

� �
Tcos
c j

UW

S2
Tsin
c


 �
H$

j
U2

S2
þ 1

� �
Hcos

c Tsin
c þ UW

S2
Hcos

c Tcos
c þW

S
Hsin

c


 �
V$j

W

S
T$

In planar Cartesian retinal coordinates
as a function of retinal location
in planar Cartesian coordinates

x$,j xcH
sin
c þ Hcos

c Tcos
c

� � I
S
þ x2c þ 1
� �

Tcos
c jxcycT

sin
c

� 
H$

þ ycH
sin
c j x2c þ 1

� �
Hcos

c Tsin
c jxcycH

cos
c Tcos

c

� 
V$ þ ycT$

In azimuth longitude,
as a function of spatial location
in gaze-centered coordinates

!$, 1
S2þU2

UHsin
c jSHcos

c Tcos
c

� 
I þ S2 þ U2ð ÞTcos

c jUWTsin
c

� 
H$

j S2 þ U2ð ÞHcos
c Tsin

c þ UWHcos
c Tcos

c þWSHsin
c

� 
V$jWST$

� �

In azimuth longitude,
as a function of retinal location
in azimuth-longitude/
elevation-longitude coordinates

!$,j
I

S
cos!c Hcos

c Tcos
c cos!c þ Hsin

c sin!c
� �þ Tcos

c jsin!ccos!ctan)cT
sin
c

� 
H$

j Hcos
c Tsin

c þ sin!ccos!ctan)cH
cos
c Tcos

c jcos2!ctan)cH
sin
c

� 
V$

þ cos2!ctan)cT$

In azimuth longitude,
as a function of retinal location
in azimuth-longitude/
elevation-latitude coordinates

!$,j
I

S
cos!c Hcos

c Tcos
c cos!c þ Hsin

c sin!c
� �þ Tcos

c jsin!ctan.cT
sin
c

� �
H$

j Hcos
c Tsin

c þ Tcos
c Hcos

c sin!ctan.cjHsin
c cos!ctan.c

� �
V$ þ cos!ctan.cð ÞT$

!$,j
I

R
sec.c Hcos

c Tcos
c cos!c þ Hsin

c sin!c
� �þ Tcos

c jsin!ctan.cT
sin
c

� �
H$

j Hcos
c Tsin

c þ Tcos
c Hcos

c sin!ctan.cjHsin
c cos!ctan.c

� �
V$ þ cos!ctan.cð ÞT$

In azimuth latitude,
as a function of spatial location
in gaze-centered coordinates

"$ ¼ jI
Tsin
c Hcos

c UWjHsin
c USþ Tcos

c Hcos
c W2 þ S2ð Þ� �

U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ S2

p

j
jSTcos

c H$ þ SHcos
c Tsin

c V$ þWHsin
c V$ þWT$

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ S2

p
In azimuth latitude,

as a function of retinal location
in azimuth-latitude/
elevation-longitude coordinates

"$ ¼ j
I

R
Tsin
c Hcos

c sin"csin)c þ Hsin
c sin"ccos)c þ Tcos

c Hcos
c cos"c

� �
þ Tcos

c cos)c

� �
H$ þ cos)c tan)cH

sin
c jHcos

c Tsin
c

� �
V$ þ sin)cð ÞT$

Table C1. Expressions for horizontal disparity in different coordinate systems. These are correct to first order in interocular distance I/S (I/R)
and in the vergence angles H$, V$, and T$. They hold all over the retina and for any cyclopean gaze Hc, elevation Vc, or overall
cycloversion Tc.
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Vertical disparity Most general expressions

In planar Cartesian retinal coordinates
as a function of spatial position
in gaze-centered coordinates

y$,
I

S

W

S
Hsin

c þ Tsin
c Hcos

c

� �
þ UW

S2
Tcos
c j

W2

S2
þ 1

� �
Tsin
c


 �
H$

þ U

S
Hsin

c j
W2

S2
þ 1

� �
Hcos

c Tcos
c j

UW

S2
Hcos

c Tsin
c


 �
V$ þ U

S
T$

In planar Cartesian retinal coordinates
as a function of retinal location
in planar Cartesian coordinates

y$,j ycH
sin
c jTsin

c Hcos
c

� � I
S
þ xcycT

cos
c j y2c þ 1

� �
Tsin
c

� 
H$

j xcH
sin
c þ y2c þ 1

� �
Hcos

c Tcos
c þ xcycH

cos
c Tsin

c

� 
V$jxcT$

In elevation longitude,
as a function of spatial location
in gaze-centered coordinates )$,

1
W2þS2

WHsin
c þ STsin

c Hcos
c

� 
I þ j W2 þ S2ð ÞTsin

c þ UWTcos
c

� 
H$

j W2 þ S2ð ÞHcos
c Tcos

c þ UWHcos
c Tsin

c jUSHsin
c

� 
V$ þ UST$

� �
In elevation longitude,

as a function of retinal location
in azimuth-longitude/
elevation-longitude coordinates

)$,cos
2)c Tsin

c Hcos
c jHsin

c tan)c

�  I
S
þ tan!csin)ccos)cT

cos
c jTsin

c

� 
H$

j Hcos
c Tcos

c þ tan!csin)ccos)cH
cos
c Tsin

c þ tan!ccos
2)cH

sin
c

� 
V$

jtan!ccos
2)cT$

In elevation longitude,
as a function of retinal location
in azimuth-latitude/
elevation-longitude coordinates

)$,cos
2)c Tsin

c Hcos
c jHsin

c tan)c

�  I
S
þ tan"csin)cT

cos
c jTsin

c

� 
H$

j Hcos
c Tcos

c þ tan"csin)cH
cos
c Tsin

c þ tan"ccos)cH
sin
c

� 
V$jtan"ccos)cT$

)$,
I

R

cos)c

cos"c
Tsin
c Hcos

c jHsin
c tan)c

� þ tan"csin)cT
cos
c jTsin

c

� 
H$

j Hcos
c Tcos

c þ tan"csin)cH
cos
c Tsin

c þ tan"ccos)cH
sin
c

� 
V$jtan"ccos)cT$

In elevation latitude,
as a function of spatial location
in gaze-centered coordinates

.$ ¼ I
Hcos

c Tcos
c UW þ Hsin

c WSþ Tsin
c Hcos

c U2 þ S2ð Þ� �
U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 þ S2
p

j
STsin

c H$ þ SHcos
c Tcos

c V$jUHsin
c V$jUT$

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ S2

p

In elevation latitude,
as a function of retinal location
in azimuth-longitude/
elevation-latitude coordinates

.$ ¼ I

S
cos!ccos.c Tcos

c Hcos
c sin!csin.cjHsin

c cos!csin.c þ Tsin
c Hcos

c cos.c
� �

jTsin
c H$cos!cj Hcos

c Tcos
c cos!c þ sin!cH

sin
c

� �
V$jsin!cT$

.$ ¼ I

R
Tcos
c Hcos

c sin!csin.cjHsin
c cos!csin.c þ Tsin

c Hcos
c cos.c

� �
jTsin

c H$cos!cj Hcos
c Tcos

c cos!c þ sin!cH
sin
c

� �
V$jsin!cT$

Table C2. Expressions for vertical disparity in different coordinate systems. These are correct to first order in interocular distance I/S (I/R)
and in the vergence angles H$, V$, and T$. They hold all over the retina and for any cyclopean gaze Hc, elevation Vc, or overall
cycloversion Tc.
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Horizontal disparity With zero overall cycloversion, Tc = 0

In planar Cartesian retinal coordinates
as a function of spatial position
in gaze-centered coordinates

x$,
I

S

U

S
Hsin

c jHcos
c

� �
þ U2

S2
þ 1

� �
H$

j
UW

S2
Hcos

c þW

S
Hsin

c


 �
V$j

W

S
T$

In planar Cartesian retinal coordinates
as a function of retinal location
in planar Cartesian coordinates

x$,j xcH
sin
c þ Hcos

c

� � I
S
þ x2c þ 1
� �

H$

þ ycH
sin
c jxcycH

cos
c

� �
V$ þ ycT$

In azimuth longitude,
as a function of spatial location
in gaze-centered coordinates

!$,
1

S2 þ U2

UHsin
c jSHcos

c

� 
I þ S2 þ U2ð ÞH$

j UWHcos
c þWSHsin

c

� 
V$jWST$

� �

In azimuth longitude,
as a function of retinal location
in azimuth-longitude/
elevation-longitude coordinates

!$,j
I

S
cos!ccos Hcj!cð Þ þ H$

þV$cos!ctan)csin Hcj!cð Þ þ T$cos
2!ctan)c

In azimuth longitude,
as a function of retinal location
in azimuth-longitude/
elevation-latitude coordinates

!$,j
I

S
cos!ccos Hcj!cð Þ þ H$ þ V$tan.csin Hcj!cð Þ þ T$cos!ctan.c

!$,j
I

R
sec.ccos Hcj!cð Þ þ H$ þ V$tan.csin Hcj!cð Þ þ cos!ctan.cð ÞT$

In azimuth latitude,
as a function of spatial location
in gaze-centered coordinates

"$ ¼ jI
jHsin

c USþ Hcos
c W2 þ S2ð Þ� �

U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ S2

p j
jSH$ þWHsin

c V$ þWT$
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 þ S2

p

In azimuth latitude,
as a function of retinal location
in azimuth-latitude/
elevation-longitude coordinates

"$ ¼ j
I

R
Hsin

c sin"ccos)c þ Hcos
c cos"c

� �
þ H$T

cos
c cos)c þ V$H

sin
c cos)ctan)c þ T$sin)c

Table C3. Expressions for horizontal disparity in different coordinate systems. These are correct to first order in interocular distance I/S (I/R)
and in the vergence angles H$, V$, and T$. They hold all over the retina and for any cyclopean gaze Hc or elevation Vc, provided there is
no overall cycloversion, Tc = 0.

Vertical disparity With zero overall cycloversion, Tc = 0

In planar Cartesian retinal coordinates as a function
of spatial position in gaze-centered coordinates

y$,
IW

S2
Hsin

c þ H$
UW

S2
þ U

S
Hsin

c j
W2

S2
þ 1

� �
Hcos

c


 �
V$ þ U

S
T$

In planar Cartesian retinal coordinates as a function
of retinal location in planar Cartesian coordinates

y$,j
I

S
ycH

sin
c þ H$xcycj xcH

sin
c þ y2c þ 1

� �
Hcos

c

� 
V$jxcT$

In elevation longitude, as a function of spatial location
in gaze-centered coordinates

)$,
1

W2 þ S2
WHsin

c

� 
I þ UWH$j W2 þ S2

� �
Hcos

c jUSHsin
c

� 
V$ þ UST$

� �
In elevation longitude, as a function of retinal location

in azimuth-longitude/elevation-longitude coordinates
)$,j

I

S
Hsin

c sin)ccos)c þ H$tan!csin)ccos)c

jV$ Hcos
c þ tan!ccos

2)cH
sin
c

� �
jtan!ccos

2)cT$

In elevation longitude, as a function of retinal location
in azimuth-latitude/elevation-longitude coordinates

)$,j
I

S
Hsin

c sin)ccos)c þ H$tan"csin)c

jV$ Hcos
c þ tan"ccos)cH

sin
c

� �
jtan"ccos)cT$

)$,j
I

R
Hsin

c

sin)c

cos"c
þ H$tan"csin)c

jV$ Hcos
c þ tan"ccos)cH

sin
c

� �
jtan"ccos)cT$

In elevation latitude, as a function of spatial location
in gaze-centered coordinates .$ ¼ I

Hcos
c UW þ Hsin

c WS
� �

U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ S2

p j
SHcos

c V$jUHsin
c V$jUT$

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ S2

p
In elevation latitude, as a function of retinal location

in azimuth-longitude/elevation-latitude coordinates
.$ ¼ j

I

R
sin.csin Hcj!cð ÞjV$cos Hcj!cð Þjsin!cT$

Table C4. Expressions for vertical disparity in different coordinate systems. These are correct to first order in interocular distance I and in
the vergence angles H$, V$, and T$. They hold all over the retina and for any cyclopean gaze Hc or elevation Vc, provided there is no
overall cycloversion, Tc = 0.
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Horizontal disparity For zero torsion and vertical vergence error

In planar Cartesian retinal coordinates as a function
of retinal location in planar Cartesian coordinates

x$,j xcH
sin
c þ Hcos

c

� � I
S
þ x2c þ 1
� �

H$

In planar Cartesian retinal coordinates as a function
of spatial position in gaze-centered coordinates

x$,
I

S2
UHsin

c jSHcos
c

� �þ U2 þ S2

S2
H$

In azimuth longitude, as a function
of spatial location in gaze-centered coordinates

!$,
I

S2 þ U2
UHsin

c jSHcos
c

� �þ H$

In azimuth longitude, as a function of retinal location
in azimuth-longitude/elevation-longitude coordinates

!$,j
I

S
cos!ccos !cjHcð Þ þ H$

In azimuth longitude, as a function of retinal location
in azimuth-longitude/elevation-latitude coordinates

(same as above since !$ is then independent of retinal elevation)

In azimuth latitude, as a function of spatial location
in gaze-centered coordinates "$ ¼ I

Hsin
c USjHcos

c W2 þ S2ð Þ� �
U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ S2
p þ SH$ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W2 þ S2
p

In azimuth latitude, as a function of retinal location
in azimuth-latitude/elevation-longitude coordinates "$ ¼ j

I

S
cos"ccos)c Hsin

c sin"ccos)c þ Hcos
c cos"c

� �þ cos)cH$

Table C5. Expressions for horizontal disparity in different coordinate systems. These are correct to first order in interocular distance I/S (I/R)
and in the convergence angle H$. They assume cycloversion, cyclovergence, and vertical vergence are all zero: Tc = T$ = V$ = 0. They
hold all over the retina and for any cyclopean gaze Hc or elevation Vc.

Vertical disparity For zero torsion and vertical vergence error

In planar Cartesian retinal coordinates as a function
of retinal location in planar Cartesian coordinates

y$,yc jHsin
c

I

S
þ xcH$

� �
In planar Cartesian retinal coordinates as a function

of spatial position in gaze-centered coordinates
y$,

W

S2
IHsin

c þ UH$

� �
In elevation longitude, as a function of spatial location

in gaze-centered coordinates
)$,

W

W2 þ S2
IsinHc þ UH$ð Þ

In elevation longitude, as a function of retinal location
in azimuth-longitude/elevation-longitude coordinates

)$,sin)ccos)c j
I

S
sinHc þ H$tan!c

� �
In elevation longitude, as a function of retinal location

in azimuth-latitude/elevation-longitude coordinates
)$,sin)c j I

S sinHccos)c þ H$tan"c
� �

In elevation latitude, as a function of spatial location
in gaze-centered coordinates

.$ ¼ I
W UcosHc þ SsinHcð Þ

U2 þW2 þ S2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ S2

p

In elevation latitude, as a function of retinal location
in azimuth-longitude/elevation-latitude coordinates

.$ ¼ I

S
sin.ccos.ccos!csin !cjHcð Þ

.$ ¼ I

R
sin.csin !cjHcð Þ

Table C6. Expressions for vertical disparity in different coordinate systems. These are correct to first order in interocular distance I/S (I/R)
and in the convergence angle H$. They assume cycloversion, cyclovergence, and vertical vergence are all zero: Tc = T$ = V$ = 0. They
hold all over the retina and for any cyclopean gaze Hc or elevation Vc.
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azimuth-longitude/elevation-latitude coordinates (!c, .c),
we obtain

.$ ¼ I

S
cos!ccos.cð Tcos

c Hcos
c sin!csin.c j Hsin

c cos!csin.c

þ Tsin
c Hcos

c cos.cÞj Tsin
c H$cos!c

j Hcos
c Tcos

c cos!c þ sin!cH
sin
c

� �
V$ j sin!cT$: ðB39Þ

This expression simplifies slightly if we replace S, the
distance component along the cyclopean line of sight,
with R, the shortest distance from the origin to the viewed
point. R2 = U2 + W2 + S2, and hence

S ¼ Rcos!ccos.c ¼ Rcos"ccos)c: ðB40Þ

Then we have

.$ ¼ I

R
Tcos
c Hcos

c sin!csin.c j Hsin
c cos!csin.c þ Tsin

c Hcos
c cos.c

� �
j Tsin

c H$cos!c j Hcos
c Tcos

c cos!c þ sin!cH
sin
c

� �
V$ j sin!cT$:

ðB41Þ

Appendix C: Tables of
expressions for horizontal and
vertical disparities in different
coordinate systems

Most general

The expressions in Tables C1 and C2 assume that the
cyclovergence between the eyes, T$, is small. They do not
assume anything about the overall cycloversion, Tc.
Cycloversion rotates the eyes in the head, mixing up
vertical and horizontal disparities. This can occur when
the head tilts over, so that the interocular axis is no longer
horizontal with respect to gravity. In the extreme case of
Tc = 90-, the vertical and horizontal directions have
actually swapped over (y Y x and x Y jy). One can
verify from the above results that the expressions for
vertical and horizontal disparities also swap over (i.e.,
x$ with Tc = 90- is the same as y$ with Tc = 0, after
replacing y with x and x with jy), a quick “sanity check”
on the results.

Zero overall cycloversion

Table C3 and Table C4.

Zero overall cycloversion, cyclovergence,
and vertical vergence error

Table C5 and Table C6.
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